‘00 . . International Journal of Modern Nonlinear Theory and Application, 2018, 7, 1-15
@Y’ Scientific ) . ; -
‘ ‘ Research http://www.scirp.org/journal/iimnta

94% Publishing ISSN Online: 2167-9487
() ISSN Print: 2167-9479

Bifurcation and Chaos in a
Parasitoid-Host-Parasitoid Model

Xijuan Liu, Yun Liu*

College of Information Engineering, Tarim University, Alar, China
Email: *]_yun@foxmail.com

How to cite this paper: Liu, X.J. and Liu, Abstract
Y. (2018) Bifurcation and Chaos in a Para-
sitoid-Host-Parasitoid Model. International ~ Lhis paper discusses a parasitoid-host-parasitoid ecological model and its dy-

Journal of Modern Nonlinear Theory and ~ namical behaviors. On the basis of the center manifold theorem and bifurca-

Application, 7, 1-15. tion theory, the existence conditions of the flip bifurcation and Nei-

https://doi.org/10.4236/ijmnta.2018.71001 . . . .
pifidotorg/ fimnta mark-Sacker bifurcation are derived. In the end of the paper, some typical

Received: November 15. 2017 numerical experiments are performed, which illustrate that the theoretical
Accepted: March 5, 2018 method is effective.
Published: March 8, 2018

Keywords
Copyright © 2018 by authors and
Scientific Research Publishing Inc. Ecological Model, Stability, Bifurcation, Numerical Simulation

This work is licensed under the Creative

Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/ 1, Introduction

With the increasing application of ecological models, the host-parasitoid models
have been extensively explored. The host-parasitoid models are of great signi-
ficance among the relationships between the biotic populations. Although this
kind of model is investigated by many scholars (see [1] [2] [3] [4]), the research
about discrete systems is relatively few. Compared to the continuous ones, the
dynamics of discrete systems are more interesting. In our real life, most practical
problems are described by the discrete systems, and it is necessary for us to dis-
cretize the continuous systems. And the dynamics of the discrete-time models
can present a much richer set of patterns than those observed in conti-
nuous-time models, these models can lead to unpredictable dynamics from a bi-
ological point of view. So the study of discrete host-parasitoid system is very
important. Research on host-parasitoid system, indicates this kind of model can
have very complex dynamics (see [5] [6] [7] [8]).

Xu and Boyce in [9] have investigated a host-parasitoid model which is influ-
enced by the parasitoid interference, and they have found that the density de-

pendence decides the mutual interference of parasitoid. In [10], Beddington de-
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scribes the dynamics of a parasitoid-host-parasitoid model, whose populations is
non-overlapping generations. He illustrates the model having dynamical beha-
viors that are closely analogous to those observed in the first-order situation.
Using numerical simulation, the authors in [11] also study the chaotic dynamical
behavior of the parasitoid-host-parasitoid model, which shows that the advan-
tage coefficient can stabilize the dynamics. The mathematical equation of the

model in [10] [11] is proposed as a discrete-time model

H(t+1)=H (t)eXp[r(l_HT(t)J—a[P(t)T”‘}7
P(t+1)=H()] e -a[P()]" )]

where H(t) isthe host population size in generation £ P(t) is the parasitoid

(1)

population size in generation £ The constant a indicates the searching efficiency
and m is the interference coefficient. The host grows logistically with the
carrying capacity K and the intrinsic growth rate r.

For simplicity, we rewrite the system (1) as the following:

X — xexp{r(l—ij—aylm}
K | 2)
y—> x[l—exp(—ayl’m )}

In our paper, the parasitoid-host-parasitoid system (2) is investigated in fur-
ther details. We mainly focus on its bifurcations and possible chaos qualitatively.
Based on the center manifold theorem and bifurcation theory (see [12] [13]), we
can obtain the detailed existence conditions of these bifurcations. Numerical si-
mulations, including bifurcation diagrams, phase portraits, are used to verify
theoretical analysis. The results obtained in the paper can be regarded as the
beneficial supplement of the work in [10] [11].

