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Abstract

The present paper proposes a mathematical method to numerically treat a
class of third-order linear Boundary Value Problems (BVPs). This method is
based on the combination of the Adomian Decomposition Method (ADM)
and, the modified shooting method. A complete derivation of the proposed
method has been provided, in addition to its numerical implementation and,
validation via the utilization of the Runge-Kutta method and, other existing
methods. The method has been applied to diverse test problems and turned
out to perform remarkably. Lastly, the simulated numerical results have been
graphically illustrated and, also supported by some absolute error comparison
tables.

Keywords

Linear Third Order BVPs, Shooting Method, Adomian Decomposition
Method, Two-Point Boundary Value Problem

1. Introduction

Many physical problems arising in engineering, science, economics, social
science and, business are modeled mostly using the Ordinary Differential Equa-
tions (ODEs) in the form of either the Boundary Value problems (BVPs) or Ini-
tial Value Problems (IVPs), or their combination. Additionally, not all of these
ODEs have exact analytical solutions through the known analytical techniques.
Thus, this reason has forced various mathematicians and researchers to direct
their inquisitiveness in the search for optimal computational procedures that
will serve as an alternative approach to at least get hold of approximate solutions
whenever the exact solutions are not analytically realistic.

However, the ODEs of particular concern in this study are the third-order li-

near BVPs. Many attempts have been made in the past literature to study differ-
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ent forms of third-order BVPs, including for instance the coupled systems of
third-order BVPs and, laying a solid foundation for the existence and stability of
the associated solutions, see [1]-[6] and, the references therewith. Moreover, as
the methods for BVPs are very limited, Javeed et al [7] proposed a numerical
approach based on the application of the shooting method to solve different
BVPs by coming up with higher-order initial guesses. It is remarkable to state
here that the shooting method utilized in [7] is a promising iterative approach
that starts off by transforming the governing BVPs to corresponding IVPs. To go
further, some coupled systems of third-order BVPs were tackled using different
methods like the finite difference method by Noor et a/ [8] and, via the applica-
tion of a meticulous computational procedure by Al-Said [9]. See also the recent
work of Nasira ef al [10] for a new numerical procedure to solve third-order
BVPs with two-point and multipoint Robin boundary data. Furthermore, the
well-known semi-analytical method called the Adomian Decomposition Method
(ADM) has equally been greatly used in both the past and recent literature for
solving various linear and nonlinear BVPs, see [11]-[20] and the references the-
rewith for some related studies and various modifications of the ADM.
Furthermore, since we aim in this study to combine the ADM and shooting
method to numerically examine the third-order linear BVPs, it is notable to
mention the work of Attili and Syam [21] where the combination of these me-

thods was proposed and used to study the two-point BVPs of the form

a(t)u”(t)+a'(t)u'(t) = f(t,uu’), (1)
with the following prescribed Dirichlet boundary data
u(a)=a, u(b)=4, )

where the functions q(t),q’(t) and f(t,u,u’) are known continuous func-
tions. Further, the following inverse operator was particularly utilized while

studying the problem [21]

¢ dx ¢ ods
L' (t,D)=|—|— (3)
!q(x £§ s
where
L(t,D)=¢&(t)Dq(t)D, 4)
with D:L and L is locally integrable; while q(t) and &(t) are

d(t)” " a(t)
smooth functions.
However, the present paper proposes a numerical method to study a class of
third-order linear BVPs by utilizing the combination of the ADM and, the mod-
ified shooting method. A complete derivation of this method will be provided,

executed and, validated using promising methods in the literature.

2. Adomian Decomposition Method (ADM)

The ADM is an efficient semi-analytical method that is widely used to solve a
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variety of functional equations. To demonstrate how this method is utilized, let

us consider the following generalized third-order linear ODE

y"=p(x)y"+a(x)y' +r(x)y+s(x), a<x<b, (5)
subject to the following initial conditions
y(a)=4, y'(a)=a, y"(a)=t. (6)
Now, expressing the above equation in an operator form, we write
Ly =p(X)y"+a(x)y' +r(x)y+s(x), a<x<b, (7)

3
where L:;—s, and the functions p(X),q(X),I’(X),S(X) are known pre-
X

scribed functions; while A,« and tare also known constants. The inverse op-
erator is expressed as

L ()=

(.) dxdxdx. (8)

B —

|

Therefore, applying the inverse operators given in Equation (8) to Equation

D Gy X

(7), we have
y(X)=g(x)+ L (p(X)y"+a(x)y'+r(x)y+s(x)), )
such that
Lo (x)=0. (10)

Additionally, the ADM decomposed the solution Y (X) as follows

Y(¥)= 2, (%),

such that upon substituting it into Equation (9) yields

0 ~ d2 0 d 0 o

Sy, =000+ o0 S22y, a0 Sy, e Sy s

n=0 dX n=0 dX n=0 n=0
through which the ADM recurrently gives the following iterates

Yo =4 (x)+ L7 (s(x)),
You =L (P(X) Yy +a(X) ys +1(x)Y,), n20. (11)

such that the overall closed-form solution (approximate solution) of the go-
verning equation given in Equation (5) together with the conditions given in

Equation (6) is expressed as

()= 20 (x).

