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Abstract

We investigate the global well-posedness and the global attractors of the solutions for
the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping:

2 m 2 m
Uy +0'(| )(—A) U, +¢(||Vmu|| )(—A) u=f (X) . For strong nonlinear damping
o and ¢, we make assumptions (H,) - (H,). Under of the proper assumption, the
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proved by Galerkin method, and deal with the global attractors.
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1. Introduction

We consider the following Higher-order Kirchhoft-type equation:

Uy +0'(|Vmu 2)(—A)m U, +¢(|Vmu 2)(—A)m u=f(x),(xt)eQx[0,+x), (1.1)
u(x,t):O,%:O,i =12,---,m-1,x€0Q,t e(0,+x), (1.2)

14
u(x,0)=ug(x),u (x,0)=u,(x),xeQ, (1.3)

where M>1 is an integer constant, and Q is a bounded domain of R", with a
smooth dirichlet boundary 0Q and initial value. Moreover, v is the unit outward

normalon Q. o and ¢ are scalar functions specified later, £is a given function.
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This kind of wave models goes back to G. Kirchhoff [1] and has been studied by
many authors under different types of hypotheses. There have been many researchers
on the global attractors existence of Kirchhoff equation, we can refer [2] [3] [4] [5] [6].
What’s more, the global attractors for the Higher-order Kirchhoff-type equation are
investigated and we refer to [7] [8] [9].

Zhijian Yang and Pengyan Ding [2] studied the longtime dynamics of the Kirchhoff

equation with strong damping and critical nonlinearity on R":
un—Aut—M(||Vu||2)Au+ut+g(x,u): f(x). (1.4)

They establish the well-posedness, the existence of the global and exponential at-
tractors in natural energy space H =H* (RN )X L2 (RN ) in critical nonlinearity case.
On this basis, they also investigated the global well-posedness and the longtime dy-
namics of the Kirchhoff equation with fractional damping and supertical nonlinearity

[3]:

u, —M (||Vu||2)Au+(—A)“ u +f(u)=g(x), withae [%1} (1.5)

The main results are focused on the relationships among the growth exponent p of
the nonlinearity f (u), the global well-posedness and the longtime dynamics of the equ-

ations. They show that i) even if pis up to the supercritical range, that is,

N +4
1<p Sﬁ, the well-posedness and the longtime behavior of the solutions of
—4a
the equation are the characters of the parabolic equation; ii) when

N +4 N+4
—a+ < P <———, the corresponding subclass G of the limit solutions exists
(N -4a) (N-4)
and possesses a weak global attractors.
Varga Kalantarov and Sergey Zelik [5] present a new method of investigating the

so-called quasi-linear strongly damped wave equations:
lu—0Au-Au+f(u)=V,-¢'(V,u)+g. (1.6)

In bounded 3D domains. This method establishes the existence and uniqueness of
energy solutions in the case where the growth exponent of the non-linearity ¢ is less
than 6 and fmay have arbitrary polynomial growth rate. Moreover, the existence of a
finite-dimensional global and exponential attractors for the solution semigroup asso-
ciated with that equation and their additional regularity are also established. In a par-
ticular case ¢=0 which corresponds to the so-called semi-linear strongly damped
wave equation, their result allows to remove the long-standing growth restriction
| f (u)| <C (1+|u|5) . The Cauchy problem and the boundary value problem for equa-
tion under the different assumptions on the nonlinearities ¢ and fhave been studied
in many papers, but the author uses a new method to this equation.

Xiuli Lin and Fushan Li [6] consider the initial-boundary value problem for nonli-

near Kirchhoff-type equation:
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¢(||VU||2)AU ~aAu, =blu/""u,  InQe(0,x),

u(xt)=0 on T, x(0,), -
w(uwnz)—m%:g(ut), on 1y x(0,%),
u( ) Uy, U ( ) ) Uy, in Q.

where a,b>0 and S >2 are constants, ¢ isa C'-function such that gD(S) >21,>0
for all $2>0. Under suitable conditions on the initial data, they show the existence and
uniqueness of global solution by means of the Galerkin method and the uniform decay
rate of the energy by an integral inequality. Here, ¢(S) satisfying ¢(s)>m; >1 and
S(p(s) > Iosgo(r)dr,‘v’s € (0,00) . In this paper, for strong nonlinear damping o and ¢,
we make some similar assumptions. These assumptions will be presented in the fol-
lowing statements.