The layout of this paper is organized as follows: The existence and stability
criterion of the equilibria of system (2) are presented in Section 2; Section 3 deals
with the flip bifurcation and Neimark-Sacker bifurcation, and derives the exis-
tence conditions of the bifurcations; Numerical simulations using MATLAB are
presented in Section 4 to illustrate the theoretical results; A brief discussion is

carried out in Section 5.

2. Stability of Equilibria

In order to obtain the equilibria of system (2), we need to use the mathematical
software. With the aid of Maple program, we get the following three equilibria
E,(0,0), E,(K,0), E,(X,,Y,),where X,, y, satisfy the following equation:

X, = X, exp{r(l—%j—a(yz)l_m}
Y, =X, [1—exp(—a(y2 )1_"1)}.

The qualitative behavior of the system (2) will be investigated. The local

3)
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dynamics of the system (2) near a fixed point depends on its Jacobian matrix.

The Jacobian matrix at the state variable is given by

rx 1-m rx 1-m X 1-m
r—?—ay _ z r—?—ay _a (1 _ m) Xyimer—?—ay
J(xy)= K ,

1-e¥ " a(1-m) xy e "

According to J, one can obtain two eigenvalues 4 =0,4, =e" with given
E,(0,0). From which, one can easily check that E,(0,0) is a stable node

(

then one can get that E (K,0) is also a stable node (|1—r|<1) (see [14]).

er

<l). Two eigenvalues at the equilibrium E (K,0) are 4, =0,4,=1-r,

Next, we only need to consider the stability of the equilibrium E,.
The following is Jacobian matrix of (3) at E,:
1-rL -H
J, (%Y, )= ;
2 (%:%2) (1—6 GH)

The characteristic equation of matrix J, is
A2 4P(%,,Y,)A+Q(X,,Y,)=0, (4)

where

P(64,) =L+ GH), Qt.3,)~H -rLGH,

Lz?, G=ed" H=a(l-m)x,y,".

From (4), then we have
F(1)=rL—GH —rGHL +H,
F(-1)=2-rL+GH -rGHL+H.

In order to disuss the stability of the fixed point E,, we also need the
following Lemma, which can be easily found from the theorem presented in
[14].

Lemma 2.1. Let F(1)=24*+PA+Q. Assume that F(1)>0, 4 and 4,
are two roots of F(A4)=0. Then, we have the following statements:

i) |4|<1, |4|<1 ifandonlyif F(-1)>0 and Q<I;

ii) |4]<1, |A4|>1 (or |4|>1 and |4|<1)ifand onlyif F(-1)<0;

iii) |4|>1, |4|>1 ifandonlyif F(-1)>0 and Q>1;

iv) 4, =-1, ﬂ?|¢1 if and only if F(—l):O and P#0,2;

v) 4, 4, are complex and |/11|=|ﬂ,2|=1 if and only if P?-4Q<0 and
Q=1.

Let 4, and A, be the roots of (2), which are called eigenvalues of the fixed
point E,(X,,Y,). The fixed point (X,,y,) is a sink or locally asymptotically
stable if |4|<1|4,|<1. E,(X, Y,) is a source or locally unstable if |2,|>1,
|4|>1. E,(X,Y,) is a saddle if |[4|<1 and [4,|>1 (or |4|>1 and
|4,] <1). The fixed point (X,,y,) is non-hyperbolic if either |2,|=1 or |4,|=1.

DOI: 10.4236/ijmnta.2018.71001 3 Int. J. Modern Nonlinear Theory and Application


https://doi.org/10.4236/ijmnta.2018.71001

X.J. Liy, Y. Liu

From Lemma 2.1, we state the following theorem:

Theorem 2.1. For the positive equilibrium E,, we have the following

estimates:
2+GH +H
i) E,(X,,Y,) is a sink if the condition hods: r <EFERTR and
L+GHL
H-1
r>——-—;
GHL
2+GH +H
ii) E,(x,,y,) is a source if the condition holds: r<ST20 T ond
L+GHL
H-1
r< 5
GHL
iii) E,(X,,Y,) isasaddle if the condition holds: r> 24GHAH
L+GHL
iv) E, (Xz, yz) is non-hyperbolic if either condition (iv.1) or (iv.2) holds:
, 2+GH +H 1+GH _ 3+GH
iv.l]) r=——— and r# I ;
L+GHL L L
iv.2) r= H-1 and GH _1<r<GH+3.
GHL L L

From the above conclusion, if the term (iv.1) of Theorem 2.1 holds, one can
easily find that one of the eigenvalues of E,(X,,Y,) is -1 and the other is
2+ GH —rL, which is neither 1 nor -1. If the term (iv.2) of Theorem 2.1 holds,
then the eigenvalues of E, are a pair of complex conjugate numbers whose
modulus is 1.

