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Abstract 
In this paper, we will expound upon the concepts proffered in [1], where we proposed an informa-
tion theoretic approach to intelligence in the computational sense. We will examine data and 
meme aggregation, and study the effect of limited resources on the resulting meme amplitudes. 
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1. Introduction 
In the previous paper [1], we laid the groundwork for what was referred to as Computational Intelligence (CI). 
In this paper we will further this discussion and offer some new insights. We discussed how intelligence could 
be thought of as an entropy minimizing process. This entropy minimization process, however comes at a cost. 

Recall from [1] [2] that whenever a system is taken from a state of higher entropy to a state of lower entropy, 
there is always some amount of energy involved in this transition, and an increase in the entropy of the rest of 
the environment greater than or equal to that of the entropy loss [2]. The negative change in entropy will require 
some amounts of work, ΔE . 

The central concept of this paper concerns how smaller concepts aggregate together into larger and more 
complex structures. This process is a function of the complexity of each element, and the energy available to the 
system. The complexity of the components will delegate the degrees of freedom available to associate with parts 
of other constituents. The amount of energy available must be enough to supply the constituents with energy 
necessary to fulfill this task. We call this association between participating degrees of freedom a bond, and as-
sert that the degrees of freedom that form the bond are covariant and thus have minimal entropy than that of the 
other degrees of freedom, respectively. 

Though we will primarily be concerning ourselves with numerical data, it should be stressed that these con-
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cepts are applied to a panoply of possibilities including everything from subatomic particles, to atoms, to social 
groups, to politics. Here, the concept of energy is taken in the computational sense. That is, computational ener-
gy refers to the amount of computational work required to form bonds. 

2. Creating Structure 
In virtually all facets of nature, more complicated structures are formed by less complicated structures, after the 
addition of some amount of energy. Suppose the set C  contains I  constituents, each with a certain quantity 
of degrees of freedom J as expressed in notation: { } { }, 1, , , 1, ,ijc C i I j J∈ ∈ ∈  . For example, a carbon 
atom has four valence electrons available for use in forming bonds. Note that the ijc C∈  need not be homoge-
neous, as (continuing with our example from Chemistry) a carbon atom is free to form bonds with other ele-
ments and molecules. We shall call the aggregation of these constituents a meme, a term coined by Richard 
Dawkins in the Selfish Gene [3]. 

Let us further suppose that with each of these degrees of freedom, j , there is a certain amount of energy re-
quired to participate in the formation of a more complicated structure, and all degrees of freedom participate. 
This relationship may not be linear. Let ( )E ijcρ    denote the energy for each respective ijc . Then the total 
energy, E , required to form a more complex structure, or activation energy, from ijc C∈  is therefore 

( ) ,I J
E ij iji jE c c Cρ= ∈∑ ∑ .                            (1) 

Again, it is worth noting that although the term “energy” derives from physics, we can take it in this particular 
context to have a more general meaning, in terms of the computational effort required to establish the bond be-
tween degrees of freedom. 

Applications to Data Mining 
We can begin to draw immediate relevance to data mining. To make sense of a data set, we must determine the 
elements that are correlated and thus have minimal entropy with respect to the others. Some of these degrees of 
freedom will participate; others will not bear any relevance. Further, some elements may not contain any infor-
mation at all, as is the case with sparse data sets. 

It is an active area of research to sieve out data with more information content for use in classification or 
clustering. Processes such as PCA or Cholesky transformation are used to reduce the amount of feature vectors 
for classification and find a transformation to a basis. This has a clearly defined interpretation in Linear Algebra, 
though we argue that information content may be another potential approach. 

It is not uncommon to deal with data sets where each element is characterized by thousands or hundreds of 
thousands or feature vectors or more [4]. Computationally intensive techniques like PCA or the Cholesky trans-
formation may prove intractable for data sets of this magnitude. 

Under our framework here, using entropic self-organization [1] the entropy contribution of redundant data 
would be very small, and that of random datavery large. In such a context, meaningful data would be seen as a 
comparable deviation between these two extremes. 

All the notions of this section assume, of course, that the data has been properly preprocessed. After all, treat-
ing all data in an unfiltered topological sense would fail for such data sets as the iris data set, and in natural lan-
guage processing. 

