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Abstract 
Adequate matching methods are critical for accurate volumetric-modulated 
arc therapy (VMAT). We investigated the dosimetric differences in the target 
and organs at risk (OARs) between bone matching and target matching in pa-
tients with prostate cancer treated with VMAT. The relationship between the 
dosimetric differences and interfractional motion of the prostate was also 
evaluated. Forty patients with prostate cancer classified as intermediate risk 
were enrolled in a study to assess the differences in dosimetry between two 
matching methods. These patients were treated with VMAT and prescribed 
dose was 78 Gy. The dose distribution was calculated using cone-beam com-
puted tomography (CBCT) for this study. We selected clinical target volume 
(CTV) as the target, and the rectum and bladder as the OARs. The Dmean, 
D98, D95, and D2 to the target and V10-V70 to the OARs were calculated as 
different dose from target matching value minus bone matching value. Mul-
tiple regression analysis was used to evaluate the effect of interfractional mo-
tion of the prostate on the differences in dose. The CTV D95 values differed 
by −0.22 ± 1.01 Gy (mean ± standard deviation). Rectum and bladder V70 
values differed by 4.6% ± 7.2% and −2.6% ± 7.2%, respectively. There was a 
correlation between interfractional motion of the prostate and the dose dif-
ferences to OARs (R2 = 0.73 - 0.94). The dose differences to OARs also varied 
depending on the direction of the prostate’s motion. We found that bone 
matching resulted in an increased rectal dose and high risk of decreasing dose 
to the CTV. 
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1. Introduction 

Intensity-modulated radiotherapy (IMRT) for prostate cancer can deliver a more 
adequate dose distribution to the target while sparing normal tissue compared 
with conventional irradiation methods. This allows a higher dose to reach the 
target [1] [2]. The technique requires very high accuracy to minimize the chance 
of complications [3]. Guidelines recommend the use of image guidance [4], and 
studies have reported the resulting improvements in the accuracy of delivery and 
decreased complication rates [5] [6] [7]. 

There are various image guidance options for prostate cancer, including ul-
trasound [8], portal imaging with fiducial markers [9], megavoltage (MV) com-
puted tomography (CT) [10] and kilovoltage (kV) cone-beam CT (CBCT) [11]. 
Nakamura et al. [12] reported that, in Japan, 47% of sites used bone matching 
with image-guided radiotherapy (IGRT) for prostate cancer treatment planning 
and 40% used target matching, with the other sites using fiducial markers. Tar-
get and bone matching methods differ in that target matching includes correc-
tion for interfractional organ motion of the prostate while bone matching does 
not. However, motion blur due to long acquisition times and image artifacts is 
an issue in target matching using CBCT [13]. 

Comparison of bone and target matching has found that they result in differ-
ent doses to the rectum and bladder [14] [15] [16] [17]. The distance and direc-
tion of interfractional motion of the prostate may vary with different immobili-
zation and preparation methods, and can vary among institutions [18]. Rijkhorst 
et al. [17] reported that the dosimetric effect of different matching methods is 
dependent on interfractional motion of the prostate in the anteroposterior direc-
tion. Knowledge of this effect is important when choosing a matching method. 
However, the optimal way of choosing a matching method has not been suffi-
ciently investigated. 

In this study, we assessed interfractional motion of the prostate and the re-
sulting dosimetric effects on the target and organs at risk (OARs) using the bone 
and target matching methods. 

2. Materials and Methods 
2.1. Patients Selection 

Forty patients with localized prostate cancer treated with IMRT at our institute 
between April 2012 and May 2013 were enrolled in this study. The patients were 
classified as “intermediate risk” based on the National Comprehensive Cancer 
Network (NCCN) prognostic risk grouping (www.nccn.org) that inclusions were 
clinical stage T2b or T2c, Gleason score of 7 or prostate-specific antigen of 10 - 
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20. This study was approved by the Ethics Committee of Tane General Hospital. 
All patients gave written consent to participate in the study. 