Let
_2+GH +H

a,mK,r>0¢.
L+GHL

F ={(r,a, m, K):r
The equilibrium E, can arise flip bifurcation when parameters change in a
small neighborhood of F;.
Let

Hp = (r,a,m,K)if=H_l,GH 2er B k>0,
GHL' L L

The equilibrium E, can lead to the bifurcation of Neimark-Sacker (discrete

Hopf bifurcation) when parameters are restricted to a small scope of Hj.

3. Bifurcation

Now we mainly center on bifurcations (see [15] [16] [17]) of system (2). In the

following research, ris chosen as a bifurcation parameter.

3.1. Flip Bifurcation

Select arbitrary parameters (a, n,m, K) from Fg, the system (2) is replaced by

X 1-m
xaxexp[q(l——j—ay }
K (5)

y — X [1 —exp(-ay*™" )]
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The system (5) has a unique positive fixed point E,(X,,Y,), the responding
eigenvalues are 4, =-1, 1,=2+GH —rL with |4,|#1.Since (a,,mK)eF;,
_2+GH +H

ri =
L+GHL
map (5) as given belowing:

X —> xexp{(r* + rl)(l—%j_aylm]

y > x[l— exp (—ayl’m )] :

, choosing r as a bifurcation parameter, we reconsider the

(6)

where |r*| <1, which is a small perturbation parameter of 1, .

Let U=X—X,,V=Y—Y,,we transform the fixed point (X,,Y,) to the origin,

then we have
a,u+a,Vv+agu’ +auv+aur +ayv’ +a,v: +au’v
u 2 * * 2 * 4
[ j_) +a,u’r" +a,uvr” +a,uv’ +0 (|u|+|v|+|r |) o

«\4
a,,U +a,,V +buv +b,v? +b,v® +b,uv? +O((|u| +|v| +|r |) )

r-a(l-m)y;", a, =1-rL, a, =-H,

a, =—%, a, =1-G, a,=L,

-1-m

1 - 1
a, :Ea2 (1-m)* x ;2" +Eam(1—m)xlyl ,

1 am 1 gom 1 “om
a, =—Ea3 (1—m)3 A —Eazm(l—m)z XY —ga(l_m)s XY

—2-m

1 om 1
+Ea(l—m)2x1y12 —ga(l—m)xly1 :

__a(l—m)yl’m . 1 . _a(l—m)xlyl’m
B K CR kT T K

1 om “1-m
aﬁzz[az(l—m)zyl2 +am(1-m)y;* J

r -2m -1-m
+x[a2 (1-m)* y*" +am(1-m)y;* J

b, =a(1-m)xy,"e ",

1 —_ayim -2m —-1-m
bz:Ee i [az(l—m)leyl2 —am(1-m)xy;* }

b, =%e’aﬁ’m [ (1-m) xy™" + 3aim(1-m)’ y "+ a(l-m) gy
~3a(1- m)2 Xy, o " +2a(1- m)xly{z’m]

b, = %e‘ayllfm [—az (1-m)’ y;*" —am(1-m) y{lfm] (8)

We can build an invertible matrix T’
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T:[ 8 j
_1_311 /12_311

Consider the following translation:

