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Abstract 
This paper has numerically studied the dynamical behaviors of a fractional-order 
single-machine infinite-bus (FOSMIB) power system. Periodic motions, period- 
doubling bifurcations and chaotic attractors are observed in the FOSMIB power sys-
tem. The existence of chaotic behavior is affirmed by the positive largest Lyapunov 
exponent (LLE). Based on the fractional-order backstepping method, an adaptive 
controller is proposed to suppress chaos in the FOSMIB power system. Numerical 
simulation results demonstrate the validity of the proposed controller.  
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1. Introduction 

As a mathematical branch with a history of over 300 years, fractional calculus and its 
applications to physics and engineering have attracted increasing attentions in recent 
years [1] [2]. Fractional calculus provides a good instrument to describe the memory, 
hereditary, non-locality and self-similarity properties of various materials and processes. 
Many chaotic systems, such as Lorenz system [3], Chua’s system [4], Duffing system 
[5], Rössler system [6], Chen system [7] and so on, still remain chaotic when their equ-
ations become fractional. 

Chaotic phenomena have been observed in power systems during the past few dec-
ades [8]-[13]. Chaos causes electromechanical oscillations to behave randomly, which 
are harmful to the secure and stable operation of power systems, and even produce un-
desired negative consequences, such as angle divergence, voltage collapse and system 
splitting [14]. So far, almost all the studies of dynamics of power systems are concerned 
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with the integer-order models, and there are little research results on fractional model-
ing and control design of power systems. Tan et al. studied the dynamics of a fraction-
al-order interconnected power system and found that the system became chaotic when 
the fractional order is no less than 0.88 [15]. Sun and Li investigated the chaotic and 
bifurcation phenomena in a fractional-order three-bus power system and the existence 
of chaos was demonstrated for different orders [16]. 

In this paper, we numerically investigate the chaotic dynamics of a fractional-order 
single-machine infinite-bus (FOSMIB) power system. Period-doubling bifurcation and 
chaos are observed in FOSMIB power system and the existence of chaos is confirmed 
by evaluating the largest Lyapunov exponent (LLE). Based on the fractional-order 
backstepping method, an adaptive controller is presented to suppress chaos in the 
FOSMIB power system, and the effectiveness of the proposed controller is proved by 
the numerical simulation results. 

The rest of the paper is organized as follows. Some definitions and lemmas about 
fractional calculus are introduced in Section 2. The dynamics of the FOSMIB power 
system are analyzed in Section 3. An adaptive controller is designed using the fraction-
al-order backstepping method to suppress chaos in the FOSMIB power system in Sec-
tion 4. Finally, conclusions are addressed in Section 5. 

2. Preliminaries 

There are several different definitions of fractional derivatives. The most appropriate 
one for practical problems is the Caputo definition. The Caputo fractional derivative is 
given by  
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where m is integer and ( )Γ ⋅  is the Gamma function. 
The Caputo fractional derivative satisfies the following properties:  

( ) ( )( ) ( ) ( )1 2 1 2

0,

,

q
t
q q q
t t t

D C

D k x t k y t k D x t k D y t

=

+ = +
               (2) 

where C, 1k  and 2k  are real constants. 
Lemma 1. [17]-[19] Consider the fractional-order system  

( ) ( )( ) ,q
tD x t f x t=                           (3) 

where ( )0,1q∈  and nx R∈ . The equilibrium point *x  of system (3) is locally 
asymptotically stable if all the eigenvalues λ  of the Jacobian matrix *xJ f x= ∂ ∂  sa-
tisfy  

( ) πarg .
2

qλ >                             (4) 

Lemma 2. [20] Let ( )x t ∈  be a continuous differentiable function. Then, at any 



Z. H. Liang, J. F. Gao 
 

124 

instant the following inequality holds  

( ) ( ) ( ) ( )21 , 0,1 .
2

q q
t tD x t x t D x t q≤ ∀ ∈                    (5) 

A continuous function [ ) [ ): 0, 0,tα → +∞  is referred as class-K if it is strictly in-
creasing and ( )0 0α =  [21]. 

Lemma 3. (Fractional-order extension of Lyapunov direct method [22]) Let 0x =  
be an equilibrium point of the nonautonomous fractional-order system  

( ) ( )( ),q
tD x t f t x t=                          (6) 

with initial condition ( )0x . Assume that ( )( ),V t x t  is a Lyapunov candidate and 
( )1,2,3i iα =  are class-K functions. Then 0x =  is asymptotically stable if the follow-

ing conditions hold  

( ) ( )( ) ( )1 2, ,x V t x t xα α≤ ≤                      (7) 

( )( ) ( )3, ,q
tD V t x t xα≤ −                        (8) 

where ( )0,1q∈  and ⋅  denotes an arbitrary norm.  