In 2004, Fucai Li [7] dealed with the higher-order Kirchhoff-type equation with non-

linear dissipation:

Uy J{”Dmu
Q

In a bounded domain, where M>1 is a positive integer, and q, p,r >0 are posi-

q
2dxj (-A)"u+u]u | =[uf’ u,xeQ,t>0, (1.8)

tive constants. They obtain that the solution exists global if p <r, while if
p > max {I’, 2q} , then for any initial data with negative initial energy, the solution blows
up at finite time in  L"** norm.
In 2007, Salim A. Messaoudi and Belkacern Said Houari [8] improve Li’s result and
showed that certain solutions with positive initial energy also blow up in finite time.
Qingyong Gao, Fushan Li, Yanguo Wang [9] obtained the local existence of the solu-
tion to the homogeneous Dirichlet boundary value problem for the higher-order non-

linear Kirchhoff-type equation:
U, +M ("Dmu (t)"z )(—A)m u+fu " U, =u) (1.9)

where p>q>2,m>1.

At present, most Higher-order Kirchhoff-type equations investigate the blow-up of
the solution. We study the global attractor of the solution for Higher-order Kirchhoff-
type equations.

Igor Chueshov [4] studied the longtime dynamics of Kirchhoff wave models with

strong nonlinear damping:

U =0 (Ve ) (A)u, -4 (|vulf )(A)u+ f (u) =h(u),xe Qt >0, (1.10)

He proves the existence and uniqueness of weak solutions, and established a finite-
dimensional global attractor in the sense of partially strong topology.

On the basis of Igor Chueshov, we investigate the global attractor of the higher-order
Kirchhoff-type Equation (1.1) with strong nonlinear damping. Such problems have

2
been studied by many authors, but a("Vmu" ) is a definite constant and even
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v™u

ol

2
O'("Vmu" ) is a scalar function and f (u) =0. Under of the the proper assume, in

2
)20. Generally, the equation exist a nonlinear f(u). But in the paper,

section 2, we prove the existence of the solution by priori estimation and the Galerkin
method. Therefore, we show that i) the solution (u,v) of the problem (1.1) - (1.3) sa-
tisfies (u,v)e Hy' (Q)X L2 (Q); further more, ii) the solution (U,V) of the problem
(1.1) - (1.3) satisfies (U,v)e H2 (Q)xHg' (Q). Then, in section 3, we prove the uni-
queness of the solution by using the method that assumption exist two solutions in the
same initial value and two solutions are equal. At last, according to define, we obtain to

the existence of the global attractor.

2. Preliminaries

For brevity, we denote the simple symbol, || || represents inner product, and
H" =H"(Q), HY' =H7 (@), H"=H"(Q), H=L" =z . =M.
f=1f(x), ¢(i=01-,7) are constants, m, s (i=0,1) are also constants. A" is

the first eigenvalue of the operator V™.

In this section, we present some assumptions needed in the proof of our results. For
this reason, we assume that .

(H,) setting Z(s Io- )d&, @ (s J¢(g)dg , then

s§(s)-eso(s) - n(@(s)_z(s))>s, 2.1)
where V&>0,Vn>0.
(H,) [10]
My, Al > 0
m, <#(s)—eo(s)<m,m= gt , (2.2)
ml,a A"uf <O.
(Hy)
o(s).¢(s)eCH(Q). (2.3)
(H,)
tor s fomwf =0
dt
Uy <P(S)+e0(8)< gy, pt = d ; (2.4)
My, o <0.

Now, we can do priori estimates for equation (1.1)
Lemma 1. Assume (H,) hold, and (uo, )e H™xH, feH. Then the solution
(U,V) of the problem (1.1) - (1.3) satisfies (U,V) eH"xH,and

[(uv)|;

= ||V'”u||2 +v[* <w, (0)e " +&(l—e’”‘), (2.5)
N

meH

where v=u, +eu, W, (0)= ||VO||2 +2(D(|

2
Vg )—252(|

2
" ) Vo =U, + €Uy . Thus,
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there exists R, and t=t >0, such that

fim (u, ) <2 =R, (2.6)

t—w 7/1

Proof Let v=u,+¢&U, then we use v multiply with both sides of Equation (1.1) and
obtain