B 7 (ol S

_ (/12 _ail)ao u? +[(}‘2 _all)ai_a12bl:|uv+(}{2 _311)32 ur”
a,(1+4,) a, (1+4,) a,(1+4,)
+(/12_311)ae r*+[(ﬂ?—aﬂ)a3—a12b2]vz
a,(1+4,) a, (1+4,)
N [(’12 -ay,)a, _a12b3]V3 N (4 -a,)a UV 4+ (4 -ay)a wr’
a,(1+4,) a, (1+4,) a, (1+4,)
_ —a.b s
+[(/12 ajgialz;“ 4]uv2+0((|u|+|v|+|r*|) )
[(ray)a+agh] —[(L+ay)a+anh,] ,
3, (1+4,) 3, (1+4,)
[raaran), [ara)aran]
a, (1+4,) a, (1+4,)

+o((|u|+|v|+|r*|)“).

where

f(x.y.r)

9(x.y.r)=

and
U=a,(X+7), v=—(L+ay)X+(4 -a,)Y, U =ay (X +2x7+7°),
W =2y, [ —(1+a, ) X + (4, —1-2a, )37 +(4 —a,) ¥ |,
Vo= (L+ay)X* - 2(1+ay ) (4, — ) XY +(4 -3,) V7,
U’ =ay, (X° +3X°Y +3%7°Y°),
uv=-al (1+a,) X +[a}, (4, —a,) - 2a}, (1+a,) |’y
+[23122(/12 —ay,)-ay (1+311)}W2 +ap (4 -a,) Y,
WP = 8y (L3 ) X+ @ (L ay)" — 285 (L+ ay ) (4 —ay) XY
|8 (2= an) ~ 28, (1+2,) (2 - a,) |9 + 8 (- 2)
Vi=—(l+a,) X +3(1+ay) (4, -a,)XY
“3(L+ay) (4 -a,) X +(4 -ay) ¥

By the center manifold theorem in [12], one can easily determine the center

manifold W° (0, 0, O) of (9) at the origin, its expression is given as
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W€ (0,0,0) = {(7 v, r*) eR:y=cX*+c,Xr +c,r”? +O((|7| +|r*|)3j}.
By simple calculations, one can obtain

_ 3122 |:(1+a11)a0 +312bo]+(1+311)|:(1+a11)2 a;+a, (1+311)(b2 _al)_aizzbl:|
) &, (1_122)

1
c,=0, c,=0.

Thus, the map is restricted to the center manifold, which is given by

F:X > -X+hX?+hXr" +hXr +hxr? +hx® +o((|7| +|r*|)4), (10)
where
1
h, =m{auao(ﬂz —ay )~ (L+a,)[(4 —ay )3 —ab, |
(1 ay) (4 - ay)a, - agh, ]},
h_ 2 -a)
2 1+,
h, = Ca, (A —ay) +ap (4 —ay)as —a (1+ay) (4, —ay)
1+4, ’
h, =0,
1

5

=m{q(ﬂz ~1-2ay,)[(4, - a,)a, - a,b |

+2¢, (4, _311)(1+311)[(}‘2 —ay,;)a, _312sz
_3122 (1"'311)3-5(]2 _a11)+a12 (1"'311)2 I:(ﬂz _an)as _a12b4:|
_(1+a11)3 |:(/12 _a11)a4 _a12b3:|}'

If the system (10) goes through a flip bifurcation, the following conditions

must hold: o, #0,¢, #0, where
0°F  10F O°F 10°F (10F Y
a, = = A e .
oxor® 20r° X 6 OX 20X
(0.0) (0,0)

Based on the above analyses and using the bifurcation theorems presented in

[13], we obtain the following estimate:

Theorem 3.1. When the parameter I’ varies in a small vicinity of the point
(0,0), and a, #0, the system (2) undergoes a flip bifurcation at E,(X,,Y,).
Furthermore, the period-2 orbit bifurcated from this point is stable (unstable)

while «,>0 (a,<0).

