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Abstract

In this paper, the boundary layer equations (abbreviation BLE) for exterior flow around an ob-
stacle are established using semi-geodesic coordinate system (S-coordinate) based on the curved
two dimensional surface of the obstacle. BLE are nonlinear partial differential equations on un-
known normal viscous stress tensor and pressure on the obstacle and the existence of solution of
BLE is proved. In addition a dimensional split method for dimensional three Navier-Stokes equa-
tions is established by applying several 2D-3C partial differential equations on two dimensional
manifolds to approach 3D Navier-Stokes equations. The examples for the exterior flow around
spheroid and ellipsoid are presents here.
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1. Introduction

In computational fluid dynamics, one need to compute the drag exerted on a body in flow field; in particular,
optimal shape design has received considerable attention already, see Li and Huang [1], Li, Chen and Yu [2],
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and Li, Su, Huang [3]. It has become vast enough to branch into several disciplines on the theoretical side, many
results deal with the existence of solutions to the problem or its relaxed form, on the practical side, topological
shape 3 optimization which solves numerically the relaxed problem or by local shape variation. In this case

. . au
we have to compute the velocity gradient u, := r~ along the normal to the surface of the boundary and normal
n

stress tensor o, to the surface. All those computation have to do in the boundary layer. Therefore this leads to
make very fine mash; for example, 80% nodes will be concentred in a neighborhood of the surface of the body.

In this paper a boundary layer equations for u,, p, = p|3 on the surface will be established using local

semi-geodesic coordinate system based on the surface, provide the computational formula for the drag func-
tional. In addition, a dimensional split method for three dimensional Navier-Stokes equations is established by
applying several 2D-3C partial differential equations on the two dimensional manifolds to approximate 3D
Navier-Stokes equation.

The Dimensional Slitting Methods deal, for examples, with thin domain problem as elastic shell (see Ciarlet
[4], Li, Zhang and Huang [5]), Temam and Ziane [6], and with boundary value problem with complexity boun-
dary geometry (see [7]-[10]).

The content of the paper is organized as the followings. Section 2 establishes semi-geodesic coordinate
system and related the Navier-Stokes equations; Section 3 assumes that the solutions of Navier-Stokes equa-
tions in the boundary layer can be made Taylor expansion with respect to transverse variable, derive the
equations for the terms of Taylor expansion; Section 4 proves the existence of the solutions of the BLE; Section
5 provides the computational formula of the drag functional; Section 6 provide a dimensional splitting method
for 3D Navier-Stokes equations; Section 7 provide some examples.

2. Navier-Stokes Equations and Its Variational Formulation in a
Semi-Geodesic Coordinate System

Through this paper, we consider state steady incompressible Navier-Stokes equations and its variational formu-
lation in a thin domain Q, a strip with thickness & and by a Lipchsitz continuous boundary
0Q=T=T,ul},

—uAu+(uV)u+Vp =f,

divu =0,

u|ro =0, essential boundary condition, (21)
a«n|rl =h, Nature boundary condition,
or
—2u¥ " (u)+(uv)u' +g"v,p=f',
divu =0,
(2.1

u|ro =0, essential boundary condition,

o n|r1 =h, Nature boundary condition,
which are invariant form in any curvilinear coordinate system. Let
V(Q,)={ueH (@), U, =0}
M(Q,)= {q e*(Q,), [adx=0 ifmeasT, = O,}

At first, we introduce semi-geodesic coordinate system (abbreviation S-coordinate). As well known thhat
boundary layer Q, €E® in 3D Euclidean space bounded by T', =3 and I, where 3=u,_3J, is bottom of
the boundary layer, a surface of solid boundary of the flow fluid, and I', =3+n¢ = 3(5) is a top boundary of
Q;, an artificial interface of the flow fluid where n is unit normal vector to 3 and & is a parameter, the
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thickness of the strip, the boundary layer. Assume that there exits a smooth immersion 0(xl, X2 ) ‘DcR* >3, cE?
such that V(xl,xz)e D, e, :5—2 are linearly independent where D < %R* is a Lipschitz domain with
X

boundary y=0D and (xl,xz) are parameters which are called Gaussian coordinate on the surface 3. It is

obvious that e, are basis. So the geometry of the surface 3 is given by first fundamental form and second
fundamental form and third fundamental form which coefficients are metric tensor a,, =€,e, and curvature

tensor b, =-n.,e, andtensor C,, =Nn,N, respectively where n isunit normal vectorto 3
e, X€, € X8,

n= =
le,xe,|  +a

Their contravariant components a’, b, ¢* are given by

, a=det(a,,)>0

aff _ sa aff _ A0k PO aff _ A0l 4 pfo
a%a, =07, b” =a"a"b,,, ¢ =a"a""c,

What’s follows that we will frequently used the inverse matrix (B“ﬁ,éaﬂ) of (baﬁ,ca/,):

Aaﬁ _ ca aaf _Qa
b*b,, =67, €¥cy =6

Now, assume that there exists an unique normal vector n to P, :(xl,xz)eS from each point P eQ;
such that (see Figure 1)
OP =0Po+n(x*)&, 0<¢&<s

where O is origin. Thereby, point P is determined by triple numbers (x“,g). Inversely, a triple numbers

(x“,f;(x")e 0,0<£< 5) can determine uniquely a point P Q. Curvilinear coordinate (xl,xz,g) in E3

is called semi-geodesic coordinate based on the surface 3. Its bases vectors are (e,,n) and the metric tensor
g; of 3D Euclidean space E® in this semi-geodesic coordinate are given by

00 00 00 00 _ 80 00

9up R O3, = Uas =ax_"%' 33 —gg
contravariant components g'g; =6,
®=0+¢&n,

Therefore, the metric tensor of E® can be expressed by the metric tensor of 3 in the semi-geodesic coor-
dinate system:

o

Figure 1. The diagram of semi-geodesic coor-

dinate system.
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6(.//(x")+§n) 6(.///(x“)+§n)

O, = pw PV =a,,(X)—2&b,, (x)+E&%,, (%),

a3(X &)=0., (x¢)=0, g33(X,§)=1,

9(x.&)=det(g;)=06%a(x), a=det(a,),
97 (x,£) =07 (a” (x)-2Kb” (x) ¢+ K*E°€7 (x)) = 0 (p(£)a” +a(£)b”),
QSa(Xlg)ngS(X7§)=O’ g33(x,§)=
0=1-2HE+KE2,
P(E)=1-4HE+(4H? —K)&%, q(&)=26-2H¢
(see ref. [1]) wherre H, K are mean curvature and Gaussian curvature of 3. Throughout this paper, we
employ semi-geodesic coordinate system (x",x3 = .f) based on the surface 3 (see [1] and Figure 1) (later

(2.2)

on, denote S -coordinate). The metric tensor of E® in this coordinate are denoted by i g". It is obvious

that the determinate g = det(gij ) =ap* >0 if & issmall enough. Hence coordinate (x",g) is nonsingular.

In addition, we review the main notation. Greek indices and exponents belong to the set {1,2} , While Latin
indices and exponents (except when otherwise indicated, as when they are used to index sequences) belong to
the set {l, 2, 3} , and the summation convention with respect to repeated indices and exponents is systematically

used. Symbols such as 5; or 5} designate the Kronecker’s symbol. The Euclidean scalar product and the the

exterior product of a, be E® are noted a-b and axb; the Euclidean norm of aeR® is noted |a|. Fur-

thermore, the physical or geometric quantities with the asterisk = express the quantities on the manifold 3,
for example, V. is covariant derivative on 3. Furthermore, the physical or geometric quantities with the
asterisk = express the quantities on the manifold 3, for example, V. is covariant derivative on 3. Further-
more, the notations &%, &,; are given contravariant components and covariant components of the permuta-
tion tensoron 3

—, («,):odd permutation of (1,2),
Ja, f )
gy=1—a, &,= i (a, ) : even permutation of (1,2),
0, a
0, otherwise,

There are following relations of the first,second and third fundamental forms (ref. [1])
-2Hb,, +c,, =0, a* - 2HO™ + KE? =0;
2Ha“ﬁ —b"’” - b“ﬁ =
(K-4H?)a” +2Hb“ﬁ’ + K27 =0

The following give the relations of differential operators in the space and on 3 (see [1]). For example, under
the S -coordinate system, the Christoffel symbols of E® and 3 satisfy

Fgﬁ:F aﬁ+g-lRaﬂ, F;3:‘9—1|Z’ Fzﬂ:\]aﬂ,rzsz[‘gﬁ:[‘gszrgazo,

and covariant derivatives of the vector field are given by
. j . * B *
v,ul :ZLiJrFi‘kuk, YueH (Q); Vau’ :GLQH"”M ut, vuonTgS;
X X
: * 1 0
u divu =V, u* =——(au?);
T arl) o)

rot(u)=Vxu=e"v,ue; rot() “”Vauﬂ

O,

div(u)=vu' =
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where U; = gijuj is covariant component of vector u. The strain tensor of vector field in %° and on 3 are
given by respectively

1 1 k k l.
CH (u):E(Viuj +Vjui):5(af 9, +5; gi,)Vku ;
* l * * 1 y y * .
€ap (U) =5 Vet +Vau, =E(5aaﬁ6 +0,8,, ViU’
Of course, div(u)=g"¢;(u); div(u)=a" e (u). Under the S -coordinate system there are following
formula for the covariant derivatives of the vectors in the space R and onthe I (ref. [1])

* 3
vV uf =v,u” +49’1(Ifu3 + Rflu’l), v u® o, NI
ox”
B 3
V,uf = u +0 M e, v _u
P oL
divu = dlv(u)+¥+¢9 ! [—ZHu3 +(2Ku3 -2u*V,H )§+U‘VQK§2],
1% = bl +KESE, I, =b,, —EC,,
RE =~V bi&+ KDY Vo bie” =V, & +(2H 8! —be )V, b,
The strain tensors of the vectorsin R and on 3 can be expressed as
l 1 2 2
€, (U) =E(Vau/, TV U, ) = 7 (U) 4705 (W) 74 (1) 7
1 au[f * s 1 2 5
ea3(u):E gaﬂE-i_vau :ya3(u)+7/a3(u)§+}/a3(u)§ ’ (24)
ou®
ess(u):V3u3 :E;
where
Vs (U) = €ap (U)—b,,u°,
1 * * %
Vap (U) = —(b(M Vpu* +by, Ve, ul)+caﬁu3 -Vib,u%;
2 1 s i 2
7aﬁ(u):5(cal VU +cy Vau* +V,C U j;
1 al -
Vas (U) =73, (U):E(aapg-i-va Usj, (2.5)
L ouf 2 1 o’
7a3(u):_baﬁ¥' 7/(13(u):§caﬂ¥’
ot 1 2
733(u)=§: 733(”)2733(u)=0-
y (u) =a”a’y,, (u)

In the semi-geodesic coordinate system (see next section), define the bilinear form a(-,-) and trilinear form

b(-rs)

®



J.Suetal

a(u,v ijqudV jyg"gkmvlumv Ve Jgax,
or
a(u,v)= .[Zye” (v)Jgdxd¢ = J'Z,ug"‘g me. (u)e; (v)@-/adx, 26)

b(u;u,v) ju’V u'g,V k\/_dx

(Fv)=(f, V) (o-nv)=(f.v)+(hv)[ .