(utt +0'( 2)(—A)m U, +¢(||Vmu||2)(—A)mu,v)=(f(x),v). (2.7)

After a computation (2.7) one by one, as follow

v™u

(ug, V)= (v, —eu,v) = (v, v)—&(u,v) =(v,v)—&(v—eu,v)

1d e jom 2 & (2.8)
S T A T
(a( VU 2)(—A)m ut,v)
:(o-( V™ 2)(—A)m (v—gu),v)
= (a( V™u 2)(—A)m v,v)—g(a(”V”‘unz)(—A)m u,v)
2 2 2 (2.9)
:a(”Vmu” ) vy —8(0‘( VU )(—A)m u,u, +gu)
:0'(||Vmu||2) vy —igz( vy 2)—826( vy 2) vl
dt
> 2% (|7l W e (77 ) -2 [ ool
dt
(¢( v™u 2)(—A)m u,v)
- (¢(||V"‘u||2 )(—A)m u,u, +gu)
, , (2.10)
=(¢(||V”‘u|| )(—A)m u,ul)+g(¢( V™u )(—A)m u,u)
d 2 2 2
:—CD( vV™u )g¢( V™u ) vhull .
dt
Because f € H, by using Holder inequality, Young’s inequality, we obtain
1 &
(F )= i< I+ M- (2.11)

From the above, we have

S +20(fnul ) - 222 {|vu
dt

)

+(2/1ma( )22 252)||v||2 (2.12)

(el el

According to (2.1), we have

v™u

2 1

V™u v™u v™u s?"fnz.

KD
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[zg¢(||vmu||2)_zgzg( vy 2)_;”_;} vl
2(25(/5( v 2)—2520( At 2)—25)||V’“u||2 (2.13)
225;7(q>( Al 2)—2( Al 2))

where & <2A™.

Substitution (2.13) into (2.12), we receive
%(”vnz N 261)(||V"‘u||2)— zgz( ))
+(2,1"‘o—(||vmu||2 ) 25267 )||v||2 (2.14)
saon{a{frof |- <2117

We deal with the items, we have

(227 (|v7ulf )20 22 | + 2em{ o fmul ) -(

oo

+82772(

oo

+(5277 - 2577)2(

V™u

v™u

)
J-een{fvf

Pal)) oo

)-reslie)
)

2)—25—252 >0,7, = min{Zﬂ,ma("Vmu”z)—26—282,677},

v™u v™u

)- 25—252)||v||2 + 200
)
2)—25—252)||v||2+577(2d)(
)
=

[+ 2o )22

v™u v™u

2)—23772(

v™u v™u v™u

v™u

V™u v™u

>, (||v||2 + 20

v™u

where we take a proper constant ¢, such that

21"‘0‘( v™u

_h
7 2-¢
Then, we get
d

aW1 (t)+7W, (t)<c, (2.16)

where

W (0) =M+ 20 (v’ ) -2ex o] ).
1 (2.17)
6 =l

By using Gronwall inequality, we obtain

%%
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W, (£) SW, (0)e 7 + 2 (1-e ), (2.18)
"
where
2 |12 mo IR
W, (0) =y, | + 2<D(||V U )—2gz(||v U ) (.19)
Vy = U, +&Uy.
So, we have
(u, v) = ||V"‘u|| +v[* <w, (0)e " +&(l—e’”‘ ). (2.20)
/el
and
lim <—= l (2.21)
(o <2
Thus, there exist t=t (Q) and t=t (Q) , such that
I(u, <3 R (t>t). (2.22)
N
Remark 1. Assumption (H,) imply
@(vmu2)>gz(vmu2)>g vl +c,, (2.23)

such that (2.20) hold.
Lemma 2. Assume (H,) hold, f e H{', and (UO ) € H*™ xH/". Then the solution
(U,V) of the problem (1.1) - (1.3) satisfies (U,V) H 2™ x Hg' , and

oo w2 W, (0) _ I -
[y +amy| szTe 72‘+L—;2(1—e ), (2.24)
where v=u +eu, O<L<min{l,m}, W,(0)= A", vy =, + e, .
There exist t=t, (Q) and R,, such that
c
I'L”o!” (V) L; =R,. (2.25)

Proof. Let (—A)m V= (—A) U, +g(—A) U, we use (—A)m V. multiply sides of equa-
tion (1.1) and obtain