2.2. Preparations 

Each patient was instructed to have a full bladder and empty rectum during CT 
simulation and treatment. A VacLok® vacuum immobilization device (Med-Tech, 
Orange City IA, USA) was used to fix each patient in the supine position. All pa-
tients were scanned on a 16-slice Optima CT580W® CT scanner (GE Medical 
Systems, Waukesha WI, USA) with a field of view of 50 cm, tube voltage of 120 
kVp, tube current using the AutomA technique, matrix of 512 × 512 and slice 
thickness of 2.5 mm. 

2.3. Image Guided 

Figure 1 shows the IGRT protocol used in this study. After setting up skin 
markers to position lasers for the replication of patient position, bone matching 
was performed using the ExacTrac® (BrainLAB, Heimstetten, Germany) X-ray 
6D image-guided system (tube voltage 120 kV, tube current 160 mA, time 160 
msec). We performed this in three planes and two axes corrections (ante-
rior-posterior, superior-inferior, lateral, and pitching and rolling, respectively) 
using a 6D robotic couch. Subsequently, CBCT (125 kV, tube current 80 mA, 
time 13 msec, slice thickness 2.5 mm, half fan mode) image data were acquired 
using the On Board Imager (OBI®, Varian Medical Systems, Palo Alto CA, USA), 
which is a CBCT mounted on a NovalisTx® linear accelerator (Varian), and tar-
get matching was performed manually by one medical physicist in three direc-
tions (anterior-posterior, superior-inferior, lateral). After bone matching by Ex-
acTrac, the CBCT images, prior to undergoing target matching, were also used  
 

 
Figure 1. IGRT procedure in this study. After aligning skin markers with a laser, auto 
bone matching was performed using the ExacTrac system in all cases. Target matching 
was performed using CBCT. CBCT = cone beam computed tomography. 
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for bone matching, and the same images, after undergoing target matching, were 
defined as “target matching images.” Image-guided volumetric-modulated arc 
therapy (VMAT) was planned using Eclipse® version 10.0 (Varian Medical Sys-
tems, Palo Alto CA, USA). 

CBCT was acquired before every fraction. Five CBCT image datasets were 
randomly selected, and clinical target volume (CTV) and OARs were contoured 
on the selected images. The CTV was defined as the entire prostate plus the 
proximal 1.5 cm of the seminal vesicles. The planning target volume (PTV) was 
generated by adding an 8 mm margin to the CTV in all orientations except 
posteriorly, where a 5 mm margin was used. The prescribed dose was 78 Gy in 
39 fractions. All plans were normalized to PTV mean dose. The rectum and 
bladder were contoured as solid organs. The rectum was segmented from the 
level of the ischial tuberosities to the rectosigmoid flexure, and the bladder was 
contoured from its apex to the dome. Contouring of the planning CT was per-
formed by three radiation oncologists who were in charge of the patients. Con-
touring of CTV on CBCT was performed by one radiation oncologist and rectal 
and bladder contouring was performed by one medical physicist. The plan was 
calculated twice using the coordinates of bone matching and the results of target 
matching.  

2.4. Evaluations 

Interfractional motion of the prostate was defined as the difference in coordi-
nates between bone matching and target matching. Dx is defined as the dose de-
livered to x% of the volume and Vx is defined as the volume receiving x Gy of 
the dose. To investigate the dosimetric effect of the different matching methods, 
differences in Dx and Vx between target matching and bone matching were cal-
culated. Changes in Dx and Vx were used as dosimetric indicators of the effect of 
the interfractional motion of the prostate on dose.  

Dmean, D98, D95, D2 were used for CTV and V10, V20, V30, V40, V50, V60 
and V70 were selected for OARs. Multiple linear regression analysis was used to 
evaluate the relationship between the difference in each of the dosimetric indi-
cators and the interfractional motion of the prostate using SPSS Statistics® (IBM, 
Armonk NY, USA). 