Then, the primitive variable variational formulation for Navier-Stokes Equations (2.1") is given by

Find(u, p) eV (Q)xM (Q) such that

a(v,v)+b(u,u,v)—(p,div)=(F,v), vveV(Q), (2.7)
(g,divu)=0, VgeM(Q),

while the Navier-Stokes Equations (2.7) in semi-geodesic coordinate system are expressed as

2 a * 3 * *
- ou 40717 — o’ g“ﬁvﬂai +u 36“ —+L(W)+g” Vp p+u’ Vyu©
oL 24 ¢ ¢

+2075uPu® +07'RG uu” = £,

2.3 ul * u? 3
—2u ou -207(H- K§) +lidivu+lg (Vg 950 — 9,0 'R J@ +@+u3ﬁl (2.8)
ag* o5 | 0¢ ¢
+£3(u)+uﬂ%,gu3+\]ﬂau/’u": f3

3

divu =%divu+€l {—ZHU3 +2(Ku3 -u’ %ﬁ H)§+uﬂ %ﬁ ng} =

2 * Kk %
L‘a(“):z_zﬂ{gaﬂgla%(vﬂ Yo (U)—207'RY, 7#6( ))fkﬂglgaﬂlgvf’ us}*
- 2.9)

*ox 2 k *
£ (u)= —ZyEg“’ ViVell =079 17 v, (U)E —%g“’@’lRfa \7 us},
k=0

3. Boundary Layer Equations

Assume that 3 is a two dimensional manifold parameterized by R(X) In the neighborhood of the orientate
surface 3 let define a surface 5(5):
3(6)= {.%g (x)=7(x)+on(x),vxeDc EZ}, n is unit outward normal vector to 3

~

It is obvious that \5(5) ia a geodesic parallel surface of 3 and the geodesic distance each other is equal to
5 where § is a small constant.In this paper we only consider exterior flow around a body occupied by Q
with a two dimensional manifold 3 =6 without boundary. The boundary layer domain

Q; ={R(x)=.7(x)+&n, 0<£<6, Vxe D} < E® bounded by SuUI(5)

Domain Q; is called the “stream layer”.

Assumption Al assume that the solutions (u, p) of Navier-Stokes Equation (2.7) in boundary layer Q; in
semi-geodesic coordinate system and right term f can be made Taylor expansion with respect to the
transverse variable 0<&<0

u(x,&)=u (X)E+u, ()& +---,
P(X &)= Po (X)+ P (X)E+ P, (X) &7+, (3.1)
f(x,&)=F (X)+f(X)E+F, (X)E2 +--,

©,
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In same time, the test vector also can be made Taylor expansion

V=V, (X)E+V, (X)E2+, =0y (X)+ 0 (X)E+0, (X)EX +--
Theorem 1 In a boundary layer domain €, with non-slip boundary condition u, =0, if the Assumption

Al (3.1) is satisfied, then nine unknown of (ul,uz, Py Prs pz) satisfy following a system of three partial dif-
ferential equations which are called boundary layer equations | (BLE I)

3 * * * 3 * 4 * *
_/lg [Auf‘ +a” Vv, divu, + Kuf‘}+a"ﬁnﬂauf —%a"ﬂ Vs pﬁ%(uf Viul —uf divul)
2HS® »
+ a”Vypy =" (uy), (3.2)
5
—?A Po+M(u)=F,, ui=0,

(uy, p, )|FD satisfies periodic boundary condition.
and five algebraic equations

2 63 a [29 Q o 63 Q :
#Tuz =a ﬁFﬁz —-a ﬁqﬂaul +?a ﬁvlf Po,

2u3 + d?v(ul) =0,

5° 5 8 5 2us° u (6% 2HS®
?pz"‘[?_ 3 ]pl—"_KlpOJ'—Tbaﬂulul __:BO(U1) dIV Tt U (3.3)

2 3
2 3
{5

26° 5 3Hs° us®
Tpl+2(?— 3 JpOJr2 divu, = F/,

Associated variational formulations with (3.2) is given by

3

4
Find(u,, p,) €V (D)xM (D) such that %a(ul,vl) ( £)+2

+(7,5u5 )+T(a (ul Viuf —uf d;vul), lﬁj
3 * 3

+%(p1,divvlj+[2|_;5 Vj po,vf’]=(.7“(u ), aaﬂv”), vv, eV (D),

3

(3.4)
)
5 (VP Va)+(M (1).0)=(F,.q). vaeM(D),
where the bilinear forms defined by
a(u,v):= ( W"e 1(u),gal(v)) (3.5)
("'):I‘X"/adx
and
_H 2H 52 6Hs® 267 5% 4HS5° 45°
= -=——1b,, |, -—b,,
H J +[3 2 )7 q”/’z 2 3 )3
2 3 3
M (u) = 2| &+ 2R \ivy, ~10udiv(Hu,) - 222 be v, 0l F, = a v, F2, (3.6)
20 2 3 3
2 3 3 3 4
L e
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where

f,0° . f.6°

3
T, F2:h52+f05

F'=hs+

h is normal stress tensor at T', (top boundary of boundary layer), f, are defined by (3.1).

Next, let consider interface equation. In this case 3 is a flexible surface (slip and passing through
conditions).

Assumption All Assume that the solutions (u, p) of Navier-Stokes Equation (2.1) in stream layer

Q= {R(x) = 7(x)+&n, —%s ¢ s%, X e D} in semi-geodesic coordinate system based on 3 and right
term f can be made Taylor expansion with respect to the transverse variable &
u(x,g):uo(x)+ul(x)§+u2(x)§2 +ee

P(X &) =Py (X)+ Py (X)E+ Py (X)E2 +--+, 3.7)
f(%, &) =Fy (X)+f,(X)E+F,(X) &+,

Theorem 2 Assume that the Assumption 11 is satisfied. Then six unknown of (uk, P k= 0,1,2) in (3.7)
satisfy following system of the nonlinear partial differential equations which are called stream layer equations
11 (abbreviation SLE I1) (interface equations):

—y&KAug +a” v divu, + Kugj+4a’“ Vi HuS +2b% Vs u§}+5(u§ viug +ufu§j—6a“ﬂ Vo p, =a”F?,
—2us A} +2,u5(4H 2 —2K)ug +5[ug Vius +bwugu;’}—2H5pO —2udby Vo uy — psdivu, = F7, (3.8)

divu, —2Hud +u? =0,

2 2 2 * 2 * * *
,u([&— H25 ]5;‘ —%bg]uf +%a“" Vsl —ﬂi KAUQ’ +a” v, divu, + Ku{,’j

. : 2 . 2 .

+4a“* V, HUS + 20 V5 u§}+5—a“ﬂ Vs P, +5—(u§ Viud +ufud —2b§u§u§j =a”F,,
2 2 (3.9)

52 4H 52 52 52 * 62 * .

- m —(5—7] P, —'UT/?O (Ug)-— ,uz Aug +7(u§‘ VU +b,,Ug uoﬁj =F,

div(u, - 2Hu, )+ 2Ku; —4Hu; =0,

The right terms

Fi=a,(h"-h), F'=R-n, Fj=a,n’s F =0

hy =uuf‘|3(i§), W =Pl 1), (3.10)
2

’
R

2

ht3 :(_po +21Lluf)‘ (15]’ hta Z,Ll[ula +a” %ﬁ Ug —qué’J

3[%6)
In particular, for flexible (slip condition u, = 0) boundary surface 3, neglect hight order terms and keep

one order term of &, then (3.3) (3.4) and (3.5) become
The Proof of Theorems 1 and 2 is neglected.

®
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4. The Existence of the Solution

In this section we prove the existence of the weak solution of (3.2). To do that we consider variational
formulation of (3.2). Let V(3)=H; (D)xH, (D) where H; (D) is a sobolev space of 1-order with perio-
dic boundary condition. Since ([14], Th.1.8.6) we claim

l * * f * *
E[Au{’ +a” Vv, divu, - Kuf‘} =V e? (u,)
where
* 1 * *
e’ (u,) = E[a‘“ viuf +a”v; u{’j

Let define bilinear form: Vu, veV(J),

3

a(u,v)= g—zy(e:‘ﬁ (u),e;ﬂ (v)) = g—z,u(a‘”aﬁ" &0 (u),éaﬂ (v))+(Qaﬁu“ V)
53 afio .
=?(aoﬂ € "(u)'eaﬂ (V)) (Qaﬂul ’Vﬁ) (4_1)

63 * * 53 * *
ao(p’q):?(v p,quz?[a“ﬂva p1vﬁqjl vp, qeLZ(D)v
7 (UV)=aa(u,v)+ B3 (p.a), YU, VeV (D)xL?(D),
where (a,, f3,) are two positive constantsand U =(u, p), V =(v,q) and

()= [ -}

Then corresponding variational formulation for (3.2) is given by

FindU :(uf‘,a:l,Z, po)eV(D)x L (D) such that @2
4.2
T(UN )+t 7 (U, V) + (7 (06) V" )+ By (Mg (uy),0) = (F.V), WV eV (D)xL*(D),
where
4 * *
7 (ug,ug, V) =%[aaﬂ (uf Vaiu/ —%uf divulj,v/’j
54 A . a 1 a : a aff
Bﬁ(ul,ul):Taaﬂ U Vi —Su divu, |, B*(uy,u,)=a”B,(u,u,),
64
B;(u,,u,)= bﬂgul uy, (4.3)

3

« 45
//5 ( po) = dﬁ vfl Po _Tvﬁ Hpo7

3 3 & *
(|=,v)=o¢0{|:ﬂ1 77: “g F;—%Va P,V J+ﬁ0(a“ﬂva F/f,qj.