(un ro ([l )-a)" u +a{[vnul ) (-a)" u(-a) v) S(F(0.(A)"Y). @a2s)

After a computation (2.26) one by one, as follow

(un,(—A)m v) =( L —eu,,(-A)" v)

v™u

KD
+%%, Scientific Research Publishing

; :t —5(v—gu,(—A)m v)
- ; :t e (u,(—A)m v) 227
ST L [ I A
2 dt 2/1"' 2
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v™u

(G( 2 )(—A)m U, (-A)" v)

(oIl Jarv-e-ay u-ary)
ol am (o
—o [l A 2o
e Y
o

i (¢( 2)(_A)m u,(-A)"u +e(-a)" U) (2.29)
-39l ) ]

dt
Dueto f eHy', by using Holder inequality, Young’s inequality, we obtain

A"v v™u

e (-a)"u(-a)"u + s (-a)" u) (2.28)
B F O e (N
oot
“)-a)"u-a)"y]

vV™u

2

A"v A"u

)

v™u

2

AYALY, v™u A"u vTull ||A"uf .

vV"u

2
A"u v™ul ||A"ull .

2+g¢(

2
(£ 00 (-a)"v) < S+ e f. (2:30)

From the above, we obtain

al e (el oo

2
+(2zma( my )—25—252)

+(2g¢( 2)—2520(||V'“u||2)—;—;j

According to (2.2), we have
[tk )-oo1F )
+(25¢( 2)—2520(
52

2m 3 Januff +[zgm0 _l_mj

v™u v™u A"u ’

s

2

\V/ \ARY

(2.31)

2

vy amulf < L v

&

2
A"u

Ixd

2

v™u

v™u v™u A"u ’

(2.32)

A"u

Collecting with (2.32), we obtain from (2.31) that
3 *)-2-207 o
dt

2 1 (2.33)
2 2
+[25m0—j—m] A"l <= V" T
&

\YARY, v™u

"emlanf )+ (2270

Noticing 0< & <A"(2m, —m), this will imply
2
(ZSmO —;—mJ Al

2
A"ul >em

(2.34)

210

K
0:{2: Scientific Research Publishing



Y.T.Sunetal.

Substituting (2.34) into (2.33), we can get the following inequality
’ ) + (Z/Imcr(nvmuuz ) -2¢- 252)

|2

%(”vauz +m|A™u V™ ’

(2.35)

2 1

+em|[A™u <= V" f
&

2
Hence, we take a proper constant ¢, such that 2/1'"0'("Vmu|| )— 26-28" >0, we get

S, 1)+ (1)<, (2.36)

where

2

W, (t) = ||V"‘v||2 +mfA™u

Vo = min{Zﬂmo—( V™u

2)—25—252,5}, (2.37)
%zgﬂwmwé

By using Gronwall inequality, we end up with

W, (t) SW, (0)e 7 + 2 (1-e ), (2.38)
V2
where
m 2 m 2
W, (0)=|IV v0| +m|A u0|| , (2.39)
Vo = U, +&Uy,

Taking L =min {1, m} , we have

ool efaruft <22 S e (2.40)
and
T (U)o, _LC—Z. (2.41)

Thus, there exist t=1,(Q) and R,,such that

[(w.v)

wmp SRe(1>1). (2.42)

3. Global Attractor

3.1. The Existence and Uniqueness of Solution

Theorem 3.1. Assume (H,) - (H,) hold, and (uo,ul) eHxH], f (x)eHy,
V=U, +¢&U. So equality (1.1) exists a unique smooth solution
(uv)el” ((O,+oo), H2™ x H(')")
Remark 2. We denote the solution in Theorem 3.1 by S(t)(uo,ul) :(u(t),ut (t))
Then S(t) composes a continuous semigroup in H’" xH'.
Proof. By the Galerkin method, Lemma 1 and Lemma 2, we can easily obtain the ex-

istence of Solutions, the procedure is omitted. Next, we prove the uniqueness of Solu-

KD
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tions in detail. Let U,V are two solutions of the problems (1.1) - (1.3), we denote
w=u-v, then W(X0)=w,(x)=0, W (x,0)=w,;(x)=0 and the two equations

subtract and obtain

W, + a(”V”‘u"2 )(—A)m U, — a("va"2 )(—A)m v,
, , (3.1)
+¢(||Vmu|| )(—A)m u —¢(||V"‘v|| )(—A)m v=0.
By using W, +ew to inner product of the equation (3.1), and we have
2 m 2 m
(e ([l )-8)" u =]y ) -a)"v
, , (3.2)
(|7l =) u=g 9 J-a)" v+ ew)