3. Efficient Decomposition Shooting Method (EDSM)

The shooting method is a promising iterative approach that starts off by trans-
forming the governing BVP to a corresponding system of IVPs with specified in-

itial value conditions. These unknown initial conditions are guessed to solve the
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IVPs; whereas the accurateness of the guessed missing initial conditions is the-
reafter ascertained by putting both the given value at the terminal point and, the
computed value of the dependent variable side by side. Furthermore, when these
two values differ, a new value should be guessed continuously until an agreed
value is attained between the two under a specified degree of accurateness.

At the moment, let us consider the following third-order linear two-point
BVP

y"=p(x)y"+q(x)y'+r(x)y+s(x), a<x<b, (12)
y(@)=4, y'(a)=a, y(b)=4, (13)

Now, based on the shooting method, the third-order BVP given above will
turn into two IVPs where the boundary conditions given in Equation (13) will be

replaced with specific initial conditions for each IVP as follows

u”=p(x)u"+q(x)u’+r(x)u+s(x), a<x<bh, (14)
u(a)=4, u'(a)=ea, u"(a)=0, (15)
and
V"= p(X)V"+q(x)V'+r(x)v, a<x<b, (16)
v(a)=0, v'(a)=0, v"(a)=1. (17)

Additionally, Equation (14) can be written as
Lu=p(x)u"+q(x)u"+r(x)u+s(x), (18)
where the proposed differential operator may take the form of L earlier defined;

together with inverse L™ given in Equation (8).

By applying L™ on Equation (18), one gets
u(x)=¢ (X)+LH (p(x)u")+ L (a(x)u’)+ L (r(x)u)+L* (s(x)), (19)
such that Lg (x)=0
Next, the ADM decomposes the solution U(X) by the following infinite series

u(x)=goun (x), (20)

where the component U, (X) are recurrently determined. More, substituting

the above series solution into Equation (19) yields

S, =0+ (pOZur (o120 S ()

n=0 n=0

(21)
(reZu (0] (s(),
n=0
of which the components u, (X) are recurrently found as follows
U L™ (s(x).
—rl( (0234080 0 0 ), )
L* (P ()uy (x)+a(x)uf (x)+r (x)u (x)),
DOI: 10.4236/ijmnta.2023.123006 84 Int. J. Modern Nonlinear Theory and Application
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and so on. Also, for the sake of numerical computation, the m-term approx-

imant are considered as

I
NgE
[
=
—
>
—

u=y,, (x) (23)

Similarly, corresponding to the second BVP given in Equation (16), we can

compute
V=, (x):ivk (x), (24)
k=0

where the components V, (X) can be determined as
Vo =¢, (X),
v =L (p () vy (X)+a(X)vg (X)+1(X)v, (X)),

(25)
v, =L (p ()W (X)+a (X)) (X)+r (x)v; (X)),
and so on. Subsequently, we construct zwhere z can be written as
7, (X)=uy (x)+6v, (x),

z, (x)=.u2 (X)+6v, (x), (26)

and so on, where @ isa constant number.
Hence, let u(x) and v(x) denote the solutions to the third-order linear
IVPs given in Equations (14)-(17), respectively, then, we define

+———>v(x), v(b)=0, (27)

where z(X) is the solution to the third-order linear BVP given Equations ((12),
(13)).

4. Numerical Examples

This section examines the proposed methodology for the third-order linear
BVPs by demonstrating its applicability to some selected test problems. The
method is also compared with the mixture of the fourth-order Runge-Kutta ap-
proach and the shooting method to further assess the performance of the pro-
posed method. Similarly, we will compare our results with other numerical me-
thods in the literature [22]-[28] according to the value of m used in them. There-
fore, each method used in the comparison was indicated by an abbreviated
symbol as follows:

e LSRKM4: Fourth-Order Linear Shooting Runge-Kutta Method in [22].

o FDM: Finite Difference Method in [22].

o PAM (3, 3): Pade Approximation (3, 3) Method in [22].

e RCAM: Rational Chebyshev Approximation Method in [22].

e QBSM: Quartic B-Spline Method in [22].

e HPM2 Second-Order Homotopy Perturbation Method [23].

DOI: 10.4236/ijmnta.2023.123006
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o LSHPM2: Second-Order Least Square Homotopy Perturbation Method [23].
e RKT3s4: Three-Stage Fourth-Order Explicit Runge-Kutta Type Method [24].
o GJGOMM: Generalized Jacobi-Galerkin Operational Matrix Method in [25].
e OCM: Operational Collocation Method in [26].

e ESM: Exponential Spline Method [27].

e QNSM: Quintic Non-polynomial Spline Method [28].

Further, we present certain supportive Tables 1-8 and Figures 1-6 reporting
the absolute error difference between the exact analytical solution and, on the
other hand, the obtained numerical results using the proposed Efficient De-
composition Shooting Method (Zipsm) and, further validated with the fourth-
order Runge-Kutta method (Bsrxms). Furthermore, it is worth mentioning here
that, in all the graphical comparative illustrations given in Figures 1-6, the exact
analytical solution is portrayed using a blue line, the proposed approximate so-
lution Egpsm is shown using a dashed dotted red line and, finally, the approx-
imate benchmark solution Fsrxwms is depicted using asterisked curve black.