Lemma 1 Assume that the metric tensor and curvature tensor of 3 satisfy a,, € Cl([_)) and b, e Cl(D)

respectively. Then viscosity tensor of 3 pa®” a,, and metric tensor a“’ are positive definition, i.e. for any

symmetric matrix (t/ ) , there exists two constants 2, (D,S), J, independent of (t) such that

Z.ta

Z
2ua™a; ity >

(4.4)
a”tt, 2/102|ta| , aaﬂt ““' > 2SI
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Therefore,
* * * 2 * 2
a, (uu)= [a"ﬁaﬁ.a Vau*,Vy uﬂ) >2ul, Y Vo U’ =2p4, VUl
a,p 0,D 1,D
5° 5° (4.5)
a,(p.p)= ——2 —.
0,D

Furthermore, If H, K eCl(D) and the thickness § of boundary domain small enough, then bilinear form

(Q.pu”,v*) is positive
‘(Qaﬂ”a'”ﬂ)‘ 2 2u8|uf,,,  vuev(D) (4.6)

Proof The proof of (4.4) can be found in ([1] [4]). It remain to prove (4.6). By virtue of the positive definition
of metric tensor a,, and assumption of lemma and using Hoelder inequality, we assert that

2 3 2 3
(Qaﬁuf : uf) = Zylg(aaﬂuf : uf’)+(([%%+(4K -2H 2)%Jaaﬂ +(%—11H35 Jbaﬁjuf : ufﬂ

1) ) . 1
22| S ol -0l | =2 5 -Co% Juls, 2 2000, v <V (D), if o<,

where C is a constant independent of u, depending (H , K), A, . The proof is complete. #
Lemma 2 Assume that the two-dimensional manifold 3 is smooth enough such that the metric tensor a4

of 3 and curvature tensor b,, satisfy a,, b, €C'(D). Then the bilinear forms a(u;,v),  (U,V)

defined by (4.1): W(D):=H} (D)xH'(D)=® is symmetric, continuous

a(uv)=a(v,u), ~(UV)=~(V,U), YUV eW(D),

la(u,v)[<5C|uf, v (4.7)

1D’

, 5°
[ (V)| < a2usCul, o V], +7 3 Clmlo ol YUV eW(D),

where H{ (D)= {u e H'(D),u|,satisfying P.B.C.}. Furthermore if & is smaller enough such that

s<min{- L (48)
JA '8
then they are also coercive respectively

53
a(ug,u,)> 2;{—3 C |ul|iD +5"U1"(2>,D]’
(4.9

o 5 2 2 5 2
L)z Sclufy 1ol [+5 Al v eW(O)
where C isa constant independent of u, v having different meaning at different place and

IOl =aolufy +Aolmof o VI =0 Eo + Aolafs . YU =(upy). Vi=(v.0)

Proof Indeed it is enough to prove the coerciveness (4.8) since the continuous and symmetric are obvious by
Hoelder inequality. Since Lemma 1,

O
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2u8® (o po : 2 2
a(ul,ul):”T(a 2% €15 (Uy ), €ap (ul)) (Qaﬁul u/ )2 é A Z eap( | +2u6]uyy
0,D
) 2us® * 2 2 2
7 (UU)za, A2 eas ()] +2u8 |, , +?'30/10|p0|1,o'
a,f 0,D
In view of Korn inequality on Riemann manifold (see [4] Th.1.7.9)
* 2 " 2 . 2 11 2
‘Vul SC("“l"i,o +2 [eas (uy) ] >l (uy) ZE‘Vul —||U1||§,D’
0,D ap 0,D ap 0,D 0,D
we assert that
2ud° 2ud°
a(uyu) > 2 cluf, +2u0(1-072 uf , = 2 cuf  + 2ud .
(4.10)
, 2us®
s (UU)=E Clu.f, ++a02/‘5"“1||c2>,o +?ﬂoﬂo|p0|1z,o'
if & satisfies &° <(A. )71. To sum up, we conclude our proof. #
Next we consider variational problem (4.2) corresponding to boundary layer Equation (3.4). Let
AUV =7 (UV)+ay[ 7 (U, v)+ (7 (o) V") |+ B (Mo (us). ), .

VYU,V eW(D)=V(D)xL*(D),
Lemma 3 Assume that the manifold 3 satisfies that a,,, b, H, K eCl(E_)) such that there exists a

constant C, >0

ap
max {|aaﬂ| a

Joug KL [H]}<c,
The thickness 5 of the boundary layer is small enough. Then bilinear form
A(--):W(D):=H,(D)xH;(D)=%R defined by (4.11) is continuous:

52
A(U W ) <C Mzﬂ% [?"'ulml,g +5|||u1|||0’D]+ 52ﬁ0 | Po |1,D]|V|1,D +(52 |u1|1,D + 5"u1"o,o )|q|1,D !

(4.12)
vU,W e W(D),
where |||U m |u o +| Po |1 , and also satisfies following inequality
, . B 31 2 2 16° 2
v(uu )“"0( 5 (Do) Uy )+ﬂo (Mo (W), po) 2 6% |, + pretgSus, +Z?ﬂoﬁo [ Doy
(4.13)
16°
A(U ’U ) 2 #53 (1_C5”u1”0,D )|u1|12,D + ,uaoé'(l—Cé's |ul|1,D )"“1";[) +Z?ﬁoﬂo | p0|12,D !
where & is small enough and parameters (c,, 3, ) satisfy
e min{ b @ b }mmi 111 oap 1 BA]
4C; (a +3uBy) (o +4uBy) (et +2up,) JA, '8C'2C, '8C, '8C, | uC (4.14)

Proof It is easy to verify (4.12) by applying Hoelder inequality and Poincare inequality. It remains to prove
(4.13). At the first, we recall that the assumptions of the lemma shows
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sup { aﬂ } <C;
Taking (4.8) into account, from (4.10) it infers
AU 7 (UU)=a4 ]| 7 (Ut V)| (po)V") |- B (Mo (). ) (4.15)

(1) Since Lemma 1 and (4.3) we have
wd 45° » 45° : 38% 0w % ca ra) e
(f/ﬁl(po)vuf;)ZKd/x Va(po)—TV,; Hpmuf]=T(Hpo,leU1j+([E—5 3 “(Ho; b )jva vaulﬂ]

5% 4HS® ) Aus®( .2 .
(Ml(ul),pO)ZZ,u[(?— 3 ]dlvuvpo]+yT(bﬂV“u1ﬁ+3ufvﬁvaoj’

Moreover, using Godazzi formula Vab,, =Vzb,, , we obtain

by Ve uf -V, (b“uf)—uf Va by = Vo (b“uf)—ZHuf %ﬂ H,

4us°

3 (b"Vau1 +3us,;H poj 4‘? (Va(bau1 )+u1 VpH poj

3 *
= 4”35 [b“u{’,v poj 425 (u{"vﬁ H,poj,

Therefore

|=ao(o;(po),uf)wo(lvll(ul),po)=[[2“§°52 45( —2up,)H jpo,d?vul]

2 3
{[3"‘05 o4 Z(%Hc? +(ay+4uB,)b )jvapo,uﬁj [“ﬂo VﬂHpo,uﬁJ

2 2
Thanks to
divu, =0,uf +0,Invau/
2uB,6° 453
|| [ 2450~ 22 (a—2ups)H | Py, 0 ,u7
2 3
n E%_‘szga 53(aH5 +(a +4 ﬂ) )V Po. Uy
> 5 5 3 0 0 HP @ Mot (416)
2uB,5>  46° ;
+[{[ :”ﬂzo +T(ao_2ﬂﬂo)H]aﬁln\/a+'uﬁovﬂHJpO'ulﬂ}
:|1+|2+|31
We assert that
2 (o —2up)) 2|y, 4 5 (@0 —2ub)H
|l:luﬂ05 ([14‘ 5ﬂ—ﬂ()] pO’apulﬂjsfuﬂo5 1+§5lu—ﬂoc|p0|l,D|ul|l,D
< 2C,Uﬂ052 | Po |1,D |u1|1,D !
1+£5M < 1+£5M <2.
3 /uﬁo 3 ,Uﬁo

Second inequality shows
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s<3_ Hh (4.17)
4 (et +244,)Cys
Using Young inequality
ab<—1 b+ ga’
de
we have
53
23 P [Pols +12%c2;¢25|u1|jD (4.18)
By similar manner,
3 2 a 4 a
e ([5,] +9—5(a0H5ﬂ (g +4u,)b )Jv Do, U/ ]
120
3 o, 4
< 1%5 {1+9—5C5 (e +4/“:30)J| Pol, o "uluo,D
% (4.19)
< [Bulo o <32 Aol +- il
oo 7g3 © " hoby
if 6< EL,
4C; (% +4,uﬂ0)
2up, 0% 46° .
l, = {(%—FT((% —Zyﬁo) Haﬁln«/a+,uﬂo Vs H n po,ulﬂJ
4 *
= up,6° [14—%5((&0 —2ufy) Haﬂln«/a+,uﬁo Vs H j po,ufj
0
45
< ,uﬂ052 [1+§FC6 (0!0 +3/uﬂ0 )J' Po |1,D ”ul”o,D < 2/”ﬁ052 | Po |1,D ”ul”o,D (4'20)
0
163 2 5 2
< Z?ﬂoﬂﬂ | Po |1,D + 4'uf||u1"o.o !
it 6<3__ P
4C; (ao +3,uﬂ0)
Substituting (4.18-4.20) into (4.16) leads to
30° 2vupt
<22 pnlpf, v12lectisluff + s R u
43 A /10,30
(4.21)
if 5<— min{ L S }
4C; (0’0 + 3/430) (0’0 + 4ﬂﬂo) (ao + Zﬂﬁo)
Taking (4.9) into account, it yield
24
7 (UU)+1 zzya[csz— by C,uJ|u1|12D+2,ua05(l— % * 1fy J|| 1||OD ﬂoﬂo|p0|w,
A ' 2uty Syt 4.22)

. 3 . By a, 43, 1
" 5£4C§mm{(ao+3,uﬁ0)’(ao+4ﬂﬁo)’(a0+2,uﬁo } o= mm{\/’ 80}
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Cupy (8°  ay+phy 1 (4.23)
N2 2 2ulgoefy 2
Then
) 3 2 2 1 53 2
2 (U U )+ ey |u1|1,D +/ua05"u1"o,o +Z?ﬁ°j’0|p0|l,D !

; 3 . Ji o, uf, 1
if §S4C5mm{(ao+3yﬂ0)’(ao+4yﬂo)'(ao+2,uﬂ0 } o= mm{\/’ 8C

It is easy to verify that (4.23) is satisfied if the parameters (ao,ﬁo) in the definition (4.1) are held

} (4.24)

21 gty Seg (4.25)
3 uky 2u Z

Next we consider trilinear form. Taking into account of
Vius =0,u% +T% 5 0%, divu, =0,uf +0, Invau?

we claim that

4 * *
- (Vi ufu —u divu,, aaﬂulﬂ)

2 (uy, Uy, 4y )

4

5 A a a o 54
gj{(ul d,u” —uo,u;  a,,uf ) [[F 10— 0,In/as” jul uf,aaﬂqul STC(|U1|1,D +||u1||0’D)||ul||;4’D,
By Ladyzhenskya inequality (Temam [11])
Juslse < 20l IV 005 6 =20usl5 o Ul (4.26)

it infers that

C5(

|'//(ul'l'|1'l'll)|S |u1|lD||u1||OD |+||u1||0D|u1|lD) (4.27)

Combing (4.15) (4.24) and (4.27), we obtain
16°
A(U,U) = ps® (1_C5"u1"o,o >|u1|1z,o +/“0‘05(1_C53 Uil )"“1"§D +Z?ﬂ0’10 [P |fD (4.28)

This complete our proof. #
Theorem 3 Assume that the hypotheses in Lemma 3 are satisfied and the mapping
u, >~ (uy,u,v) vveV(D)
is sequentially weakly continuous in V (D)

weak limitu,, =u, in V(D) implies limitB(uy,,u,,,v)=B(u,,u,,v), vveV(D)