3. Results 

The interfractional motion of the prostate in the anterior-posterior, supe-
rior-inferior and lateral directions measured (mean ± standard deviation) −1.9 ± 
2.8 mm, 0.3 ± 2.2 mm, and −0.1 ± 0.7 mm (Figure 2), where positive values in-
dicate posterior, superior, and left directions, respectively. Figure 3 shows the 
differences in dose, where the target matching dose was subtracted from the 
bone matching dose. The bone matching dose produced higher increases in all 
dosimetric indicators to the rectum compared to the target matching dose, and 
resulted in lower doses to the CTV and bladder than the target matching dose. 
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Figure 2. Histograms of interfractional motion of the prostate. (a) The anterior-posterior 
(AP) axis. Positive values indicate posterior. (b) The superior-inferior (SI) axis. Positive 
values indicate superior. (c) The left-right (LR) axis. Positive values indicate left. 
 

Table 1 shows the results of multiple linear regression analysis of the rela-
tionship between interfractional motion of the prostate and the difference in  

https://doi.org/10.4236/ijmpcero.2018.71005


R. Nakahara et al. 
 

 

DOI: 10.4236/ijmpcero.2018.71005 52 Int. J. Medical Physics, Clinical Engineering and Radiation Oncology 

 

 
Figure 3. Dosimetric differences to the target and OARs by subtracting the target 
matching dose from the bone matching dose.(a) Dosimetric difference of CTV; 
(b) Dosimetric difference of rectum; (c) Dosimetric difference of bladder. 
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Table 1. Multiple regression analysis of the relationship between interfractional motion 
of the prostate and the difference in dose to the rectum. Bold letters indicate the factor 
that affects the dose difference the most. 

 R2 
Direction of  

interfractional  
motion of the prostate 

Regression 
coefficient 

SD 
P 

value 

Rectum 
V10 

0.38 

(constant) −0.24 0.16 0.12 

AP axis (mm) −0.63 0.07 <0.01 

SI axis (mm) −0.35 0.08 0.01 

LR axis (mm) 0.09 0.18 0.61 

Rectum 
V20 

0.73 

(constant) −0.69 0.29 0.02 

AP axis (mm) −1.70 0.12 <0.01 

SI axis (mm) 0.16 0.16 0.31 

LR axis (mm) 0.50 0.33 0.13 

Rectum 
V30 

0.87 

(constant) −0.45 0.27 0.10 

AP axis (mm) −2.23 0.11 <0.01 

SI axis (mm) 0.61 0.15 <0.01 

LR axis (mm) 0.41 0.31 0.19 

Rectum 
V40 

0.92 

(constant) −0.14 0.24 0.54 

AP axis (mm) −2.38 0.10 <0.01 

SI axis (mm) 0.82 0.13 <0.01 

LR axis (mm) 0.41 0.27 0.13 

Rectum 
V50 

0.93 

(constant) 0.11 0.21 0.61 

AP axis (mm) −2.33 0.09 <0.01 

SI axis (mm) 0.92 0.11 <0.01 

LR axis (mm) 0.27 0.24 0.27 

Rectum 
V60 

0.94 

(constant) 0.41 0.19 0.03 

AP axis (mm) −2.15 0.08 <0.01 

SI axis (mm) 1.00 0.10 <0.01 

LR axis (mm) 0.12 0.22 0.58 

Rectum 
V70 

0.93 

(constant) 0.84 0.18 <0.01 

AP axis (mm) −1.83 0.08 <0.01 

SI axis (mm) 1.01 0.10 <0.01 

LR axis (mm) −0.17 0.21 0.42 

Vx denotes the difference between bone matching and target matching. R2 = coefficient of determination; 
SD = standard deviation; AP = anterior-posterior; SI = superior-inferior; LR = left-right. 
 
dose to the rectum. The coefficient of determination indicates a correlation be-
tween interfractional motion of the prostate and the difference in each of the do-
simetric indicators except V10 (R2 = 0.73 - 0.94). The rectal dose was most in-
fluenced by anterior-posterior interfractional motion. 

Table 2 shows the results of multiple linear regression analysis of the rela-
tionship between interfractional motion of the prostate and differences in  
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Table 2. Multiple regression analysis of the relationship between interfractional motion of 
the prostate and the difference in dose to the bladder. Bold letters indicate the factor that af-
fecs the dose difference the most. 