Example 1. Consider the third-order linear BVP given by [22]

y”’:2x2y"—3xy’—5x2y+e2x<3x3—x2—5x—4), 0<x<],
y(0)=1, y'(0)=1, y(1)=0.

The exact analytical solution is given by y(x)= e’ (1-x).
Now, based on the proposed modified shooting decomposition method, we

make consideration to the following two IVPs

u”=2x*u"-3xu’—5x°u +e** (3x3 -x? —5x—4), (28)
u(0)=1, u’(0)=1 u"(0)=0, (29)
and

V" = 2x2v" = 3xv’ —5x%v, (30)

v(0)=0, v'(0)=0, v"(0)=1. (31)

The operator versions of Equations (28) and (30) can be written as

Lu = 2x*u"—3xu’ - 5x’u +e** (3x3—x2—5x—4), (32)

Lv = 2x?v" —3xv' —5x?V. (33)

Applying L™ to both sides in Equation (32) using the conditions in Equa-
tion (29), we get
_E 27 17 2 3,42x 29 2 02X 25 2x

u(x) + X+ X+ 23 — X + o xe
4 8 16 8 16 8

1 (34)
—=e” + L (2x°u"-3xu’ -5xu).
4
Similarly, applying L™ to both sides of Equation (33) using the conditions in
Equation (31), we get

2

v(x):x?+ L’1(2x2v"—3xv’—5x2v). (35)
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What’s more, decomposing the respective solutions in Equations (34) and

(35) based on the ADM, then respective recursive relationships are thus given by

Ug (X) B 2T e By _ B g BB —Ee“,
4 8 16 8 16 8 4

Uy (X) =207 (xuy ) =3L7 (xuy ) -5L (Xy, ), n=0,

n+l

and
XZ
Vo(x):7'
Vo (X) = 2L’1(x2vg)—3L’l(xvr’1)—5L’l(x2vn), n>0.

In addition, expressing some of the terms from the above recursive relation-
ships, we get
15 27 E 2+§ 3 2x_§ 242X 25 ZX_EEZX

Uy (X)==+—X+—=X x’e x°e” + —=xe ,
4 8 16 8 16 8 4
ul(x):—ﬂx—iﬂ—ixe—£x5—£x“+ix5ex2—zx“eX2
128 672 64 480 64 64 64
73 ;2 397 , 2 333 . 123 . 23 , 123
+—x%" ———x%e" +——xe" ——eX ——x*+—,
32 128 128 128 128 128
and
XZ
Vv, (X)=—,
(=%

1 15,
V, (X)=——Xx>——X",
() 60 84
Then, the solutions of Equations (28) and (30) with m =10 are obtained in a
series form. Finally, the approximate solution z (X) with m=10, h= % ,and

X, =kh for k=0,1---,m, is given by

Z\ X, )=U(X +_u(1)VX .
() =u(5) V()

In Table 1, we report the absolute error difference between the exact analyti-

cal solution and, the proposed solution Egpsm and, further validated with FBsrims
and the other methods described in [22]. In Esrxms and Fispms, the same method
was used, which is the shooting method with Runge-Kutta method of order four,
but using different hypotheses, so that in Fgrxms, hypotheses (29) and (31) were

used, but in Eisrkma other hypotheses were used, which are as follows
u(0)=1, u'(0)=0, u"(0)=0,

and
v(0)=0, v'(0)=1, v"(0)=0,

thus, we note that Esrxye Was more accurate than Fispima.
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Table 1. The absolute error for EDSM, SRKM4 and the methods described in [22] when

m=10.
x  FEisrkms FErpm Epami3) Ercam Eqpsm Esrxma Erpsm
0.0 0 0 0 0 0 0 0

0.1 33x10° 25x10* 1.1x107'° 82x10% 1.5x10™* 7.1x107 49x107%
02 64x10° 35x10* 13x107'° 21x107 59x10™* 9.0x107 2.0x 107
03 9.1x10° 3.1x10* 6.7x107° 3.8x107 12x10° 6.4x107 44x10™
04 1.1x10° 13x10* 1.4x10° 58x107 2.0x10° 2.0x10% 7.8x 107
0.5 13x10° 1.5x10* 22x10° 7.7x107 28x10° 85x107 1.2x107"
0.6 13x10° 63x10* 29x10° 9.2x107 35x10° 1.8x10° 1.8x10™"
0.7 13x10° 9.0x10™* 33x10° 99x107 39x10° 2.6x10° 24x107"
0.8 1.1x10° 1.1x102 32x10° 9.2x107 3.7x10° 3.0x10° 3.1x10™"
09 72x10° 9.6x10* 22x10° 6.3x107 25x10° 24x10° 3.7x10™1

1.0 0 0 0 0 0 0 0

Table 2. Comparison between different methods when m =10.

Numerical Methods Maximum Error
EDSM 3.7x 10713
SRKM4 3.0x10°

LSRKM4 1.3 x10°°
FDM 1.1 x 1073
PAM(3,3) 33x107°
RCAM 9.9 x 107
QBSM 39x107

From Table 2, we can see that EDSM is the most efficient method for solving
example 1, compare with the results of the five methods in ref. [22] and SRKM4.

Again, we portray the exact analytical and approximate solutions in Figure 1;
one would notice an ideal agreement between these solutions.