Then there exists at least one solution U =(uy, p,) of (4.2) satisfying

|u1|1D+||p0||1D Py P=" I\/I

5 (4.29)
M - max{ 53_ﬂ0 154 }

4 3

where & is the thickness of boundary layer, C,, 4, 4, are constants defined in the followings.
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Proof We begin with constructing a sequence of approximate solutions by Galerkin’s method. Since the space
Y(D)=W(D) is a separable Hilbert space, there exist sequence (®;,i>1) in Y(D) such that: 1) for all
i>1, the elements ®,,®,,--- are linearly independent; 2) the finite linear combinations of the @, are dense
in Y(D). Such sequence (®;,i>1) are called a basis of the separable space. Denote by Y, (D) the
subspace of Y(D) spanned by finite sequence ®,,®,,---,®,. Then we solve an approximate problem of
4.2)

FindU , = (U;,, Pom) € Yo (D) such that
{ m ( im pO )E ( ) (430)

AU, W,)=(FW), YW =(v.a)< Y, (D),

Setting

U,=>Co,

m

Problem (4.30) is equivalent to a system of nonlinear equations with m unknowns C,. For each m problem
(4.30) has at least one solution. In fact, when defining a mapping . 4, : Y, (D)— Y, (D) by

(7% (Un).®)=A(U,,®;)—(F,®), 1<i<m
where () is the scalar product in Y(D), U, er(D) is a solution of problem (4.30) if only if
/(U,)=0 Since

(4(U)U)=AUU)-(FU), VUEeY,(D)
it follows from (4.28)

('//m(U)'U)ZIUé‘3 (1_C5"u1"o,o)|ul|12‘o +'ua05<1_053|u1|1,o)”u '80}'0|p0|1|3 F W)

1||0D 4 3

Let |u1|12’D <p, ||u1||;D <p, |p0|12‘D <p | p0||;D < p Furthermore, assume that

1 1 1\
1- C(sp>E 1- (:5f“p>E ie. 5<(2ij (4.31)
if & issmall enough. Then
(4022w ], +Suaoluff, 2250 o, )
MU, io =MV, (1, - )2 0
if
V., <~
pizv*, M :max{%yﬁaéyaoé,%ﬂo/;oy}, (4.33)
Hence, we conclude
If U, , <p, Then(. % (U),U)=0 (4.34)

Moreover, . is continuous in a finite dimension space Y,,, we can apply following lemma ([12]).

Lemma 4 Let H be a finite dimensional Hilbert space whose scalar product is denoted by () and the
corresponding norm by || Let ¥ be a continuous mapping from H into H with the following property:
there exists ¢ >0 such that

(#(f).f)20 vfeHwith|f|=¢ (4.35)



J.Suetal

Then, there exists an element f in H such that

Y(f)=0, |f|<¢ (4.36)
Therefore there exists a solution U, for problem (4.30) with
Val,o <2 (437)

This shows that the sequence (U, of the solutions to (4.30) in Y,, are uniformly bounded. Therefore we
can extract a subsequence (still denoted by U ;) such that

U, — (weakly)U, in Y(D) asm — o
Then, the compactness of the embedding of Y(D) into LZ(D)3 implies that
U,, — (strongly)U, in L*(D)* asm — oo
Since Y,, isdensein Y(D), itis obvious that if
B(u,,u,,v)= IrLrDOiot B Uy, Uy V)
Taking the limit of both sides of (4.30) implies
AU, W)=(FW), WYWeY,(D)
therefore
AU, W)=(FW), YW eY(D)
Then U, isa solution of (4.2) and which satisfies
.

<
1,D_p

The proof is complete. #
Remark The mapping u, — .~ (u,,u;,v) Vv eV (D) is sequentially weakly continuous in V(D) can be
found in [3].

5. Dimensional Split Method for Exterior Flow Problem around an Obstacle
and a Two Scale Parallel Algorithms

In this section, we proposal a dimensional split algorithm for the three dimensional exterior flow around a
obstacle occupied by Q= R®. I=0Q is a smooth surface of the obstacle and R* =QuU Q. Assume that
Q is decomposed by a series of geometric parallel surfaces J;, i=1,2,--- into a series of stream layer €2,
bounded by 3J;, 3, suchthat o€, =3,U3J,;.

On every surface 3,, k=0,1,2,---N, it generalis a global system including one system of BLE | on the
boundary surface 3 of the obstacle and N-1 systems of flexible boundary equations BLE Il on 3, 3,,---,3, ;-

BLEI(u;", py) = F°,
SLEN(ug, py)=F,-+, SLEN(ug, py ) = F ™,
where right terms are given by
Fj=0da,h, Ff =0, F}=d%,h", Fj =5, F)=a,(h"-h), F)=h’-K,

h;z :ﬂufﬁ' usz_p0|3’

he :,u(uf +a’Vsud —b;‘uf)

3(6)

h :—p0+2uU13|

3(5) "
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The features of these systems are that the right terms of them depend upon the solution of next system, for
example, the right term of kth-system depend upon the solution of (k +1) th. system. It is better to apply
alterative iteration algorithm to solve these systems. That is

(1) Suppose that right hands F°,F*,F?,---, are known;
(2) Solve system of BLEI, BLEN(k), k=1,2,---,N -1

(3) Modifying F° F'F? by using results obtained , then goto (2) to be continuous until reach certainly
accuracy.

In order to find solution of Navier-Stokes equations at any point P in Exterior domain Q eR®

(i) Identify point P in which stream layer €;;., bounded by 3, U3, then set P:(x“,f) in local
coordinate system;

(i) u(P)=uy(x)+uy(x)E+u,(x)E% p(P)=py(X)+ P, (X)E+p,(X)E°
where (U, (x),u, (x),u, (x), Py (X) p,(X), p,(x)) are solution of BLE on ;.

i+17

In details,
() For i=0 i.e.solid surface with non-slip boundary condition, we give the boundary layer equations BLE
I (3.2) on the boundary surface 3= 3, of obstacle. from Theorem 2, three unknown (uf, po) solve

3 3
* * )f 5 *
_/13 [Auf +a“v; dlvu1+Ku{’}+a“ﬁQﬂau{’ +?a"/” Vs p,

54 A . a a 3 aff - 453 ap . aff ——1
|yl Viuf —uf divu, [+d” Vg P ——5-2 Vs (Hpy)=a”./7, (5.1)

53 . ap - 2
_?A P+ Mg (u)=a”VyFZ,

(ug, P, )|ED satisfies periodic boundary condition
and six unknown (uf,uz, O pz) can be found by six algebraic equations

3
u’ =0, 2u0

5 *
uy =a”’Fj-a”{,u7 —?aaﬂ Vi Py,

2ud +d;v(u1) =0,

53 52 4H 53 54 " 2/'153 (52)
? 2+(?_ 3 jpl—i_’(lpo _Tba[;’ul ulﬁ +_ﬂo(u1):_F31’

3 2 3 3 .
% Py +2[%_3H35 j o~ 10 divu, = F/,

Associated variational formulations with (5.1) is given by
Find(u,, p,) €V (D)xM (D) such that

Ai((ul, pO)’(Vliq))+b(ul’ul’Vl)+ %353 ((Hpo - pl)'d?v(vl)j (5.3)

—ao[po,Va (d;vf)j+,80(M0(ul),q) =a,(-7,"), V(v,,q)eV(D)xM (D),
where o, £, aretwo positive arbitrary constants, the bilinear forms and trilinear form are

Al((u’ po)’(V,q)) ::@(aaﬂaﬁm éag (U),é/ja (V)j+a0 (Qaﬂuf‘,vlﬂ)+%ﬂo (% po,%qj,
(5.4)

4
a,0 . ¥
_ 20 A a a A B
b(ul,ul,vl)_—4 (ul Viuy —uy divu,a,,v; )

and
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3 3
2H5 25 L }

3 2 3

ey
[{ o ol (e, ]

362 HS® 5
d# =| 22 of 2
22 3 ]a 37 (5:5)

5% 4H 53] 12u5°

Mo ()2 -

_ a2
Fp—a V,,Fﬁ,

45° U’ Vo H,

divu, + Va uf +

_ 3. uo® *
af 1 _ Lofrcl 1 a8 aff af 2 aff 3
a ./ﬂ =a Fﬂ_|:25 a —(Ha +b ):lF'B +E?a Vﬁuz,

The right terms are given by
a”’Fy =o', Fj=06h’, a”F; =5, F’ =61,

a (24 (29 * a 5-6
hy =u[u1+aﬁVﬁU§—bﬁUé’) : h3=(—po+2ﬂu13)3(b), (6)

3(5)
where 3(5)=3,.

(1) For i=1,2,---,N-1, i.e. on flexible surfaces, corresponding boundary layer equations SLE Il (for
U,, U,, P, ) at flexible surface (artificial interface) J;, i=1,2,---,N -1 are given by (3.8) and (3.9)

—,u&KAug +a“” vV, divu, + Ku§j+4a‘” Vi HU +2b v u§}+5(u§ Viug —2b‘;uoﬂu3j

a7V, p, =a”F?, (5.7)
—2u8 Au§ —2udp, (u )+5[u0 ViUl +b, ulug } 2HS p, — wodivu, = F/,

pou =a”Fy, —8py =Fy, Ui +7,(uy)=0 (5.8)
Fo=a,(h'—h), B =h-h, Fj=a,h's, F =5k,
1
he = uuf (k), h=-py(k), hf =E[(—p0+2,uu13)(k +1)+(—p0+2,uu13)(k—1):|, (5.9)

he :%/{(u{’ 1 v, us —b;’uoﬂj(k +1)+(u1“ 1a v, ug —b;;‘ué’}(k—l)}

On the other hand we can improve (5.7). To do that, making covariant derivative %a on both sides of the
first equation in (3.9) and combining last equation in (3.9), (po, pl,ul) can be found by

2 * * *
—%A P, = —,ué(div(ZHuo)—ZKug —4H ;/O(uo)J—a“” Va Fy,

(5.10)
satisfies periodic boundary conditions on oD,
5? Ho? 5° 5% 5° *
_?plz[s jpo H By (ug)+ #2 AU + 5 (uo Vius+h, uoué’j+F31, uf =—7,(Uo),
S _ﬂ52 3 a aﬁ% df Ku® 4aﬂ% H3 zbaﬂ* 3 _52 "‘ﬂ* 5.11
uou! = 5 Ug +a“ Vadivu, + Kug |+4a“ vV, Hug + Vi Uy 7a Vs P, (5.11)

S
B3 B 1
+? Uy Vaug —2bguguy |+a” Fp,
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The variational formulations corresponding to (5.7) and (5.1) are given respectively by

Find (ug,u3 ) €V (D)xHj (D) such that

5AD((uo,ug),(vo,vg))+5b(uo;uo,v0)+5a0(po,d?vvoj

(5.12)
—2y5¢(ﬂo(uo),v§)+5b(u0;u0,v§>—15(2Hpo,v§)
= a, ((Fﬂ,vf)—5(u§uf,aa/jvoﬂ))+r(5d’i‘vu1 + F3°,v§], v(vo,vg) eV (D)xH; (D),
and
Find p, € H (D) such that
* * * * (5-12')
5y(v pO,Vq):—(yﬁ(div(ZHuo)—ZKug —4H;/O(uo)j+a“/’ Va Fﬂl,qj, vqeH; (D),
where the bilinear forms and linear form are defined by
Ay (Ug, Vo ) = ao(g(agﬂwna(uo),yaﬂ(vo))+2yr5(Vu§,Vv§),
b(Ug;Ug, Vo) = aq (aaﬁuj v, ug — 2baﬂugug’,v/’), (5.13)
b, (uo;uo,vg) = r(ug v, us +bwu;“u(‘,’,v§'),

(1) For i=N i.e. a last artificial interface Surface 3 . There are two choices to do that (1) assume that
u=u, on 3, where u_ is known infinity up stream flow velocity. (2) we assume that the flow outside
3, is governed by Oseen equation and give a boundary integrating equation on 3, via fundamental solution
of Oseen equations.