 R2 
Direction of  

interfractional  
motion of the prostate 

Regression 
coefficient 

SD 
P 

value 

Bladder 
V10 

0.74 

(constant) −0.40 0.31 0.20 

AP axis (mm) 0.13 0.13 0.32 

SI axis (mm) −2.39 0.16 <0.01 

LR axis (mm) 0.15 0.35 0.66 

Bladder 
V20 

0.86 

(constant) −0.46 0.30 0.12 

AP axis (mm) 0.55 0.12 <0.01 

SI axis (mm) −2.94 0.16 <0.01 

LR axis (mm) 0.17 0.34 <0.62 

Bladder 
V30 

0.86 

(constant) −0.35 0.34 <0.31 

AP axis (mm) 1.11 0.14 <0.01 

SI axis (mm) −2.84 0.19 <0.01 

LR axis (mm) 0.58 0.39 0.14 

Bladder 
V40 

0.85 

(constant) −0.13 0.35 0.71 

AP axis (mm) 1.37 0.15 <0.01 

SI axis (mm) −2.50 0.19 <0.01 

LR axis (mm) 0.59 0.41 0.15 

Bladder 
V50 

0.84 

(constant) 0.01 0.34 0.99 

AP axis (mm) 1.41 0.14 <0.01 

SI axis (mm) −2.13 0.18 <0.01 

LR axis (mm) 0.50 0.39 <0.21 

Bladder 
V60 

0.82 

(constant) 0.09 0.32 0.77 

AP axis (mm) 1.36 0.14 <0.01 

SI axis (mm) −1.80 0.17 <0.01 

LR axis (mm) 0.42 0.37 0.26 

Bladder 
V70 

0.80 

(constant) 0.27 0.31 0.39 

AP axis (mm) 1.26 0.13 <0.01 

SI axis (mm) −1.49 0.17 <0.01 

LR axis (mm) 0.31 0.35 0.39 

Vx denotes the difference between bone matching and target matching. R2 = coefficient of determination; 
SD = standard deviation; AP = anterior-posterior; SI = superior-inferior; LR = left-right. 
 
dose to the bladder. All differences in bladder dose correlated with interfractional 
motion of the prostate (R2 = 0.74 - 0.86). The bladder dose was most influenced 
by superior-inferior interfractional motion. 

Plots of the differences in CTV D95, rectum V70, and bladder V70 are shown 
in Figure 4, with the x-axis indicating the direction of interfractional motion of 
the prostate with the strongest influence on the subsequent dose. The CTV D95  
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Figure 4. Representative dose changes to target and OARs. Positive values along the x 
axis indicate posterior ((a), (b)) and superior (c) directions. V70 and D95 denotes the 
difference between bone matching and target matching. The arrows represent the value of 
steeply dose decreasing of CTV when anterior-posterior interfractional motion of the 
prostate exceeded the PTV margin with bone matching was used. OARs = organs at risk. 
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was steeply decreased when anterior-posterior interfractional motion of the 
prostate exceeded the PTV margin and bone matching was used. Motion in di-
rections other than anterior-posterior did not exceed the PTV margin. Doses to 
the rectum and bladder were most affected by anterior and inferior interfrac-
tional motion of the prostate, respectively. 

4. Discussions 

Several studies have reported the effect of interfractional motion of the prostate 
on the target or OAR dose [18] [19] [20] [21]. Thongphiew et al. [14] investi-
gated the use of CBCT in five fractions/week between bone and target matching 
and reported that bone matching resulted in a higher rectal dose than target 
matching. Using MVCT for comparison, Rivest et al. [15] reported that the rec-
tal dose was higher with bone matching when interfractional motion of the 
prostate was in the anterior direction. Hirose et al. [16] compared rectal wall 
dose and bladder wall dose using CBCT and reported no differences between 
doses from bone matching and target matching. Our results suggest that the 
rectal dose is higher with bone matching due to anterior interfractional motion 
of the prostate. This corresponds with findings by Rivest et al. [15] and Rijkhorst 
et al. [17] showing that anterior interfractional motion of the prostate is asso-
ciated with increased rectal dose. 