3. Meme Amplitude 
Now that we have determined the total energy necessary for a meme to reach the next state, let’s talk about the 
transition from one state to another. In this case let 2 1ΔE E E= − , or the difference between the activation 
energy and the resting energy, or the energy required to sustain the elements unadulterated. Using ΔE , we can 
speak of the relative energy, rE  or the initial energy less ΔE . Let us further suppose that this rE  can be de-
scribed at some time t  by some function, ( )y t  that we may also refer to as the meme amplitude. 

Let us take into account some considerations for ( )y t′ . The rate of change in ( )y t  is almost certainly pro-
portional to ( )y t  itself, as the rate of change in the energy of the system should be proportional to that which 
it already has. If we include a constant of proportionality which we will call affinity A  then we have the fa-
miliar y Ay′ = , but taking into account the fact that ΔE  is a boundary for y , we have the familiar logistic 
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equation 

( )Δ ,
Δ
Ay y E y
E

′ = −                                   (2) 

onto which we impose the following boundary conditions  
1) At 0t = ,we start at our initial state, 0rE =  
2) As , Δrt E E→∞ → . 
The latter implies that after some time, the transition to ΔE  should be final, or that rE  should come arbi-

trarily close to ΔE  as time progresses. 

3.1. Solutions 
Equation (2) has been well studied, and its solutions fall into a broad class of functions known as sigmoid func-
tions known for their characteristic “S” shape [5], and who’s applications range from their use as cumulative 
distribution functions in probability and statistics to activation functions in artificial neural networks. Due to the 
first boundary condition, we restrict the solution to 0t ≥ , which cuts off the left hand side of this “S” shape, or 
translates the entire curve such that the lower asymptote is suitably close to 0t = . 

3.1.1. Growth Rate 
Some comments should be made on the growth rate A. This constant will determine the rate of change in the 
sigmoid curve. With increasing A, the curve gets steeper and the time to reach the meme amplitude decreases. 
We will use the term aggressive to refer to large A. For drastically large A, the sigmoid curve approaches a step 
function. A will also depend on the energy applied to the system, AE , and will itself have its own boundary 
conditions, as the dynamics described by 2 will often break down for ΔAE E . For example Carbon forms 
graphite at (relatively) low energies, but for higher energies, it forms diamonds. This is a function of the amount 
of valence electrons used in the bonding process (3 and 4 for graphite and diamond, respectively). A similar 
analogy may be made for data and the computational effort we are willing to put into the entropic 
self-organization algorithm. 

3.1.2. Amplitude 
The meme amplitude is certainly not restricted to a single meme amplitude, at least not in the general case. Once 
the transition ΔAE E→  has been, we are free to apply the logic successively to determine the next successive 
meme amplitude and so forth. We will call the repeated demonstration of meme amplitude growth via 2 the hie-
rarchical aggregation paradigm. 

3.1.3. Extrema 
Although the solutions to 2 are monotonically increasing, some subtle nuances in its curvature provide useful 
insights. Consider the second derivative, which is may be easily obtained from Equation (2), 

( )( )
2

Δ 2 Δ
Δ
Ay y E y E y
E

 ′′ = − − 
 

.                           (3) 

The second rate of change happens at the roots of this equation, which are 10, ,
2

y E E= ∆ ∆ . The first and last  

are clearly the asymptotes, when the energy levels off. It is the middle root that is of interest. After all, if sus-  

tainable growth is to occur, there must be a transition in the sign of the growth rate. This happens at 1
2

y E= ∆ . 

3.2. Stability and Sustainability 
The reality of the dynamics described by 2 is not always so clement and predicable in reality. Although often the 
affinity may be treated as constant to make calculations and estimations easier, in reality it may be a function of 
the applied energy, and valid in some kind of threshold. If the applied energy level is outside of this threshold, 
the model will break down. 
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Further, once the affinity has been determined it can be used as an indicator of the stability that the transition 
to the next energy level will occur. By observing the disparities between the model 2, and observed data, we can 
gain an idea as to if this transition will occur, or if the model will return to its previous energy state, or even one 
below. 

If we remove the bounded-ness condition, Equation (2) simply becomes    

y Ay′ = ,                                       (4) 

whose solutions are exponential for positive A. However unbounded growth is unsustainable and leads to unpre-
dictable behavior. If we observe the behavior described in 4 as opposed to 2, we may have an indicator of col-
lapse. Additionally, if the rate of growth is not commensurate with the particular value of A, the stability of the 
energy level transition may be suspect. 