(1) Let (x, Y, z) is Cartesian coordinate and u, =u_k where (i,j k) are base vectors. The surface 3,

can be parametrization by r = x(xl, x2)i+ y(xl, xz)j + z(xl, xz)k where x* are parameters, i.e. are Gaussian
coordinate on 3, . Then base vectors e, and unit normal vector n insemi-coordinate on 3, are given by

e, =x,i+y,j+z.k,

1 1 . . (5.14)
N=—=(e,xe,)=——=|(VZ, = 7Z,¥, ) i +(2,%, = Z,% ) j+ (X Y, — ¥, X, )K
\/5(1 z) \/5[(12 12) (12 le) (Xlz 12):|
while the metric tensor a,, and curvature tensor b,, are given
8,5 =X, X, +Y,Y,+2,2,, a=det(a,,),
1 X Yap  Zap (5.15)
ba = Xa ya Za ' Caﬁ:alﬁba/lbﬁo"
7 a
s Vs %
°x

where x, = X . Our aim is to give boundary conditions on 3, . Owing to (4.12) we claim

, X =
oxe' " oxeox”

«_ |0
h _”[ag

W =-p|, +2u

B 3 payf
+a” Vyug —bgul |,
=0

3

©

ou?
o¢

1
= —Euwgrad—+2y
r o

2

=0
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On other hand, we show

a 3
Mol gy, Mol o
8§ £=0 6§ £=0
a _aaf _aaf _ qaf
uz|, =a“u,,=a"uke, =a"z,u,,
| =ukn =22 (%Y, ~ vi%,)
P B \/— 2 172 )

Indeed,

a _ ~off —_ Pl . _ ~ap
u; =9“u,, =9“k-e,u, =g9”z,u,,

o9 . oug|  _ag”
= 2b,, (see(1.8.23)in[1]), = = u, =2b%x,u,_,
aff ﬂ B0
95 i 05|, 05
u ou’ ou
ul =u kn=—2 , == =80,
. =u, f(xlyz ¥i%,) o)., o
Finally we imply
he (N) = au, | a0, | Y2 Y% | pery | h3(N) =20 kgrad 2=~ 2 7(x’) (5.16)
” ’ Ja s 2 r 2" r

where r=r(x) isdescribing 3 . (5.16) will be used for solving BLE I on 3, with h,.
(2). Let assume that the flow outside of T, is governed by Oseen equation
—Au+b-Vu+Vp=f, inQ,

divu=0, in Q, (5.17)

+

u

m?

=u =u,+ou, o(up),=c(up), on3

Im

u—-u,, at X— oo,

u, is known and b is a well known vector, for example b=u_, and Q= QuZQ

o

and u,, u, are

ii+l7

solutions of 2D-3C Navier-Stokes equations on the J__,. Furthermore, o u,p |~s =h is normal stress tensor

m-1
to be found in the section. Let x be a Cartesian coordinate. 4, 7, are fundamental solutions of the follow-
ing equations

—VvAU,,; (x—y)+(2yﬂ(x—y)+b-vuki (x—y)=-6:5(x-y)

‘ (5.18)
%(X_y):
4%
(U, R) can be expressed as
I’D(x—-y 0
VUki(X—y)=5kiA‘D(X—Y)—ﬁv R(X—Y):—&(Am'v)q’(x—y) (5.19)
where @ is a fundamental solution of following equation
b-(x-y)
(A+u, -V)AD =5(x-y), P(x-y)= |b|-[ bl [®, -, ]dt (5.20)

where for b=0
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n-2
1 bl 2z b||x - 1
cbl(x—y):—E(Lj an[| ”2 y|jexp(—5b-(x—y)j, n>3
2

4z|x—Yy|

L
> i (5.21)
——E(n—2)|x—y| , n>3,

®, (x-y)= 2n?
1
—In{x-y], =2,
o njx-yl n

where K is a Bessel function of second kind.
Then integral expressions of solutions of Oseen problem (5.9) are given by
n(y)u(y)=u,- [ [U-o(u,p)-u-o(U,P)]ds,
Fan (5.22)
n(y)p(y)=p. - [ [P-o(up)-u-o(UP)]ds,

Cart
where o s stress tensor
o (up)= {_5ij p+ﬂ(3iuj +aiui)}
1, xeOseen Domain;
U(X): % x € Artificial Surface.

Here we employ Cartesian coordinate system (X:(Xl,xz,xs)) and artificial surface I',, =3, is a two

dimensional manifold. The integrate representation (5.17) of the solution of Oseen problem is invariant, it is
valid for any curvature coordinate. Since formula for fundamental solution cali/,P is represent at Cartesian
coordinate. It also can be compute at any curvature coordinate according transformation rule of tensor of one
order.

Vector A in (5.17) is normal stress tensor at 3 A(u, p):{aij(u,p)nj,izl,Z,B} The normal stress tensor

A at J_ iscontinuous /1|is =/1|; =h . This meansthat 24 on both sides of J_ are coincidental.

m m

Normal stress tensor h on the artificial boundary 3, satisfies following equation
2c(h, x)—{u, )+ 2(Ku, x)=0, VyeH™¥*(3,),
c(hx)= [ [htxdsds, (uz)= [uxds, (5.23)

<Ku'x>sj I (u-o(U,P)z)ds,

(5.23) can be rewrite in semi-geodesic coordinate based on 3

m-1-°

2¢(h, 7)~(u, 2)+2(Ku, ) =0, vze(H¥(3,)),
o(hz) = [[tyusz'Nadx,  (u,7)=[[a,u5 2" +u°7* [Vadx (524)

(Ku, 7) = [ oy (Z],ﬁ)u(‘,;(j\/adx,

. FoX ]
where, (x",x3 :r;) is semi-geodesic coordinate. By the transformation of coordinate, l4; = U ZL'ZL’
X' Ox

where X' are Cartesian coordinate and X' = Xi(X) is the parametrization representation of the surface

~

<

m-1-*
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Lemma 5 The bilinear form c(-, ) defined by (5.23) is symmetric, continuous and coercive from
HY2 (3, )xH™Y(3,) into ®°
¢ z2)=c(22 ), Yz eHY(S,),
|C(ll’7(2 )| < C”ll"-yz,sm ”752 "-1/2,3m v Vs € H¥2 (Sm)
|C(ll’ll)| 2 C"Il":/z,sm » Ve H¥2 (Sm),

Theorem 4 Assume that u,, p, are smooth and bounded in Hlp (D) Then there exists a unique solution of
following variational problem

Findh e H;]/Z (D) such that

5.25
C(h,;{)z%(Uo,;()—(Kuo,;(), ‘v’;(eH’l/z(Sm), (5.25)

Parallel algorithms. The Domain ia made partition by m interfaces surfaces and we obtain m+1 the systems
of BLE | and SLE Il. Solving each BLE | and SLE Il independently, then applying alternatively iterative
algorithm are performance at the same time. On the other hand, the parallel algorithms for BLE | and SLE Il can
be used. Therefore, parallel algorithms are applied in two direction at the same time.

6. Computation of the Drag

The drag is a force exerted on a solid boundary surface, for example, J,. There is normal stresson 3, which
can expressed under semi-geodesic coordinate based on 3 by

[&" (u, p)n+/adx

The drag is a projection of normal stress on the direction of infinite stream flow u_ =u_k . Hence

F, = Io’ij (u, p)nikj\/adx (6.1)
So
Since unit normal vector at 3, is n:(0,0,l) and by (5.1)
XY, = XN
k =ke, =z, ky=kn=—"*=—-= 6.2
a a a 3 \/5 ( )
Therefore
o (u, p)nk; =% (u, p)z, +0% (u, p) 2 f2h

a
As well known that the stress tensor is given by

o' (u,p)=-pg’ +2u9"g"e,, (u)
Atsurface 3,

3

ou
o™ (P, =—Po+ 2uess (), =Py +2u7 = —po+ 2] =y
£=0

o* (u, p)‘30 =2ua”e;; (Uy)

Since
1 m 1 ou *
e3ﬁ(u)=§(gﬂmv3u +g33Vﬂu3)=E[gﬂg(6§ +67'17u ]+Vﬁu3+Jﬁlu‘]
1 ou’ 1, . - 1 ou’
(gﬁg By +Vpu] 5(9 Uplf +3,)ut = [gﬂa 5 +Vﬁuj
because of
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079,17 +3, =0, see Lemma 1.8.1(Li[1]),

1
u|30 =0, quO =0, eaﬂ(u)|30 =3 Pine
o> (u, p)|jo = uuy.
Hence
Fy = I[— Py —lezj—xzyl + Za}/adx (6.3)
o a

The drag is a force exerted on a solid boundary surface, for example, J,. There is normal stress on 3,

which can be expressed under semi-geodesic coordinate based on 3 by JO'” (u,p)n, Jadx. The drag is a pro-
So

jection of normal stress on the direction of infinite stream flow u_ =u_k.Hence

F, = [0 (u, p)nk;adx= j(—pow+yuﬁajﬁdx (6.4)
So o a

where X (x), Y(x), Z(x) are parameter representation of .