3.2. Hopf Bifurcation

We consider the following system by selecting parameters (a,r,,m,K)eH,
arbitrarily.
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X im
x—>xexp[r2(1——j—ay }
K (1)

Y — X [1 —exp(-ay*™" )]

E,(X,,Y,) isa only positive fixed point of the system (11), where (x,,y,) is
given by (3) and
H-1
r,=—0o.
GHL

Choosing I as a bifurcation parameter, we reconsider the system (11) as

. X
X —> xexp| (7~ +r, (1——j—ay1‘"‘},
{( ) K (12)

y— x[l— exp(—ayl‘rn )]

given below:

where |F*| «1, it is a small perturbation parameter of ,.
Let U=X—X,,V=Yy-Y,. After transforming point (X,,y,) to the point
(0,0), we have
[uj a,U+a,V +agu’® +auv +av’ +a,v° +au?Vv + auv? +O((|u| +|v|)4)
%

v a,,U + &,V +buv + bv? +bv® +b,uv? + O((|u| + |v|)4)

where a,,,8a,,,8,,8,8,,8,, 8,8, 8y, 8y,,0,b,,b,,b, are given in (8), and
r=r,+7 .
The characteristic equation of map (13) at (0,0) is given by
F

2+ p(7") 2+q(r) =0

where

p(T")=-(1-rL+GH), q(")=H - rGHL.

Since parameters (a,r,,m,K)e Hy, the eigenvalues of (x,,y,) are a pair of

complex conjugate numbers A and A with modulus 1, where

M‘:_@i% 19(F)-p* (F),

then, we have

A d|/1|| _1-2H+He ™" B}

1= = 5

Moreover, it is required T =0, A", A" ;tl(m =l,2,3,4) , that is to say,
nondegeneracy condition, which is equivalent to p(O) #-2,0,1,2 . Notice that
(a,r,mK,r,)eHg, thus, p(0)#-2,2.We just need following conditions to be
true p(0)=0,1, ie.

H-GH (1+GH), H-GH (2+GH)=1. (14)
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So the eigenvalues Z,Z do not lie in the intersection of the unit circle with

the coordinate axes when T =0 and the conditions (14) hold.

. 4q(0)- p?(0
Let T =0, u=- p(zo),a): q( )2 P ( ) , and construct an invertible

T=( % O].
H—a, —0

Using the following translation:

matrix

then the system (13) becomes
G M
_ | N ol
y) o u)\y) (G(X,

FX,T) =] g+ Qv + 8, + a,v° + 8+ v’ | +O((|7| +|V|)4)’

2

)] (15)

where

1
a,®
+[(1—ay)a, —aph, [v: +[ (1 —ay )3, —a,b, Juv’]

+O((Jul +[v))")

x|
<|

g(x, {[(#-ay)a,—a,b Juv+[(u-a,)a,—a,b, |V°

)

and
U* =apX’, uv=ay,(u-a,)X" -a,08,
V2= (u—a,) X —20(u—a,) Xy + oy, U =aix’,
uv=aj (u-a,)X’ —a,0x’y,
W =, (u-a,) X° - 22,0%°Y +a,0" %",
V= (p-a,) X~ 0’V —3w(u—ay, ) X2y +30° (u—ay,) X2
Therefore

_ 2 M- 2
fw=2au[ao+a1(u—an)]+M

&
_ _ 2
T - —on 280l 8) ¢ 207
& &,

2

2
f_W — _Zw[alzas + 2a8 +M:l’

— a
fm=6(u—aﬂ){aﬂas+ag(u—au)+ai—“]

2

— —6w’a
foy = — 4

a,
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R
S G Y

a,
T =%{% [(r—ay)a —ah |+ (u—ay)[ (1—a,)a,—ayb, |},
Ty = (1~ )y —aph —2(p—ay,)[ (1 -2y )2, —ah, |,
T :%{[%z(ﬂ—al)a4 ~ gy |+ (-2 )[ (4 -a,) & — b, I,
Gy = {3120 [ (=)~ by ]+ 285, [ (- )3 — b, T}

2

(=]

= Zw{[(ﬂ_an)as ~agh, ]+ 3(“‘%)[(: a)a, —alszJ},
= 6" [(ﬂ_am)a4 _312b3:|
a, |

To assure that the map (13) passes though Neimark-Sacker bifurcation, we

g

need to let the following discriminatory quantity € is not zero:

et ]
where -
Ex —%[fix ~ iy +20 +i(Tw - Ty - 2T ) |,
G Tt By (33,
£, —%[fix Ty~ 20 +i(TGy Gy + 2Ty |
1

According to the previous discussions and applying Hopf bifurcation
theorems in [12], we can get

Theorem 3.2. If the parameters (a,r,m,K)eHy,6=0, and T~ varies in a
limited region of the origin, the system (2) goes through a Neimark-Sacker
bifurcation at E,(X,,Y,). Furthermore, there exists a unique attracting (or
repelling) invariant closed curve bifurcated from E, for ¥ >0 (or T <0)
while <0 (or 6>0).