(th’Wt +5W) (th Wt)+g(wtt W)
(3.3)
L8 o -l

(oIl )=o) v o
=l ey - v
e [omuf = Jof ) v )

=1 +¢l,,

)(—A)m v, W, +gw)

(3.4)
v™u

Next, we process each item in turn
el s el s

+o 2)(—A)mv —o-(”VmVHZ) )" v
r el eleere
||vmu|| )77 (77w 77w)

R

V™u v™u

v™u

Vm

+(V™V )V ull -

=l
= )
> o |77l v
(I =
(ol o
o[l v

t

V™w,

(3.5)

V™w,

>0 "l

Vm

|V’“W ||

2 C3 2

2¢&

V™w V™w

t

2
£ v

2

(ol ]

Analogousto |, we deal with 1,

%%
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v™u v™u

-l
o

ey u=o (vl ) -a)
’ )(—A)m v, — o-("V”‘v"2 )(—A)m Vi, W)

v™u

)

LS o o)) e
O-( VmU 2) d 2 2

2= vV™w —|a’(¢f)|( v™u +||va||)||vat| VW
0'( VTu 2)

- Lo e, [

Combining with (3.5) - (3.6), we obtain from (3.4) that
(oIl -~
2 al77 -2 vl o] + oo |
a1 R i B
Similarly,

({17l )=y u=g( [ ) (-)" v+ )

~(e{lvmel Jiar u-o{ |7 o)

o{g{Jvaff )-a)u-g{jonf -y v
Aoy
a 2 dt 2
o [9°uf )7 - o

¢(Vmu2)d 2+( ¢(
_— &
Therefore, by the above inequality
d m 112
a(||Wt||2+25(vvt,w))+(gz§(||v u” )+ga(

2 dt
+[20(”Vmu”2)——c52 :Cszj

+(25¢(

v™u V™

2)(—A)m Vi, W, +gw)

2

2
v™u VW —ec, VW[ (3.7)

v™u v™u vV™w

V™w,

v™u ALY,

v™u AVALY,

(3.8)

2 ¢ 2

2¢

V™w

2
||V"‘w|| - V™w,

2
2 C5

2

V'w V™w, V™u vl

2 &
e

djgm
gl

"2z |wf (3.9)

v™u

V™w,

2
v™u V™| <0.

2)—28—26‘C4—2€C6)

2 2
2 C; +C

when cy(”Vmu” ) > 52—3 , we get
&

9,
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22 (o) + (vl (ol o

(3.10)
< 26l + 26t ¢, + o, ~g|[v7ul ) |
In view of (H,), there exist constant 4, andlet ¢, =1+, +¢;, such that
%(”wt P +2¢ (w, w)+ u|[V™W] Z)S 2¢|wf +2‘9(c7 —¢( v™u 2)) viwl©. (3.11)

According to Holder inequality, Young’s inequality and Poincaré inequality, we ob-

tain

vowll (3.12)

£ (W w)2 - ||W I ——IIWII >——IIW -

2/1"‘

Combining with (3.11) - (3.12), we receive
)
82

tor |

VWi

d
a("wt”2 +2e (W, W)+ u

voul ) (Vw267 (ww)  (3.13)

UZ)J

Next, we prove that there is a constant K'large enough, such that

2)j||v”‘w||2 +2& (W, w)

< (25 +&° )||Wt ||2 + 25(07

v™u AART

:g{(2+5)||vw||2+2(c7+2‘1—m—¢( 2+25(Wt,w)}.

v™u

2
(2+.g)||wt||2 +2[c7 - ——¢
24 ( (3.14)

<K (||wl||2 +2& (W, W)+ u”V”‘W"2 )

Supposing there is a constant K'large enough, we have

2
(2+2-K)|w +2[c7 +257—¢( vy 2)—%@] v + (2 - 26K ) (w, w)

2
£(2+g—K)||Wt||2+2(c7+% ¢( v"u )—%Ku vl +[(26 - 26K) (w, w)|
<(2+e—K)|w +2( —=o(f v + 22 (K —1)]w|w]
<(2+e-K)|w|f +2[c7 ( %K,u v’ (3.15)