7. Examples

7.1. The Flow around a Sphere

Assume that (x, Y, z) and (x3 =rx’=¢x = 9) are Cartesian and spherical coordinates respectively

1 0 0
X = rsindcosp, Y =rsindsing, z =rcosé, (gij)z 0 r%in’6 0
0 0 r’

Simple calculations show that the metric tensor of spherical surface r = const . is given

a,=r’, a,=a, =0 a,=r’sin’, a=deta,, =r*sin’g,

a11 — r—2 alZ — a.21 — 0 22 — 1 (71)
’ ’ r’sin%o’
The tensor of second fundamental form, i.e. curvature tensor of spherical surface is given by
. 1 1
by =r, by = rsin®e, b, =0, b’ =m‘ b? =r—37 bt =0
1 .
bl =b? = by =b’ =0, b=det(b,,)=rsin’6, (7.2)
b 1 1
K =—=—, H = aaﬂb =—,
a r? @y

the base vectors of semi-geophysical coordinate system are given

e, =—Icosgcosdi+rcosdsingj—rsindk,
e, = —Isingsindi + rsindcosgj, (7.3)

n=—,
r

We remainder have to give the covariant derivatives of the velocity field, Laplace-Betrami operator and
trace-Laplace operator. To do this we have to give the first and second kind of Christoffel symbols on the
spherical surface 3 as a two dimensional manifolds
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T2 =To12 =r?sinfcosd, Ty =-r’sindcosd, Tz, =0, other way,
%1, =T%n =coth, T =-sinfcosh, T7.5 =0, other way,
Then covariant derivatives of vector u=u“e, +u’n on the two dimensional manifold

~

3 is given by
Viut=o,u', Vou'=0,u'+I"2;u* =6,u' —sinfcosou’,
Viu? =9,u’ +cotou®, Vau® =0,u’ +cotou’,
divu=V,u* =o,u' +0,u’ +cotéu’,
2,1 2,.2 1
a* VﬁleU— ou =+ ou +coteai— _12 ut
00° 060p 06 sin‘g
® * 1 2.1 2 2
a”’ Vydivu=—— ou +8 coteai
rssin“g\ 060¢p ago op
Nonlinear terms
* * l * * 2 1
ut v, ut —utdivu =u?— o ulai—ismzeuzu2 —cotouu*,u* v, u? —u?divu = ulai—u2 ai+cot¢9u1u2
op  op 2 00 00
and

2r6° 56° us®
Q. =2u (8& == +§?j, Q,, =Qusin’0, Q, =0,M,(u,)= ; —(0,u1 +0,u7 +cotou; )

The associated Laplace-Betrami operator and divergence operator on 3 are given by

* 2
Ap, == _12 sinzea—pzoJr P, corg o (7.4)
resin“e 06> 0¢° 00

while trace-Laplace operatoron 3
184 1 o%u'  cot@ aut  2cotd du?  cot?d
AU" = ———+—sin 0 e u
r<o0° r 0&p r° 006

r< ogp o
N 2 2 2,2 2 2 2 (7'5)
AL _17ou +isin206 u +cot9 Hau 3cotd ou” cotd . , du
_rz 66’2 2 P 2 2

2

u
S t—sin“0———,
r @ r 00 r- o060 r op r

(A) BLE I
Substituting previous formula into Theorem 1 we assert that

2 2,2 2.1 1 2 2 3
_Ho % 0 2+ oy, +izsin29 oy, +2002t0 LEC ) P out |+£ 5—£5—+£25— u;
3 | r?\ 06 otog ) r o0p  r? |00 o 2 3

[ r2 r

2 3 2 3
+ 12§5__£_ [ u? 2 Oy ulai—lsinwuful —cotduju; %Fll—a—i% 7 (uy),
722 3100 4| 0p “op 2 r 31200
us®l 1 0% 1 oy} c0t9 auy aui 3cotd ou?  cotd ., ou’
- ——5+—sin ‘0 2 t————+—5 —_—
3 |r°o6° r op 69 op r- o060 r op (7.6)
2 3 2 3 '
+£sin%e §—£5—+%5— U + izsm Héa——ﬁ%sin% Py
2 r2 r23 22 3r o
s, ou? ou; 1. 51 op.
+— Uy —=—uf —= +cotfu;u; —smzaFl———sm 0—=+.7%(u,),
4 a0 oo 312 op
3 2 1
—5— on —sin? 96 p2° coze 290 |, 20 %+6ul +cotou; |=F,
3 r?o6® r? op r 00 2 (060 Op

O,
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In particular, if the flow is axial symmetric then
3 2.1 2 3
_Ho %a uzl +2C02t0 o —2cot’Au; + 2 §—£5—+%5— u;
3 |r° 06 r< o6 2 r2 r 3
1 (3 5° 453J8p0 5
t—| o
r

[2 sin260ulu? + coteujuj}

22 r3)o0 4
1 5 1eop
SR et ()
3 2 2 3
_”j {rizaa;; +ccr>t6’ Haalg SCroth aul} Zsin’g 5—ig—+ ]uf (7.7)
4 1
T u %—Uf gg +cot¢9u1ul] rismzeFl 3t (uy),
2 2 1
—%( L (2;20 +C(:§9 Gzp;oj ﬂg [Z—gﬂ:otGUlJ F,
(Ul ' Po )‘9 ooor
where
_ 1 . uod 1
-/11(U2) r—z( (5 rj 1 +E?r—2 gug,
_ 1(3
(u,) == =6 == |FL
2 (U2) rz(z rj 2
(5.7) is a two points boundary value problem for ordinary differential equations.
u’ =0,
2u6® . 1 _, udé* 1
3 uzzr_zF1 57u1+r269p0,
3 2
ﬁug —izsm29F22+”5—uf,
3 r 2
3 l
us =-=(o,u; +cotéu
’ 2( ' 1) (7.8)
5° 1 166° &7 5u6°
? p1 :EFSZ +[?T—7 pO +’UT(69U% +COt¢9u11),
5° 45° &° 45 36° 5 .
?pzz(F?—? P - §_F7+r_2? pO+T(rufu11+rsm29ufuf)
2us° 1
—T—(a u; +cotou; ),
nl=y[u§+izagug—1ugj , h? =y£uf+izsin2¢969ug—lu§}
r r s r r s
3 _(_ 3
he = (~p, + 203 )L(ﬁ), (7.9)
Fl=or’h, F =orksin’on, F' =6h’, F?=68rN,
F; =8%rsin’on?, F, =52r2[69h1+sin298¢h2 +cot6’h}],
(B) SLE 11

The first, we note

O,
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éll (u) = I’Z%

* 1

612(U)=1r2 ai+SI Hal
2 | op 00

. 2ci ou’ 2 1
ez (u)=r sm96—+r cosou',
%4

1
711(“): rz%—rug,

1 .,(0ou ou
=r +sin@—
712( ) 721( ) 2 [a¢ ag}

2
V2 (U)=r’sin HZL+ r’cos@u’ —ursine,
2

So that

aup %] cotd , 2 ,

by . (uy)=r| —2+ Fr—u +—us,
7op (Uo) (ae dp ) sing ° F2

70 (uo) = aaﬁyaﬂ (uo) =S to—7 t—U—

oup 1 oui cotd ;2 4
00 sinf dp sing ° r

3

L oud u
O puZ =2+ rudup +rsin®guiul,

4" (U Ug) =y 00

Taking (5.7) into account, we claim that

2,,1 2,2 2.1 1 2 3
—,ué{%(a Uy , O J+isin29 Oy , Zcow[%—%]—kotzﬁué +%%:|
r r

00> 060 ) r? 000¢ r’ |06 op 00
1 2
—%%+5 ug%—uéai—lsinwugug—coteu +ouiud = L =F,
r° o6 op op 2 r’
2,2 2 2 1 1 2 2
—ud %6 ug +i2 in2¢9a —+ c0t49 n’o Ny +% +—Bcozw%+—Cozgsin29%+i3sinzﬁa¢u§
o6 op op r o0 r op r
—%Sinzegpo 5[%%_%%+cot¢9uouo+u0ulJ=izsin26'F2°,
r @ r
3 2,3 3 1 2
-2u8 iz_@ 2°+i2'5in26'a uf +CO£9 Hauo —2ud|r %4_% +r—C_Ot9ué+£2u3
r-o60° r op r 06 o0 O sing r

3
+5{u0 %ﬁu u? Zl; +rugus + rsinzeugué}—é Py = 2#5(69@ +0,U7 + cot@ui)+ R,

ap 1 2 1 1
T T o0 66[’) J = —2y5[69u0 +0,Us +cot¢9uo] +F,

_ﬁ(iazpo 1 .Zgazpo cote

(7.10)

If the flow is symmetric then

@
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2 [ 0% 1( cotaj 2cotd [ oug 1
S| | —2+—| 2~ ug + —2 | [+=0,ud
a l:ﬂ[a&z r’ sin29) % r? | o6 e
—%5%+5[—%sin29u§ — cotfutu }+5ulu§ :%Ff,
r r
1 1

2,2 2
—ud| = Oy, SO Gineg 8u0 L300 |, ug 1 Q. _2 M cotguaut +udu? | =2 —-sin’6F,,
Py oYo T Uolh 2

rr 06> r? r2 06 00 (7.11)
u0 cote auo %+ , coto cotd U 2 U3 '
6492 sing ° T yz

= 2u8(8,u; +cotou; )+ F,,

—:|r\>

= 2,u5 6 ,Us +cotou; ]+ o

21 067

+5{u0 =0 + rugUg + rsin Huouo}

& [iazpo cot6

and

1 21 5° -2 5° 1 1 2 13
USU; =K —7(r) 0,y P, +?{u065u0 +U50,Uq —Esm2¢9uou0 —=ugu }

2 2,1 2,2 2.1
A UZU + 9% +izsin2¢9 Oy , 2002t9 Qo _ 2y —200t29u0+£%
2 06> 00p ) r o0 1t |90 og 00

2 2
uSu? =(rsing)” F} —%(rsin@)’2 d, P +5—[uéaeu0 +Ug 0, U5 +2c0tAugu Zugug}

1.
= n?0—>+ —sin%60 u: |,
2 [r2 o0 r? 6(02 6(0 7 o0 2 op 1t om0

. us?| 1 0% L Lgne o’u? cot¢9 Uy aué , 3coto oug cotd) ou?
r
U7 +yUp + 8, Ug +CotaU —Eug =0,
r

2 2 2
% p=F —(5—%%} P, — 26U, +§%[uéagug +Ug0,Ug + rugU + rsin29u§u§]

2 2,3 2,3
+,u§ %6 u20+i25in298 u2+co';0 eauo
2 |roo0° r op r 00

(7.12)

where

FO=r*(h-h), F=risin’o(h-h), F)=h’-N,
W= p(uf+r20,u5 —rus)(k), :y(u11+r‘269uO —r‘lué)(k—l),
0 = (uf —rug)(K), he=p(uf —riug)(k-1), (7.13)

h = (_po + 2407 )(k)' hy = (_po + 207 )(k—l),

cot¢9 }

F,=du [agui +cotou; +189u§, +£cot0ué +iza§u§
r r r
The drag is given by
F, = J'(— Py M+yu{’ za}/gdx = —j( P,COS O + yyullsina) r’sinddode,

Va 5 (7.14)
Fy = [(~Ppocos@+ uruising) rsingdde.

R

3
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7.2. The Flow around an Ellipsoid
Let parametric equation of the ellipsoid be given by
r=Xi+yj+zk,
X = aCos@sing, 'y = fBsingsing, z = ycoso,
O<y<pf<ea, a,p,y=constants,
where (i,j,k) are Cartesian basis, ((p, 6?) are the parameters and (xz =, x :9) are called Guassian co-
ordinates of ellipsoid. The base vectors on the ellipsoid
e, =0,r = aCospcosdi + Fsinpcosdj— ysinok,
e, =0,r =—asingsindi+ Scosgsindj,
n= ie1 xe, = i[—ﬂ;/COS(psinzﬁi +aysingsin®dj+ afsin Hcosﬁk]
Ja Ja
The metric tensor of the ellipsoid is given by
a5 =€,84,
a, =A(p)sin’g, a, =A(p)cos’d+y’sin’0,
a, =0, A(p)=a’sin’p+ pcos’y,
a=det(a,, )=2a,sin’0, a,=A(p)[ A(p)cos’d+y*sin’6],
:ail/a:aZZ' a :azz/a:ail’ a” =a” =0,

Curvature tensor, mean curvature and Gaussian curvature are given by

(7.15)

(7.16)

bl _bzz OQBL\/EH b12 =0, bZth(ba ) (Zﬂ}jTSIH'
2

bl = afy sin’é b2 - afy sin’6

\/g a8 ' \/g a,,3a,, , o1
b2 — p2 — bll afy sin 0 b? _a_ﬂ}/sinzg .