4. Numerical Simulation

We have gotten the theoretical results of system (2) based on the qualitative
theory. In this section, we outline a numerical methods to validate the previous
analysis and provide some numerical results by using MATLAB. We draw the

diagrams for bifurcation and phase portraits to show new interesting complex

DOI: 10.4236/ijmnta.2018.71001

10 Int. J. Modern Nonlinear Theory and Application


https://doi.org/10.4236/ijmnta.2018.71001

X.J. Liy, Y. Liu

0.02

0.018}
0.016
0.014
0.0124

0.008
0.006
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(a) (b)
Figure 1. (a) Bifurcation diagram for x — 1 (b) Bifurcation diagram for y - r.
x107
1.8 14 x 10 ‘
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1.7 ¢
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> 13+ > 8t
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(a) (b)
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0.01 | 0.01 |
> 0.008 > 0.008
0.006 | 0.006 |
0.004 0.004
0.002 | 0.002 |
0 0 . .
10 0 4 10 12
X
() (d)

Figure 2. Phase portraits of Figure 1(a) for various values of r: (a) r=2.2; (b) r=2.535; (c) r=2.661; (d) r=2.75.
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(a) (b)

Figure 3. (a) Bifurcation diagram in (z.x) plane; (b) Bifurcation diagram in (z,p) plane.

(©) (d)
Figure 4. Phase portraits of Figure 3(a) for various values of r, (a) r=2.541; (b) r=2.55; (c) r=2.546; (d) r=2.577.
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dynamical behaviors. The bifurcation parameters are considered in the following
two cases:

Case 1: Varying r in range 1.8<r<28, and fixing a=0.008, K=5,
m=0.7 with initial values of (X;,Y,)=(5.0,2.5). From above data, one can
easily obtain that the equilibrium is (4.995,0.010). By observing the bifurcation
diagrams we can see that a flip bifurcation appears at r=2. In this case
o, =—0.399382, «, =0.279458. It satisfies the Theorem 3.1.

From Figure 1, we can observe that the fixed point E, is stable for r <2,
loses its stability at r=2 and period doubling phenomena lead to chaos for
r>2.

The phase portraits in Figure 2 show that there are orbits of period 2, 4, 8
when re[2,2.662]. And chaotic sets can be seen when r=2.75.

Case 2: We fix a=1.8,K=5m=0.5 and let the parameter r vary in the
range [2,3]. By calculating, we know that the Neimark-Sacker bifurcation
occurs at (1.292,1.096) when r=2.541, and its eigenvalues are
A, =0.194468+0.482194i . For r =2.541, we have

d4|
|/1¢| =11= A 0.2226 > 0, 0 =—0.00972.

T =0

It shows that the Theorem 3.2 holds.

From Figure 3, we observe that there exists a stable equilibrium for r <2.541,
a Hopf circle happens at r=2.541. And an attracting invariant closed curve
bifurcates from (1.292,1.096) with increase of . The phase portraits Figure 4
for different values of r illustrate that there appears a smooth invariant curve
bifurcated from the stable fixed point, and its radius is getting larger with respect
to the growth of r.

5. Conclusion

The dynamical behaviors of a parasitoid-host-parasitoid system are investigated.
The theoretical analyses demonstrate that the system (2) can appear as flip
bifurcation and Neimark-Sacker bifurcation. We present the numerical diagrams
to validate analytical effectiveness. We also observe many forms of complexities
from these diagrams, such as the cascade of period-doubling bifurcation and
Neimark-Sacker bifurcation. Hence we can find that the discrete-time models
have far richer dynamical behaviors as compared to continuous-time models. All
these results are obtained by a simple system of only two maps and we believe

that similar results can be achieved by more general systems.
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