Example 2. Consider the third-order linear BVP given by [23] [24] [25] [26]

y" —xy =e* (x3 -2x? —5x—3), 0<x<1
y(0)=0, y'(0)=1, y(1)=0.
The exact analytical solution is given by y(x)=x(1-x)e*.
The approximate solution z(X) with m=10, h= % , and X =kh for

k=0,1---,m, is given by

Z( X, )=U(X +L(1)VX.
() =005)+ 7 ¥(s)
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In Table 3, we report the absolute error difference between the exact analyti-
cal solution and, the proposed solution Egpsm and, further validated with Bsrims
and the other methods described in [23].

From Table 4, we can see that EDSM is the most efficient method for solving
example 2, compare with the results of the all methods in [23] [24] [25] [26] and
SRKM4.

Again, we portray the exact analytical and approximate solutions in Figure 2;
one would notice an ideal agreement between these solutions.

Example 3. Consider the third-order linear singularly perturbed BVP given
by [24] [25] [27]:

—ey" +y =81€’ c0s(3x) + 3esin(3x), 0<x<1

— Exact Solution
7 Approximate of SRKM4
— - Approximate of EDSM

0 T T T T T T T T T K

0 0.2 0.4 X 0.6 0.8 1

Figure 1. Graphical comparative depictions of the exact and approximate solutions with m =10.

Table 3. The absolute error for EDSM, SRKM4 and the methods described in [23] when

m=10.

b FEisarmz Eurmz FEsrkma Erpsm
0.0 1.8 x 1071 0 0 0

0.1 3.4x 1071 3.1x 107 3.1x107 53x 1073
0.2 5.4 x 10710 1.2 x 107 6.0 x 1077 32x107%
0.3 2.0 x 10710 2.7 x 107° 8.7 x 1077 2.3%x 1073
0.4 8.0 x 1071° 4.7 x 10°¢ 1.1 x10°¢ 51x107%
0.5 4.2 x 10710 7.0 x 107° 1.3x10°° 3.8x107%
0.6 3.1 x 10710 9.3 x107° 1.4 x 107 4.8x107%
0.7 4.1 x 10710 1.1 x 107 1.4 x 10°¢ 6.7 x 107
0.8 1.7 x 1071 1.0 x 107° 1.2 x10°¢ 3.8x 1073
0.9 1.2 x 10710 7.2 % 107° 7.7 x 1077 6.9 x 1073
1.0 7.5x 1071 1.6 x 10713 0 0
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Table 4. Comparison between different methods.

m Numerical Methods Maximum Error

EDSM 3.2x 1071

SRKM4 4.7 x107°

4 RKT3s4 43x10°

GJGOMM 1.0x 107

OCM 9.9 x 1077

EDSM 1.3x107#

SRKM4 1.0 x 107°

o GJGOMM 8.4 x 10710

OCM 8.4 x 1071

EDSM 9.8 x 1072

SRKM4 3.4%x10°

8 RKT3s4 2.3%x 1077

GJGOMM 51x 1073

OCM 5.0x 10713

EDSM 6.9 x 1072

SRKM4 1.4x 107

LSHPM2 8.0 x 10710

10 HPM2 1.1 x10°°

GJGOMM 4.9 %1071

OCM 2.3 x 10716
0.4+
0.3+
0.2+
0.1+

—Exact Solution
| X Approximate of SRKM4
— - 'Approximate of EDSM
0 T | T T T T T T T K
0 0.2 0.4 0.6 0.8 1

X

Figure 2. Graphical comparative depictions of the exact and approximate solutions with m=10.
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y(0)=0, y'(0)=9, y(1)=3esin(3).

The exact analytical solution is given by y(X)=3esin(3x).

The approximate solution Z(X) with m=10, h=%, and X, =kh for

k=0,1---,m, is given by

z(x)=u(x)+

3esin(3)-u(1)

V(1)

V(%)

In Table 5, we report the absolute error difference between the exact analyti-

cal solution and, the proposed solution Fipsm and, further validated with Esrxma.

From Table 6, we can see that EDSM is the most efficient method for solving

example 3, compare with the results of the all methods in [24] [25] [27] and
SRKM4.

Again, we portray the exact analytical and approximate solutions in Figures

3-5; one would notice an ideal agreement between these solutions.
Example 4. Consider the third-order linear BVP given by [24] [27] [28]:

—ey"+y =6e(1-x) X ~6¢* (6(1-X)

+180(1- x)3 x* —60(1- x)2 X

5

-90(1- x)4 X
ﬂ,OSXsL

y(0)=0, y'(0)=0, y(1)=0

The exact analytical solution is given by y(X)=6x’¢(1- X)5 .

The approximate solution z(X) with m=10, h=10,and X =kh for

k=0,1---,m, is given by

Table 5. The absolute error for EDSM and SRKM4 when m =10 and different values

€.