= - |
\/_0 8y \/g ay

K :B: (aﬂy/) sin%0 H - afy A((p)+}/25in2‘9

a & & A

~

Semi-Geodesic Coordinate System Based on Ellipsoid 3
That is
X=p, xX=0, *=¢
The radial vector at any point in  %*
R=r+¢&n

e xe
n=e xe/,/e xe,| == 2:2 e, xe,

Corresponding metric tensor of %R* are given by (2.1). We remainder to give the covariant derivatives of the
velocity field, Laplace-Betrami operator and trace-Laplace operator. To do this we have to give the first and
second kind of Christoffel symbols on the ellipsoid 3 as a two dimensional manifolds

* 2_A 2 2 . 2 2 2
|t =1Msm20 Fl a p- cos gsinZgo, 2y, =-2 p sin2goCOS 0,
2 a, 1 ay
: : a’-p* . . sing a
%, =cotd, Iy = sin2¢ , T'p=-2-2cotd,
A 8y,

O,
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Then covariant derivatives of vector u=u“e, +u’n on the two dimensional manifold 3

- Z_A 2_p2 2
Viu' =63u1+%sin29<7 (¢))u1+a ° cos’0

sin2¢u?,
3y 2 3y,
2 p2
Vaul =0,u +i{ucoszasin2¢ul—A(go)sinzauz},
ay; 2
. 2 2 « 2 p2 o2
Viu® =0,u’ + p-a sinZgDCOS Ot +cotou? , Vzu2=8¢u2+cot¢9ul+a p-sin Hsin2¢u2,
2 a22 a22
. 1(7*-A(9))
divu =9,u" +0,u® +dyu" +d,u*, d, ==———"sin26 +cotd,
2 a,
2 _ 2 2 P02
d, _a p sinZg{COS 9+5|n 6]
2 1 a22
The associated Laplace-Betrami operator on 3
% 2 2
Ap, = 19 pzo L2 p2°+Claﬁ+C2%,
a, 00° a, O 00 ? g
C ::a;’gz(a1 sin2p+ 2A(g)cos 9( ~In,/a, )) sm2€
' 23121/\((0) .
2 2
a’-p 2\
C, =———(A(p)-»")sin2¢,
’ 2""11Az (¢) )
Trace-Laplace operatoe on 3
2, "
Au® =a* ou +AT o +Aju”,
ox*ox? ox’

2 p—

Al :wcosze(A(mcoszHﬂ/Z (1—3sin249))
8

;2 _IBZ

. v pr o, . )
—t A2(go)smzwcotacosze—(a—yzsmz&o—A((p)smze sin®26 |,
ZaizlazzA((l’){ 8

i3 2 2
A2 - sin fcgs@){a B A(¢)sin2(p(A((p)00529+725"129)—3/\2((P)(72 —A)sin2t9
a11a22 2 2
2
1,. a’-p° 1 a’ = a2 4 2034
——y°sin26 sin2 - + sin“@( g cos" ¢—a“sin“g),
27 ( 2 4 a,sin’g &, (ﬂ ? (p)
2 2 - 2 _ 2 2 _ p2
@:MM{M(@COSZ@COW[L“ p Sin2¢7J—725in26’a s sin2¢}
2 a, 4 4
2 2
_a=p sin®26sin’o,
a22a11
_ 2
I% =Lﬂ—asin2(psin20(1+(l+ cota)z),
a11a22
Alll__i[(;/z+A(go))sin26+4/\(go)cot9} u_o'-p cos’0sin2¢p
2a:|_21 ’ a121 ’
a® - p*)sin2¢
A? :(z—)zsinze(ZA(go)cosze—yzsinzﬁ),
2a11a'22

(7.18)

(7.19)



J.Suetal

2T’ o’ - p? 2T 2 cotd

AP = =— sin2pcos’), A? ="—"=-4 ,
a’ll a’lla’ZZ aZZ all
o 2 (7.20)
2 2 2 p2
AZ e e a7 -p sin2¢p 20052194{ A J sin’é |,
ay, ay, 2 A((P)

In addition, nonlinear terms

B“ (u,,u,)=uf Vau —uy dlvu1 rot“u, +d2uju; +dsuiu? +dsulu?,
B®(uy,u,) =u; V2l +b,,uuf = ujo,u; +ufo, u; +bll(u11u11 +ufuf),
rot' (u, ) = ud,u; —uio,u7, rot?(u,) = u;d,u; —ud,u;,

2_A A
df1:£y—(¢)5in29—d1, dl, =— (#) Gin2e,
2 oy a, (7.21)

2
dy, = (a —ﬂ2)5|n2 cosH_dz’
1
2 _ 2 2 2 2 P02
d2=-2Z P sin2gp 22> 0, dz =< s sin2gp " H—dz,
a22 a22
dZ =2cotd—d,,
and linear terms
10 g = L 82u11+ 1 0%} P4 au1 d, au L 0(dy ul+a dy ) 2
00 ' & 06* & 695(0 a, 69 a, 00 69 a & o
azzidfvu—laz 1 0% dau1 dai+ﬂ(dljul+i[d_2j2
1 1 1
0 Az 866(0 8z 6(p azz O0p 2, 0p Op|ay, op\ ay (7.22)
B _05,37 22 1 i n’ 2 3
By (u)=b yaﬂ(ul)_\/gsm Q{Az(mvlul o =—=Vau! |—(4H? 2Ky},
7o (u)=a"y,, (u;) =divu, —2Hu?,
(i) BLE I. Taking (5.1-5.6) and above formula into account we obtain BLE | on the ellipsoid
w1 ZazullJrazuf L 62uf+AM ou? (A1+K51)u i, 0 d,u/
3 |a,| 06* oty ) a, dp® 7 x* oo\ a,
Q 4 45° 1 1| ., ¢
+—111ui+TBl(u1,ul)+d“69po—Taa »(H po)za . 11—?a@pl :
3 2,2 2.1 2,2
ML oW +i[ i L )+ p2 U, (A2 +KS?)u/ +—[—d 2 ) (7.23)
a, 00° a,\ o0  Op OX Op\ ay

5 45° 1 1| 4, &°
+%u1 +TB (U1:U1)+d225¢po—T—a (Hpo):a—{ - 6 pl},

a'22 22 22

S 2Py 0P o »
__{azz °+a“—°+Cz(€0 6)8(;+C( 9)86’0 +M, (u)=F,,

2 692

where

@
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M, (u,) = {see(5.5)} mid,uy +mfd,uZ +myuy +miu?,
| pSt Aust o, ust 4us®
2 3t 2 3
ud® | 4us® afy . 6us°
my = 5 d, - 3 ol (A((p)smze—(A((p)—yz)00529)+ 3 0,H,
2 MO” Aus® afy o -
2% 3 [a,

5 (3 52 ) 5
Q[m=2y{g+(§Haaa+baaj?+((4K—2H) —4Hb, )3}

6us°

sin2¢ (sin*0 + cot*dcos’6) + d,H,

ul =0,
3 2 3 *
2u5 u;":iFj—zﬂé ul"‘+5 1 —Va Py,
3 a 2 3 a

ao af

2u +0,U; +0,u; +dyuy +d,uf =0,

3 2
25° (52 H53
ERAN TN

4 \a

3
] Py —%(agul +0,u% +d,u; +d2uf): F,

2 3
The right terms are given by
a”’Fy =oh', F}=oh’, a”F;=5h", F} =61,

o a l : a
h =/U[u1 +a_Vaug_Hqu ' hBZ(_po+2ﬂU13)sl'

3

3 2 3 3
5_p2+(5 4Ho jpl (6—4H +3K) p, —5—a—ﬂysm e(ufuf+ufuf)+%ﬁo(ul)=_|:31

(7.24)

(7.25)

(7.26)

(ii) SEL 11. Let consider SEL Il given by (5.7) and corresponding variational formulation (5.12) which are

followings in semi geodesic coordinate system based on the ellipsoid

2,1 2,2 2 o
—ué{i(Za—u§+ i ] Lo +A§16u—i+(AC1,+K§i)u§ i(d 2o j+—6 HuS +2b"0, uo}
a,\ 06° 0y ) a, 0¢’ OX 06\ a; 1
+5a1i81(u0,u0) 1 0,P = 1 R’
1 1
3 2,2
o710 u;’ +— (6 ] + A2 8u0 A2 +K52)u0 +—(dij+i6[pHu§+2b226wug
3 |a, 060 66’5(0 op\ 2y Ay
+5aiBz(u0,u0) 5a—8¢,p0— 1 F2°,
22 22
o*p o’p p, p,
-2us a? —2+a"—2+C,(0,0)—2>+C,(0,0)—= |+ S, (u
H { 3{ 00 20° 2(5" )8¢7 (@ )69 By (uo)
+ 6B (Ug Uy )~ 2HE P, — s divu, = FY,
(7.27)
where
_ B G| L g, SN0y AH? - 2K )ud — — divu, - 2HU?, (7.28
ﬂo(uo)_\/gsm A% () 1Up + a 2 U ( )UOI?’O(UO)_a Vap (Ug) = divu, Up, (7.28)
1
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Fﬁ(‘):aaﬂ(hta_hl;l)’ F30:hf—h3, F/%: aﬂhtaé" F31:5ht3’

he = uuf (k), e =—p, (K), hf=%[(—p0+2,uul3)(k+1)+(—po+2,uu13)(k—1)] (7.29)

he :%,u{(uf +a?v, ug —bguoﬁj(k +1)+(u1“ +a’ v, ug —b;ué’J(k—l)},

52 2H 52 52 o2 5 *
—7pl=£5— 5 Jpo+’u7ﬁo(u0)+ﬂ2 Au§+7(ujwu§+baﬂu§u§]+F31,
u13=_70(uo)1

2

,Ll5 * *

) . . (7.30)
uoul = > KA ug +a“ v, divu, + Kug‘)+4a‘M Vi HU +2b V4 ug}

8 s (e 3 |
—?a“/’ Vs Py +7[u0 Viug —2b§ué’uoj+a‘””Fﬁ,

Calculation of Drag Assume that

v
v, =-v,k, Vv¢=-a"v,k-e, V.=0, Vvi=-—2yc0s6,

a’22

3 __ 4

v . o
v, =-V_K-n=—-qfcosfsing =v, ——=cosb,

. 7 oy

F, = ﬁj{— Ve +yaaﬁuf‘v£}\/5dx = —%J-O“I;"sin (20)[05,8 Py (¢,0) + uy\Jagu? (go,@)]d(pd 0, (7.31)
D