3. The FOSMIB Power System 

In [12] Chen et al. analyzed the angle dynamics of the classical single-machine infi-
nite-bus (SMIB) power system, which is governed by the so-called swing equation  

max sin ,mM D P Pθ θ θ+ + =                        (9) 

where M is the moment of inertia, D is the damping constant, maxP  is the maximum 
power of generator and sinmP A tω=  is the power of the machine. 

Let x θ=  and y θ=  , then Equation (9) can be rewritten as  

,
sin sin ,

x y
y cy x f tβ ω
=

 = − − +





                     (10) 

where c D M= , maxP Mβ =  and f A M=  are positive constant parameters. 
When 0.5c = , 1β = , 1ω =  and 2.41f = , the SMIB power system is chaotic. 

Here, we consider the fractional-order single-machine infinite-bus (FOSMIB) power 
system  

,

sin sin ,

q
t
q
t

D x y

D y cy x f tβ ω

 =


= − − +
                    (11) 

where 0 1q< ≤  is the fractional order. When 1q = , system (11) is the original integ-
er-order SMIB power system. 

The autonomous system (11) (as 0f = ) has two equilibrium points: ( )0,0O  and 
( )π,0E . For the equilibrium point O, the Jacobian matrix is  

0 1
,J

cβ
 

=  − − 
                          (12) 

and its eigenvalues are  
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In both cases, ( )1,2arg π 2qλ > . According to Lemma 1, O is asymptotically stable. 
For the equilibrium point E, the Jacobian matrix is  

0 1
,J

cβ
 

=  − 
                           (14) 

and its eigenvalues are  
2

1,2
4

.
2

c c β
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− ± +
=                         (15) 

It can be seen that 1 0λ >  and ( )1arg 0 π 2qλ = < . In accordance with Lemma 1, E 
is unstable. 

4. Dynamic Analysis of the FOSMIB Power System 

In this section, we use the Adams-Bashforth-Moulton predictor-corrector algorithm 
proposed by Diethelm et al. in [22]-[24] to solve the FOSMIB power system (11). The 
dynamics are numerically analyzed by means of bifurcation diagrams, phase portraits 
and Lyapunov exponents. In the following simulations, parameter f is chosen as bifur-
cation parameter and the other parameters are fixed at 0.5c = , 1β = , 1ω = . The in-
itial conditions are selected as ( )0 1x = , ( )0 0.3y = − . 

First, let 0.95q = , and vary f from 2.4 to 3.5. The corresponding bifurcation dia-
gram is plotted in Figure 1(a), from which a period-doubling route to chaos can be 
found. To confirm chaos, the largest Lyapunov exponent (LLE) is calculated using Wolf 

 

 
(a)                                                               (b) 

Figure 1. Bifurcation diagram and the LLE versus f for q = 0.95: (a) Bifurcation diagram; (b) The LLE. 



Z. H. Liang, J. F. Gao 
 

126 

algorithm [25] and plotted in Figure 1(b). The FOSMIB power system is chaotic over 
most of the range [ ]2.65,3.3f ∈ , where the LLEs are positive. The phase portraits for 
different values of f are plotted in Figure 2. With the increase of f from 2.4, period-1, 
period-2 and period-4 orbits are obtained at 2.5f = , 2.55f =  and 2.61f = , re-
spectively. After a cascade of period-doubling bifurcations, the system loses its stability 
and enters chaos at 2.65f = . As f increases further, the system becomes stable again 
via inverse period-doubling bifurcations. 

Now, let 0.5c = , 1β = , 1ω = , 2.8f =  and vary q from 0.87 to 1. The resulting 
bifurcation diagram is plotted in Figure 3(a), which indicates period-doubling bifurca-
tions and chaos. The fractional-order SMIB power system is chaotic over most of the 
range [ ]0.92,1q∈ , where the LLEs are positive as shown in Figure 3(b). The phase 
portraits for different values of q are plotted in Figure 4. With the increase of q from 
0.87, period-1, period-2 and period-4 orbits are obtained at 0.88q = , 0.893q =  and 

0.913q = , respectively. As q increases further, after a cascade of period-doubling bi-
furcations, a chaotic attractor is obtained at 0.92q = . 

5. Adaptive Backstepping Control of Chaos  

In this section, an active controller is designed using fractional-order backstepping 
method to suppress chaos in the FOSMIB power system and stabilize it to the unstable 
equilibrium point ( )π,0E . 