1 1 1
€e=— €=— €e=—
x 16 32 64
Esrxma Eepsm Esrxma Erpsm Esrxma Erpsm
0.0 0 0 0 0 0 0
0.1 79x107 2.6x1072% 3.1x 107 22x107% 5.8x107® 1.5x 1072
02 23x10° 1.0x107% 1.4x10°° 8.6 x 107 8.4x 1077 6.2 x 1072
03 44x10° 24x107% 3.0x 10°° 2.0 x 1074 2.2x 107 1.4 x 1074
04 67x10° 42x107% 5.0x 107° 3.6 x 107 3.8x10° 2.6x107%
05 88x10° 6.7x107% 6.8x10° 5.7 x 1072 53x10°° 43 x107%
06 1.0x10° 9.9x10% 8.1 x107° 8.6 x 1074 6.3 x10°° 6.8 x 1074
07 1.0x10° 14x102 84x10° 1.3x 1073 6.6%x10° 1.0x107%
0.8 91x10° 1.9x10% 74x10° 18x10%2  58x10° ¢y 1020
0.9 57x10° 24x107% 47x10° 24x10%  36x10° 22x107%
1.0 0 0 0 0 0 0
DOI: 10.4236/ijmnta.2023.123006 91 Int. J. Modern Nonlinear Theory and Application


https://doi.org/10.4236/ijmnta.2023.123006

N. Al-Zaid et al.

Table 6. Comparison between different methods when different values mand €.

Maximum Error

Numerical Methods  m 1 1 1
T 7} o
10 2.4 x 1072 24 %1078 2.2x10°%
EDSM 20 1.0 x 107% 4.5x107% 7.0 x 1073
40 2.0 x 107 1.3 x 1077 2.1x107%
10 1.0 x 10 8.4 %107 6.6 x 10°°
SRKM4 20 7.0 x 1077 5.5 x 1077 4.1x 107
40 4.5x 1078 3.5%x107® 2.6 x 1078
10 1.9 x 107 3.7x107° 7.0 x 107°
RKT3s4 20 2.6 x 107 5.0 x 107¢ 9.9 x107°
40 3.4 x 1077 6.6 x 1077 1.3 x 107
GJGOMM 10 9.3x 10713 42x 1078 4.2 x 10713
10 4.4x%x108 1.9x 1078 7.9x107°
ESM 20 2.1 x 1071 8.9x 107! 3.6 x 107
40 1.1 x 1072 45x%x 1071 1.8 x 1071
10 3.1x 1077 1.3 x 1077 5.7 x 1078
QNSM 20 4.9 x 107 2.1 x107° 8.5x 10710
40 7.5x 107! 3.2x 107! 1.3x 107!

0.18+

Exact Solution
1 % Approximate of SRKM4
0.16 = « Approximate of EDSM

0.14—-
0.12—-

0.1+
0.08—-
0.06
0.04
0.02—-

0 . | , | . | . , . |

0 0.2 0.4 0.6 0.8 1
X

Figure 3. Graphical comparative depictions of the exact and approximate solutions with m=10 and €= % .
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— Exact Solution

0'09—_ * Approximate of SRKM4
008 — -+ Approximate of EDSM
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0-f T T T T T T T T T 1
0 0.2 0.4 0.6 0.8 1
X
Figure 4. Graphical comparative depictions of the exact and approximate solutions with m=10 and €= iZ .
— Exact Solution
*  Approximate of SRKM4

0.04- — - ' Approximate of EDSM

0.03+

0.02-

0.01+

0-# T J T T T T T y 1
0 0.2 0.4 0.6 0.8 1
X

Figure 5. Graphical comparative depictions of the exact and approximate solutions with m=10 and €= i4 .

z(xk)zu(xk)+%(1§)v(xk).
In Table 7, we report the absolute error difference between the exact analyti-
cal solution and, the proposed solution Egpsu and, further validated with Esrima.
From Table 8, we can see that EDSM is the most efficient method for solving
example 4, comparison with the results of the all methods in [24] [27] [28] and
SRKM4 when m=10. Also, the EDSM was more accurate when compared with

the same methods at m > 20, where we obtained the absolute error value of zero
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Table 7. The absolute error for our method when m =10 and different values «.

0.0 0 0 0 0 0 0

0.1 7.0x10° 48x10% 33x10° 40x10% 15x10° 28x10°%
02 1.0x10° 19x10%® 45x10° 1.6x107 17x10° 1.1x10°%
03 12x10° 44x10%° 48x10° 3.6x107  16x10° 2.6x 10
04 12x10° 79x10%° 46x10° 66x107  14x10° 49x 10
05 1L1x10° 12x10%° 40x10° 1L1x10% 12x10° 81x 10
0.6 91x10° 1.8x10% 32x10° 16x10% 81x107 13x10%
0.7 72x10° 26x10% 22x10° 23x10%  43x107 1.9x 10
08 51x10° 35x10% 14x10° 33x10%  14x107 59, 1o
0.9 28x10° 46x10% 7.0x107 44x10%  15x10® 42x107%

1.0 0 0 0 0 0 0

Table 8. Comparison between different methods when m =10 and different values «.

Maximum Error

Numerical Methods 1 1 1
€=— € =— €=—
16 32 64
EDSM 4.6 x107% 4.4x10°% 42 %1073
SRKM4 1.2 x10°° 4.8 x10°° 1.7 x 10°¢
RKT3s4 6.5 % 107 2.8 x 107 1.0 x 10°¢
ESM 1.0 x 10°¢ 4.3 %107 1.8 x 1077
QNSM 6.9 x 10°° 2.9 x 107 1.2 x10°¢

for all values of €.
Again, we portray the exact analytical and approximate solutions in Figures

6-8; one would notice an ideal agreement between these solutions.