We showed correlations between interfractional motion of the prostate and 
differences in rectal dose, excluding V10. Especially, it was suggest that in the 
case of where the interfractional motion of prostate moves 1 mm to posterior 
direction and use bone matching, each rectum dosimetric indicators excluded 
V10 increased about 2% (p < 0.01). Similarly, in the bladder, in the case of where 
the interfractional motion of prostate moves 1 mm to inferior direction and use 
bone matching, each bladder dosimetric indicators increased about 1% to 3% 
(p < 0.01).  

Figure 5 shows both the rectal dose calculated at treatment planning in this 
study and the tolerance value of the rectal dose recommended by Quantitative 
Analyses of Normal Tissue Effects in the Clinic (QUANTEC) [22]. As the calcu-
lated dose at treatment planning increased, it approached the tolerance values of 
QUANTEC, with some V70 values exceeding the tolerance values. Due to the 
above reasons, it is important to consider this as a limiting factor when choosing 
matching methods. 

The regression coefficients for the rectum and bladder were in opposite direc-
tions for the anterior-posterior and inferior-superior directions, indicating that 
the influence of the interfractional motion of the prostate on the difference in 
dosimetric indicators exerted opposite effects on the rectum and bladder. This 
relationship is due to the locations of these organs: the rectum is located post-
erior to the prostate while the bladder is located superior and anterior, such that 
when the prostate moves, the rectum and bladder move in the corresponding 
direction to occupy the space left by the movement of the prostate gland. 
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Figure 5. Relationship between rectal dose and tolerance value of QUANTEC. Box plots 
indicate treatment planning rectal doses and asterisks indicate the tolerance values of 
QUANTEC. Box plots with error bars indicate the median, minimum, 25th percentile, 
75th percentile and maximum for each of the dosimetric indicators. QUANTEC = Quan-
titative Analyses of Normal Tissue Effects in the Clinic. 
 

In the CTV, there was only a small influence of interfractional motion of the 
prostate on the difference in dosimetric indicators. The lack of a clinically sig-
nificant difference was presumably due to a sufficiently wide PTV margin set-
ting. However, in some cases, posterior interfractional motion of the prostate 
caused a decrease in D95 to the CTV with bone matching, even with a distance 
shift within 5 mm of the posterior PTV margin (Figure 4). The above cases were 
planned to allow < 95% of the prescribed dose to the posterior aspect of the 
PTV; we observed an increase in D95 to CTV with bone matching due to ante-
rior interfractional motion of the prostate when these posterior regions re-
ceived < 95% of the prescribed dose. 

Sato et al. [23] reported that target matching was superior to bone matching 
due to the ability to use a smaller PTV margin. Our results indicate that when 
bone matching is used with the same PTV margins, the rectal dose increases 
when the interfractional motion of the prostate is anterior, and the CTV is at 
higher risk of a decreased dose when the interfractional motion of the prostate is 
posterior. Figure 4 shows cases in which the interfractional motion of the pros-
tate exceeded the PTV margin, with the CTV dose steeply decreasing with bone 
matching. Compared with target matching, bone matching has a lower exposure 
dose and better throughput. However for the above reasons, we recommend us-
ing target matching.  

There are several limitations to this study. First, CBCT images were used in 
the dose calculation. Therefore, errors can occur in the dose calculation com-
pared to using CT images for treatment planning. Onozato et al. [24] reported 
errors of 1.2% in the rectum and 1.0% in the bladder by comparing the precision 
of dose calculations in 10 prostate cancer patients. Furthermore, in this study, 
dose calculations were performed on the same CBCT images at different coor-
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dinates, and the differences were compared. Therefore, the effect of calculation 
errors should be sufficiently small compared to cases using treatment plan CT 
images. Additionally, the intrafractional motion of the prostate was not investi-
gated; this is important when considering matching methodology. 

5. Conclusion 

Comparison of bone matching and target matching techniques showed that the 
CTV dose and OAR dose varied depending on the degree and direction of inter-
fractional motion of the prostate. And using bone matching may lead increasing 
of rectum dose or decreasing of CTV dose. Thus, this suggests target matching is 
a better matching method than bone matching. 
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