(<Dl 28Dy

v™u

~[2+(s-1)K J|wf +2{c7 _¢(

<0,

2 1 N
ol i

where ¢ =min {1,Zm,u} , ¢(||Vmu||2)< ¢, +22—2m

%%
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Hence, there is a constant Klarge enough, such that (3.14) hold.
Due to (3.14), we have

%v (t) < £KY (1), (3.16)
where
Y (t) =|w | +2¢ (w, w)+ z vul . (3.17)
Therefore,
0<Y(t)<Y(0)e™ =0, (3.18)
where
Y (0) = |w (0)]° +22(w, (0), w(0))+ u|[V"w(O)|". (3.19)
So, we can get
e |* + 26 (W, w) + g2 [Vw, ‘-0 (3.20)
According to (3.12), we get
(1-&)|wf +(y—%j v <o, (3.21)
That shows that
Jw " =0. [v"w| =0. (3.22)
That is
w(x,t)=0. (3.23)
Therefore,
u=v. (3.24)

So we prove the uniqueness of the solution.

3.2. Global Attractor

Theorem 3.2. [11] Let Ebe a Banach space, and {S (t)} (t > 0) are the semigroup op-
erator on E. S(t): E—>E, S(t+r)= S(t)S(r)(Vt,z’ 20), S(O)z |, here [is a unit
operator. Set S(t) satisfy the follow conditions:

1) S(t) is uniformly bounded, namely VR > 0,||u||E <R, it exists a constant C(R),
so that

Is (t)u], <C(R)(te[0,+)); (3.25)

2) It exists a bounded absorbing set B, c E, namely, VB c E, it exists a constant
t, > so that

S(t)B By (t=t); (3.26)

where B, and B are bounded sets.

3) When t>0, S (t) is a completely continuous operator A.
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Therefore, the semigroup operators S(t) exists a compact global attractor A.
Theorem 3.3. Under the assume of Lemma 1, Lemma 2 and Theorem 3.1, equations

have global attractor

A=w(B,))=JS(t)B,. (3.27)
20t>7

where

2

H2Mx

B, ={(u,v) eH™ xHJ ||(uv)||

? <R+ Rz}, (3.28)

2
v = Wlken + [Vl <

B, is the bounded absorbing set of H’"xH' and satisfies.

1) S(t)A=At>0;

2) tIimdist(S('[)B,A)zO,here Bc H*xH]" and it isabounded set,
dist(S(t)B,A)zsup(inf

xeB \YEA

S(t)x=Y], Hm)—)O,t—)oo. (3.29)
Ao

Proof. Under the conditions of Theorem 3.1, it exists the solution semigroup S(t),
S(t):H*xHy > H®"xHy'  here E=H""xH]'"

1) From Lemma 1 to Lemma 2, we can get that VB < H?"xH" is a bounded set
that includes in the ball {”(u,v)" < R} ,
H*" xHg

"S (t)(Uo:vo )||2Hzm><Hg‘ :"u"ZHZm +"V"2HOm +C
< g fen + Vol +C (3.30)
<R*+C, (t20,(u,v,)eB)

This shows that S (t)(t > O) is uniformly bounded in H 2m Hy' .
2) Furthermore, for any (UO,VO) e H™xH]', when t>max {t,.t,}, we have

||S(t)(u0,vo)

So we get B, isthe bounded absorbing set.
3) Since H*"xHJ'<+H"™xH is compact embedded, which means that the bounded

setin H?"xH™ is the compact setin H™ xH , so the semigroup operator S(t) exist a

:meHgn :”u”iﬂm +||V"2Hg1 SRR, (3.31)

compact global attractor A.

The prove is completed.

4. Conclusion

The paper’s main results deal with global attractors. At first, we prove the existence and
uniqueness of the solution. Then we establish the existence of the global attractors. There-
fore, we show that i) the solution (u,v) of the problem (1.1) - (1.3) satisfies

(u,v)e Hg' (Q)xL*(Q); furthermore, ii) the solution (u,v) of the problem (1.1) -
(1.3) satisfies (U,V) eH™ (Q)x Hy' (Q) . Then, we prove the uniqueness of the solution.
At last, according to define and theorem, we obtain to the existence of the global attractor.
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