5. Conclusion

In conclusion, the present paper proposed a numerical method to treat a partic-
ular class of third-order BVPs based on the combination of the shooting method
and, the Adomian decomposition method (EDSM). A complete derivation of the
method has been provided, in addition to its numerical implementation and, va-
lidation with the help of the shooting method with the fourth-order Runge-
Kutta method (SRKM4). The proposed method was further applied to certain
test problems and turned out to outperform the SRKM4 and, other available
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0.0018 — Exact Solution
4 * Approximate of SRKM4
— - ' Approximate of EDSM

0.0016

0.0014

0.0012—

0.0010—

0.0008—

0.0006 —

0.0004 —

0.0002

0 ; | . , . | . 1 ,

0 0.2 0.4 0.6 0.8
b

Figure 6. Graphical comparative depictions of the exact and approximate solutions with m=10 and €= % .

0.0009 —

— Exact Solution
* Approximate of SRKM4
0.0008 — — - ' Approximate of EDSM

0.0007

0.0006 —

0.0005 —

0.0004 —

0.0003

0.0002

0.0001

0 T T T T T T T T ¥

0 0.2 0.4 0.6 0.8
b

.—A—J'-

1
Figure 7. Graphical comparative depictions of the exact and approximate solutions with m=10 and e= 2

DOI: 10.4236/ijmnta.2023.123006 95 Int. J. Modern Nonlinear Theory and Application


https://doi.org/10.4236/ijmnta.2023.123006

N. Al-Zaid et al.

| — Exact Solution
* Approximate of SRKM4
0.0004 - — - ' Approximate of EDSM
0.0003
0.0002
0.0001 —
0 . ] ; , , ] | ! " 4
0 0.2 04 0.6 0.8 1

X

1
Figure 8. Graphical comparative depictions of the exact and approximate solutions with m=10 and e= o

methods in the literature. Lastly, we reported the simulated numerical results via

graphical illustrations and, comparison tables.
Conflicts of Interest
The authors declare no conflicts of interest regarding the publication of this pa-

per.

References

[1] Tung, C. (2009) On the Stability and Boundedness of Solutions of Nonlinear Vector
Differential Equations of Third Order. Nonlinear Analysis. Theory, Methods & Ap-
plications, 70, 2232-2236. https://doi.org/10.1016/j.na.2008.03.002

[2] Ezeilo, J.O.C. (1967) A Generalization of a Boundedness Theorem for a Certain
Third-Order Differential Equation. Mathematical Proceedings of the Cambridge Phi-
losophical Society, 63, 735-742. https://doi.org/10.1017/50305004100041736

[3] Ezeilo, J.O.C. (1962) A Property of the Phase-Space Trajectories of a Third Order
Non-Linear Differential Equation. Journal of the London Mathematical Society, 37,
33-41. https://doi.org/10.1112/jlms/s1-37.1.33

[4] Reissig, R., Sansone, G. and Conti, R. (1974) Nonlinear Differential Equations of
Higher Order. Noordhoff, Groningen.

[5] Tung, C. and Ales, M. (2006) Stability and Boundedness Results for Solutions of
Certain Third Order Nonlinear Vector Differential Equations. Non/inear Dynamics,
45, 273-281. https://doi.org/10.1007/s11071-006-1437-3

DOI: 10.4236/ijmnta.2023.123006

96 Int. J. Modern Nonlinear Theory and Application


https://doi.org/10.4236/ijmnta.2023.123006
https://doi.org/10.1016/j.na.2008.03.002
https://doi.org/10.1017/S0305004100041736
https://doi.org/10.1112/jlms/s1-37.1.33
https://doi.org/10.1007/s11071-006-1437-3

N. Al-Zaid et al.

(7]

[10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

Rauch, L.L. (1950) Oscillation of a Third Order Nonlinear Autonomous System. In:
Lefschetz, S., Ed., Contributions to Theory of Nonlinear Oscillations, Vol. 1, Prin-
ceton University Press, Princeton, 39-88. https://doi.org/10.1515/981400882632-003

Javeed, S., Shabnam, A. and Baleanu, D. (2019) An Improved Shooting Technique
for Solving Boundary Value Problems Using Higher Order Initial Approximation
Algorithms. Punjab University Journal of Mathematics, 51, 101-113.

Noor, M.A., Al-Said, E. and Noor, K. (2012) Finite Difference Method for Solving a
System of Third-Order Boundary Value Problem. Journal of Applied Mathematics,
2012, Article ID: 351764. https://doi.org/10.1155/2012/351764

Al-Said, E.A. (2000) Numerical Solutions for System of Third-Order Boundary Value
Problems. International Journal of Computer Mathematics, 78, 111-121.
https://doi.org/10.1080/00207160108805100

Nasir, N.M., Majid, Z.A., Ismail, F. and Bachok, N. (2021) Direct Integration of the
Third-Order Two Point and Multipoint Robin Type Boundary Value Problems.
Mathematics and Computers in Simulation, 182, 411-427.

https://doi.org/10.1016/j.matcom.2020.10.028

Adomian, G. (1994) Solving Frontier Problems of Physics: The Decomposition Me-
thod. Kluwer, Boston. https://doi.org/10.1007/978-94-015-8289-6

Adomian, G. (1988) A Review of the Decomposition Method in Applied Mathe-
matics. Journal of Mathematical Analysis and Applications, 135, 501-544.
https://doi.org/10.1016/0022-247X(88)90170-9

Singh, N. and Kumar, M. (2011) Adomian Decomposition Method for Solving
Higher Order Boundary Value Problems. Mathematical Theory and Modeling, 2,
11-22.