5.1. Controller Design  

Consider the controlled FOSMIB power system  

,

sin sin ,

q
t
q
t

D x y

D y cy x f t uβ ω

 =


= − − + +
                  (16) 

 

 
Figure 2. Phase portraits for different values of f: (a) f = 2.5; (b) f = 2.55; (c) f = 2.61; (d) f = 2.65. 
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(a)                                                              (b) 

Figure 3. Bifurcation diagram and the LLE versus q for f = 2.8: (a) Bifurcation diagram; (b) The LLE. 
 

 
Figure 4. Phase portraits for different values of q: (a) q = 0.88; (b) q = 0.893; (c) q = 0.913; (d) q = 
0.92. 

 
where ( )0,1q∈  and the parameter f is unknown. The backstepping design procedure 
consists of two steps. 

Step 1. Define 1 πe x= − . Its derivative is given by  

1 2 1,q q
t tD e D x e α= = +                         (17) 

where 2 1e y α= − , 1α  is the virtual control to be defined later. 
Select the candidate Lyapunov function as  
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2
1 1

1 ,
2

V e=                              (18) 

Now, applying Lemma 2, it can be found that  

( )1 1 2 1 .q
tD V e e α≤ +                          (19) 

Define the virtual control 1α  as  

1 1 1,c eα = −                             (20) 

where 1c  is a positive constant, which leads to 2 1 1e y c e= + . Substituting Equation 
(20) into Equation (17) and inequality (19), we have  

1 1 1 2 ,q
tD e c e e= − +                          (21) 

2
1 1 1 1 2 .q

tD V c e e e≤ − +                         (22) 

Step 2. The derivative of 2e  is expressed as  

( )2
2 1 1 1 1 1 2

ˆ ˆsin sin sin ,q q q
t t tD e D y c D e c e c e cy x f f t f t uβ ω ω= + = − + − − + − + +  (23) 

where f̂  is the estimate of f . Choose the candidate Lyapunov function as  

( )22
2 1 2

1 1 ˆ ,
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V V e f f
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= + + −                      (24) 

where k is a positive constant, which can adjust the speed of the adaptive law. Using 
Lemma 2, it can be found that  
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Choose the control input and the adaptive law as  

( ) ( )2
1 1 1 2 2

ˆ1 sin sin ,u c e c c e cy x f tβ ω= − − − + + + −            (26) 

2
ˆ sin ,q

tD f ke tω=                          (27) 

where 2c  is a positive constant. Substituting Equation (26) and Equation (27) into 
Equation (23) and inequality (25), we have  

( )2 1 2 2
ˆ sin ,q

tD e e c e f f tω= − − + −                   (28) 

2 2
2 1 1 2 2 .q

tD V c e c e≤ − −                         (29) 

According to Lemma 3, the closed-loop error system is asymptotically stable at the 
origin ( )0,0 . It means that, with the proposed controller and adaptive law, the 
FOSMIB power system is asymptotically stable at the equilibrium point ( )2 π,0E . 

5.2. Simulation Results 

In the simulation, the fractional order q is equal to 0.95. The parameters of system (16) 
are taken as 0.5c = , 1β = , 1ω =  and 2.66f = . The parameters of the controller 
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(26) and the adaptive law (27) are chosen as 1 2 0.5c c= =  and 2k = . The initial con-
ditions are taken as ( )0 1x = , ( )0 0.3y = − . The initial parameter estimate is given by 
( )ˆ 0 0.5f = . The closed-loop system consisted of Equations ((16), (26) and (27)) is 

solved by using the predictor-corrector algorithm. The simulation results are shown in 
Figure 5. 

The time-domain waveforms the states of the controlled system (16) are shown in 
Figure 5(a) and Figure 5(b). The FOSMIB power system has experienced chaotic be-
havior before the controller is put into effect. By activating the controller u at 20 st = , 
the chaotic behavior is suppressed and the controlled system converges to the equili-
brium point ( )2 π,0E  quickly. The parameter estimate f̂  is converged to f  as 
shown in Figure 5(c) and the controller u is bounded as shown in Figure 5(d). From 
Figure 5, it can be seen that the proposed controller is feasible for suppressing chaos in 
the FOSMIB power system. 

6. Conclusion 

In this paper, we have numerically investigated the FOSMIB power system. The para-
meter f and the fractional order q are selected as bifurcation parameters respectively. 
Complex dynamical behaviors, such as periodic orbits, period-doubling bifurcations 
and chaotic attractors, are observed in the FOSMIB power system. The LLE is calcu-
lated using Wolf algorithm to confirm the existence of chaos. Furthermore, by exploit-
ing the fractional-order backstepping method, we propose an adaptive controller to 
suppress chaos in the FOSMIB power system. The effectiveness of the presented con-
troller is verified by numerical simulation results. 

 

 
Figure 5. The time-domain waveforms of the controlled system (16). 
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