Once the transition to the next energy level has been made, there is a certain amount of energy necessary to 
sustain it. If this energy gets outside of the threshold, the model will not be able to maintain this energy level. 
Thus the new energy level is not guaranteed to indefinitely stable. 

The calculation of A, its threshold, and energy to sustain it is always contingent upon underlying factors 
unique to the system. These must be taken into account, which may not be tractable, but perhaps at least estima-
ble. 

3.3. Bubbles 
Our discussion in Section 3.2 has many applications and is of great importance especially to society as of the 
past five years. We can draw examples in real estate, financial markets, and population growth. Indeed this ma-
thematics may be used to identify sustainable growth, or bubbles, periods of extraordinary inflationary growth 
followed by abject collapse. 

For example, consider the well-studied behavior exhibited in the growth of bacterial colonies. There is an ini-
tial lag phase as the RNA of the bacteria start to copy, followed by an explosion of exponential growth called the 
growth phase, followed by a brief period of stability before the bacteria exhaust their resources resulting in an 
expedient decay. 

3.3.1. Determining Bubbles 
It may be difficult to determine whether a given data set is a bubble in the making or the initial stages of a stable 
transition, though we may gain insight by the application of two observations discussed in this paper. 

First, if we are able to calculate the affinity constant, and activation energy, and we notice a disparity in the 
dynamics the system is exhibiting and that which was forecasted using these constants, then we may have reason 
to believe a bubble may be forming. Bubbles are caused by disproportionately excessive growth or extraneous 
factors distorting the dynamics of the system. But such factors are not perpetual and eventually the true dynam-
ics of the system will take over. At this point, the system will fall to its natural energy state, commensurate with 
our calculations and what the system is able to support. 

Second, consider the rate of change. After all, we may not be privy to the subtle inner workings of the system 
so as to calculate the necessary parameters. This may be especially true in very large and complicated systems, 
where subtle factors may contribute greatly to the outcome of the calculation. We can fall back on our discus-
sions in Section 3.1.3. After all, if the system is exhibiting extraordinary growth, in order to fit model 2, there 
must be a point at which rate of change of the growth rate reaches zero as given in Section 3. We may not be 
able to determine this a priori, but we might be able to hypothesize whether the activation energy inferred from a 
given point is fungible or not. 

3.3.2. Remarks 
The difficulty of calculating the activation energy of large and complicated systems should be stressed. After all, 
there may be a panoply of factors that will influence the overall dynamics of the model, and they can be highly 
nonlinear. 

4. Outliers 
In the previous section, we considered the amplitude of only single meme. Now we will consider meme ampli-
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tude in the presence of other memes. In order to repeat the logic of Section 3, we must introduce the interaction 
matrix ijα , which represents the effect meme i has on meme j. The underlying mechanics behind these ijα ’s 
include resource allocation, and direct competition. Thus, in the presence of N  memes, Equation (2) becomes 

( )d
Δ .

d Δ
Ni i

i ij ij
i

y A
y E y

t E
α= −∑                                (5) 

where the constant Δ iE  can be absorbed into the interaction matrix, ijα  withouta functional effect on the re-
sulting solutions [6]. Therefore Equation (5) becomes 

( )d
1 .

d
Ni

i ij ij

y
A y y

t
α= −∑                                   (6) 

This is recognized as a Lotka-Volterra equation commonly referred to as the competition equation. This is 
another very well studied class of differential equations for which results can be found in [6]-[12] just to name a 
few. 

5. Conclusions 
In this paper, we discussed some ramifications of the original principal detailed in [1]. In essence, the subject of 
this paper could be summarized as how data aggregates together to form more complex memes, how this is ef-
fected by the presence of multiple memes, and the conditions under which this transition may or may not be sta-
ble. We also looked at some practical examples of these principals in source code. 

There is still a great deal of room for future improvements. First, we can improve our understanding of the af-
finity parameter A and how to better calculate it. We can also apply this knowledge to more areas of study so as 
to be able to effectively calculate predictable amplitude transitions, burgeoning growth or bubbles. 

Additionally, we also wish to study the most basal layers of meme aggregation and creation including the 
fundamental constituents, how they emerge to form systems, and how these systems can aggregate hierarchical-
ly as meme amplitude growth describes. We will also look at how this process is perpetuated in computational 
processes, as opposed to information in static elements and datasets. 
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