Adomain, G. and Rach, R. (1992) Noise Terms in Decomposition Solution Series.
Computers & Mathematics with Applications, 24, 61-64.
https://doi.org/10.1016/0898-1221(92)90031-C

Adomain, G. and Rach, R. (1994) Modified Decomposition Solution of Linear and
Nonlinear Boundary-Value Problems. Nonlinear Analysis. Theory, Methods & Ap-
plications, 23, 615-619. https://doi.org/10.1016/0362-546X(94)90240-2

Bakodah, H.O. (2012) Some Modifications of Adomian Decomposition Method
Applied to Nonlinear System of Fredholm Integral Equations of the Second Kind.

International Journal of Contemporary Mathematical Sciences, 7, 929-942.
Bakodah, H.O. (2013) Modified Adomian Decomposition Method for the Genera-
lized Fifth Order KdV Equations. American Journal of Computational Mathemat-
ics, 3, 53-58. https://doi.org/10.4236/ajcm.2013.31008

Al-Zaid, N.A., Bakodah, H.O. and Hendi, F.A. (2013) Numerical Solutions of the
Regularized Long-Wave (RLW) Equation Using New Modification of Laplace-
Decomposition Method. Advances in Pure Mathematics, 3, 159-163.
https://doi.org/10.4236/apm.2013.31A022

Al-Zaid, N.A., Bakodah, H.O. and Ebaid, A. (2018) Solving a Class of Partial Diffe-
rential Equations with Different Types of Boundary Conditions by Using a Genera-

lized Inverse Operator: Decomposition Method. Nonlinear Analysis and Differen-
tial Equations, 6, 25-41. https://doi.org/10.12988/nade.2018.843

Bakodah, H.O., Hendi, F.A. and Al-Zaid, N. (2012) Application of the New Mod-
ified Decomposition Method to the Regularized Long-Wave Equation. Life Science
Journal, 9, 5862-5866.

Attili, B.S. and Syam, M.I. (2008) Efficient Shooting Method for Solving Two Point

DOI: 10.4236/ijmnta.2023.123006

97 Int. J. Modern Nonlinear Theory and Application


https://doi.org/10.4236/ijmnta.2023.123006
https://doi.org/10.1515/9781400882632-003
https://doi.org/10.1155/2012/351764
https://doi.org/10.1080/00207160108805100
https://doi.org/10.1016/j.matcom.2020.10.028
https://doi.org/10.1007/978-94-015-8289-6
https://doi.org/10.1016/0022-247X(88)90170-9
https://doi.org/10.1016/0898-1221(92)90031-C
https://doi.org/10.1016/0362-546X(94)90240-2
https://doi.org/10.4236/ajcm.2013.31008
https://doi.org/10.4236/apm.2013.31A022
https://doi.org/10.12988/nade.2018.843

N. Al-Zaid et al.

(22]

(23]

(24]

(25]

[26]

(27]

(28]

Boundary Value Problems. Chaos, Solitons & Fractals, 35, 895-903.
https://doi.org/10.1016/j.cha0s.2006.05.094

Shanab, S. (2017) Numerical Methods for Solving Third Order Two-Point Boun-
dary Value Problems. An-Najah National University, Nablus.

Qayyum, M. and Oscar, O. (2021) Least Square Homotopy Perturbation Method for
Ordinary Differential Equations. Journal of Mathematics, 2021, Article ID: 7059194.
https://doi.org/10.1155/2021/7059194

Abdulsalam, A., Senu, N. and Majid, Z.A. (2019) Direct One-Step Method for Solv-
ing Third-Order Boundary Value Problems. International Journal of Applied Ma-
thematics, 32, 155-176. https://doi.org/10.12732/ijam.v32i2.1

Abd-Elhameed, W.M. (2015) Some Algorithms for Solving Third-Order Boundary
Value Problems Using Novel Operational Matrices of Generalized Jacobi Polyno-
mials. Abstract and Applied Analysis, 2015, Article ID: 672703.
https://doi.org/10.1155/2015/672703

Abd-Elhameed, W.M. and Napoli, A. (2020) A Unified Approach for Solving Linear
and Nonlinear Odd-Order Two-Point Boundary Value Problems. Bulletin of the
Malaysian Mathematical Sciences Society, 43, 2835-2849.
https://doi.org/10.1007/s40840-019-00840-7

Wakjira, Y.A. and Duressa, G.F. (2020) Exponential Spline Method for Singularly
Perturbed Third-Order Boundary Value Problems. Demonstratio Mathematica, 53,
360-372. https://doi.org/10.1515/dema-2020-0024

Wakjira, Y.A., Duressa, G.F. and Bullo, T.A. (2018) Quintic Non-Polynomial Spline
Methods for Third Order Singularly Perturbed Boundary Value Problems. Journal
of King Saud University-Science, 30, 131-137.
https://doi.org/10.1016/j.jksus.2017.01.008