©

(iii) Axial symmetry Case. If « =/, then boundary layer Equation (7.23) is axial symmetry with z -axes.
Indeed, in this case,
a, =a’cos’d+y’sin’0, a, =0, a, =a’sin’0,
alt :i, a? :i, a2 =a% =0, A((p)Zaz,
a11 a'22

a=agsin’d, a =a’(a’cos’0+y%sin’0)=a’a,,

H)
aysin“g
b11: T PR bzzzbuv b12:O'
\/a cos“@ + y-sin“g
2.2
bt =i, 22 =i, bzdet(baﬂ)z . za 4 ——sin*6,
b, b,, a“cos @+ y-sin“@
b _h_ aysin®0
& (a’cos’0+ yzsin29)3/2
b2 _ 7 1
2 - 1
a \Ja?cos?0+ y’sin’0
b =b =0,
oot o’ +y*sin’0
2 (a200526'+725in249)3/2
2ain?2
K — y°sin“@

(a’cos’0 + yzsinze)2 l (7:32)
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The covariant derivatives become

2 2 H
* Y- —a”)sin20 * 2
V1u1:8(9u1+l (2 - ) —— ', Voul=—— azsmzf_ —u?
2 (a’cos’6 + y’sin’0) (a*cos’0+y*sin’0)
Viu? =0,u” +cotou?, V2 u? = cotut,
* 2ai 2
divu = a,u' + y°sin26 + o “cotdcos26 ut
&y
% 2,1 1
a0, divu = ia_uer dlllaierllul,
a, 00 o0 (7.33)
dt :=iz[yzsin29+azcot900529],
ay
1. 1 4ara2 2 4 2 2 2 2a% 2 =2
d; ._—2[—2;/ sin6 (1+cos’0) + a'*cos’0( 2c0526 — cot*0) + o’y *sin26cot 0  2c0s°0 - 3sin 0)}
1
B'(u,u)=u*V,u' -u'divu = —i[(;/zsiné’coseJrczzcotecose)ulul +azsin26u2u2],
1
B (u,u)=u’ Viu? —u” divu =u'd,u’ +cotd(u'u* +u’ut),
* 2 2
AP, _ Lo pz° _— '”“sinzeag P, (7.34)
a, 00 ay
* 2 1 *
Aut= 20U +13'o,ut + Lut, Auzzia +L5'o,u% + Lou?,
a, 06? a, 06?
L= —iz(yzsinecose+azcot0(l+ cos)),
8y
2 2
=2 3a cosze[azcosza—yz (SSinZH—l)], (7.35)
a;
L2t = Ci)té’ [30:4 +a’y -yt +a’ (az —72)cot9],
aa;
(7 —a?
2= 21 ( )sinzzamza11 :
a’llazz 4
Let
s =ug, (Us) =o,u8, (UF) =g, a=01
Then BLE 1 (7.23) and SLE Il (7.27) become
_ué® ' Q 45° 1
3 {aﬂ (Ul) +11(U}) +I11U11} aiu +TBl(ul,u1)+d“69po Tiag(Hpo)
1] 53
:ai_ =0y |
' (7.36)

3 " ' 4
_#o {i(uf) +134(Ug) +|§uf}+ﬁu2+5—s (u,,u ):ifl,
3 1 a22 4 a22
13°p, a’lna

a, 00°  a,

L ou;
——=5in260, p, +m; 691 +mu; +myuf = F,
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where

=t d!t = —iz[aflcoteJr y?sinfcosd +a’cotd (1+ cosﬁ)]
a,
y —a?
3
1
+i2[—2y4sin20(1+ coszﬁ) + a4c0520(200326— cotze) + azyzsinzecote(Zcosza —33in29) + yzsinze],

1

I} =0 +d; +K =

cosze[azcosze— y* (3sin’ —1)]

2

P=2+K=—2 (laz (;/2 —ozz)sin226'+052a11 +;/2azsin29j,

2
18 \ 4 (7.37)
1 3Hs? N 5% 11H6° )
=2u|| =6+— +(4K -2H")— |a_, +| —— b .1,
Qs ”Hs 22 )3j“ﬂ [2 3 )
2 2b253
m :=2y(?— ; Jul
2 2_ 2 3 3 2
= ﬂ usin26+cot0 +%a H_ﬂ re (az—]/ZCOSH)COSZH y
2 a, 3’ 3 a¥?
3
m, ::%agHuf,
3
The drag is given by
F, = - sin(20)] @’ p, (0) + payyfa,U? (0) |d0 (7.38)

In the following we concern with the axi-symmetric flow around an ellipsoid, which depends significantly on
the Reynolds number and the geometry of the ellipsoid. And the boundary layer equations are solved with
spectral method. The fluid approaches the ellipsoid with a uniform free-stream velocity from inlet to outlet. In
order to compare with the results in reference conveniently, the results should be dimensionless. Therefore the
other parametric equation of ellipsoid is proposed

& =tanh™(afy), a=p=ccoshé,, y=csinhé,

where c a constant and the parameter &, defines the surface of the spheroid and is related to the axis ratio by

&, . A perfect sphere would be represented by &, — o whereas a flat circular disk would be represented by

s =0.

. 2cpU

The Reynolds number based on the focal length, i.e. Re=
y7i

focal length 2y is the reference length and inlet velocity U_ is the reference velocity. Let the total drag

coefficient be,

, varies from 0.1 to 1.0. In the case the

_ _FRec
AuU
where A= 1rczcosh2§0 is the spheroid projected area. From BLE | the total drag includes two terms and the

first term is the pressure part while the second term is the viscous part, i.e. F; =F, +F,, , which are defined
as,

D

Fyp = [ 'sin(20) [ a*p, (6) ]de,
F,, :—nj:Sin(ZQ)[ﬂaﬂf azzuz(e)]de,

Therefore the total drag coefficient is also decomposed into pressure and viscous part: C, =Cp, +Cpp, in

which,
_ Fa, ﬁp

C ] C = y
DV AU DP AuU
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Firstly the numerical solution of boundary layer equations is validated quantitatively by comparison with
results in references and finite element method. Table 1 presents results of pressure and total drag coefficients
for various Reynolds numbers at & =0.5. Table 2 presents results of pressure and total drag coefficients for
various values of &, at Re=1.0. An excellent agreement between the present results and that of Alassar and
Badr [13] are both achieved. And the normal stress tensor h|3( 5 to the supper surface of boundary layer is

considered as the boundary condition of boundary layer equations, which is obtained from the solutions of finite
element method. According to Table 1 and Table 2 the precision of drag computation with boundary layer
equations is higher than the finite element method, so the boundary layer equations could be used to improve the
computation precision of flow in the boundary layer with low cost.

Figure 2 presents the nearly stationary streamline patterns and pressure distributions at different Reynolds
numbers 10, 30, 60 and 100 respectively for &, =0.5. Here we note that our streamline patterns are similar to
those obtained by Rimon and Cheng [14] for the sphere, since the separation angles and wake lengths are in
close agreement with each other. Figure 2(b) shows a clearly visible secondary vortex at Re =60, in this
regard our result is also consistent with Rimon and Cheng’s [14] in spite of the difference in the size of the wake.
Furthermore, Figure 2(d) shows a nice structure which corresponds to the a phenomenon observed for the flow
around a circular cylinder. Since secondary vortices appear only at relatively high Reynolds number, we may
conclude that the wake region is much more active at higher Reynolds number rather than that the wake length
has to increase with the Reynolds number.

Figure 3 presents the nearly stationary streamline patterns and pressure distributions at different &, 0.25, 0.5,
1.0 and 1.5 respectively for Re =1.0. As expected, no separation occurs at the low Re values.

Figure 2. Streamlines of the flow:(a) Re=10; (b) Re=30;(c) Re=60;(d) Re=100 for & =0.5.

Table 1. Comparison of drag coefficients for various Reynolds numbersat & =0.5.

CD CDP
Re
Ref. [13] FEM BLE Ref. [13] FEM BLE
0.1 4.8934 49518 4.8734 2.6866 2.7615 2.6754
0.5 5.1638 5.3143 5.2036 2.8363 2.9146 2.8562
1.0 5.4700 5.6147 5.5813 3.0075 3.1164 3.0819
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Then the flow details around the trailing edge of ellipsoid for Re =60, & =0.5 are given in Figure 4. Itis
obvious that the secondary vortex appears in the result of BLE, so more details could be computed by BLE than
FEM. Although these flow details is obtained by FEM, its computational cost would be much more expensive
than BLE. Let dimensionless pressure be p”(8)=p’(6)—p'(n) and the definition of p’ is as follows,

, p(é@)c
(o)=L
y7.8;

Figure 5 shows shows the surface dimensionless pressure distributions for the case &, =0.5 when Re =10,
30, 60 and 100. As Re increases, the difference in the pressure between the front and the rear stagnation points

increases.
Figure 6 proposes the corresponding pressure distributions in 3D.

©

(©) (d)
Figure 3. Streamlines of the flow: (a) £=0.25;(b) £=0.5;(c) £=1.0;(d) £=15 for Re=1.0.

1.2
(b)
Figure 4. Comparison of flow details for Re=60, & =0.5: (a) FEM; (b) BLE.
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Figure 5. Surface pressure distribution for &, =0.5.
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Figure 6. Surface pressure distribution in 3D: (a) Re=10;(b) Re=30;(c) Re=60;(d) Re=100 for & =05.
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The effect of & on the pressure distribution can be seen in Figure 7. The figure which show the results at
Re=1.0 when &, =0.25,0.5, 1.0 and 1.5 indicates that when &, decreases, a positive pressure gradient may
be expected. The surface pressure distributions are compared between FEM and BLE in Figure 8 for the case
Re=1.0 when &, =0.25, 0.5, 1.0 and 1.5. The pressure distributions obtained by FEM and BLE are almost
the same, however the absolute value of pressure in FEM is generally a little higher than these in BLE, which is
consistent with the results in Table 2.

Figure 9 proposes the corresponding pressure distributions in 3D.

I ENEENENT NETENETEN EUSRTTE RNATEETEN SRR
25 3

1.5
theta

Figure 7. Surface pressure distribution for Re =1.0.

0.5 1 1.5 2 25 3 0 05 1 15 2 25 3

theta theta
(c) (d)

Figure 8. Comparison of surface pressure distribution between FEM and BLE: (a) &, =0.25;
(b) &=05; () &=10;() & =15 for Re=1.0.
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Figure 9. Surface pressure distribution in 3D: () £=0.25; (b) £=05; (c) £=1.0; (d)
£=15 for Re=1.0.

Table 2. Comparison of drag coefficients for various values of &, at Re=1.0.

G Cor
£ Ref. [13] FEM BLE Ref. [13] FEM BLE
0.25 5.6995 5.8013 5.7124 4.0390 4.0928 4.0845
05 5.4700 5.6123 55167 3.0075 3.0967 3.0616
1.0 4.4265 45741 45638 1.8140 1.8816 1.8564
15 3.2020 3.3569 3.2964 1.1635 1.2001 1.1757

Finally, it has to be emphasized that since flow axisymmetry is assumed in the present study, none of our
results give any indication about symmetry-breaking in a real flow. The presented method are, however, not
restricted to axi-symmetric flow, the BLE | aforementioned could be used to compute the non-axisymmetric
flow.
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