DOI: 10.4236/ijmnta.2023.123006

98 Int. J. Modern Nonlinear Theory and Application


https://doi.org/10.4236/ijmnta.2023.123006
https://doi.org/10.1016/j.chaos.2006.05.094
https://doi.org/10.1155/2021/7059194
https://doi.org/10.12732/ijam.v32i2.1
https://doi.org/10.1155/2015/672703
https://doi.org/10.1007/s40840-019-00840-7
https://doi.org/10.1515/dema-2020-0024
https://doi.org/10.1016/j.jksus.2017.01.008

Call for Papers

International Journal of Modern Nonlinear
Theory and Application

ISSN: 2167-9479 (Print) ISSN: 2167-9487 (Online)
https://www.scirp.org/journal/ijmnta

In :,./;;Piri)nalJournalof
A E
lern Nonlinear
'y and Applicatio
* e

FyoRs o)

4

International Journal of Modern Nonlinear Theory and Application (IJMNTA)
is an international peer-reviewed journal dedicated to publishing original papers
on all topics related to nonlinear dynamics and its applications such as, electrical,
mechanical, civil, and chemical systems and so on. The contributions concerned
will be discussion of a practical problem, the formulating nonlinear model, and
determination of closed form exact or numerical solutions.

Hm m” H“m H mm Il it i argournallmna

#in

Editor-in-Chief

Prof. Ahmad M. Harb

Editorial Board

Prof. Nabil Mohamed Jabr Abdel-Jabbar

German Jordanian University, Jordan

Dr. Ahmed Abdel-Rahman M. Farghaly Dr. Mahammad A. Nurmammadov

Dr. Eihab M. Abdel-Rahman
Prof. Ravi P. Agarwal

Prof. Ahmad Al-Qaisia

Prof. Qais Alsafasfeh

Prof. Jan Awrejcewicz

Prof. Fethi Bin Muhammad Belagcem

Prof. Cristian S. Calude
Prof. Seonho Cho
Dr. Prabir Daripa

Subject Coverage

Prof. Bruce Henry

Dr. Boon Leong Lan

Prof. Hongyi Li

Dr.C. W. Lim

Prof. Gamal M. Mahmoud
Dr. Wenchao Meng

Prof. Lamine Mili

Dr. Vishnu Narayan Mishra
Prof. Zuhair Nashed

Prof. Antonio Palacios

Dr. Samir M. Shariff

Dr. Ayman Shehata Mohammed Ahmed
Osman Mohammed EI-Shazly

Prof. Guowei Wei

Prof. Changjin Xu

Prof. Pei Yu

This journal invites original papers and review papers that address the following issues in modern nonlinear
theory and its applications. The interested topics that may be covered, but not limited to:

e Application of Modern Nonlinear Theory in:

Biology
Business
Chemical Systems
Electrical and Power Systems
Fluid Mechanics
Mechanical Systems
Medicine
Physics
Applied Mechanics
Bifurcation and Chaos
Chaos Control
Classic Control Systems

Electrical Drives and Power Electronics

Fractal Order Systems

High Dimensional Chaos and Applications
Intelligent Control Systems (Fuzzy, Neural, Genetic...)
Nonlinear Control

Nonlinear Differential Equations and Applications
Nonlinear Dynamic Stability

Nonlinear Dynamics

Nonlinear Mathematical Physics

Nonlinear Optical Physics & Materials

Nonlinear Oscillations

Nonlinear Phenomena

Nonlinear Science and Numerical Simulation
Power Systems and Energy

Security in Communication Systems

We are also interested in: 1) Short Reports—2-5 page papers where an author can either present an idea
with theoretical background but has not yet completed the research needed for a complete paper or
preliminary data; 2) Book Reviews—Comments and critiques.

Notes for Intending Authors

Submitted papers should not have been previously published nor be currently under consideration for
publication elsewhere. Paper submission will be handled electronically through the website. All papers
are refereed through a peer review process. For more details about the submission, please access the

website.

Website and E-Mail

https://www.scirp.org/journal/ijmnta

E-mail: ijmnta@scirp.org



What is SCIRP?

Scientific Research Publishing (SCIRP) is one of the largest Open Access journal publishers. It is
currently publishing more than 200 open access, online, peer-reviewed journals covering a wide
range of academic disciplines. SCIRP serves the worldwide academic communities and
contributes to the progress and application of science with its publication.

What is Open Access?

All original research papers published by SCIRP are made freely and permanently accessible
online immediately upon publication. To be able to provide open access journals, SCIRP defrays
operation costs from authors and subscription charges only for its printed version. Open access
publishing allows an immediate, worldwide, barrier-free, open access to the full text of research
papers, which is in the best interests of the scientific community.

e High visibility for maximum global exposure with open access publishing model
e Rigorous peer review of research papers

* Prompt faster publication with less cost

e Guaranteed targeted, multidisciplinary audience

Ui Bhy,, i
l-u':,‘:::
&)

X%

N

LS
\

Artang p 5= |

i
Review 1807 |dvancy,,, €

Reprog,
* o

=

<
Advances in
Entomolo

d-| -

Energy a0 pawer Engins "8

‘0:0 Scientific
Research

‘0‘:‘ Publishing

Website: https://www.scirp.org
Subscription: sub@scirp.org
Advertisement: service@scirp.org




	Front Cover
	Inside Front Cover-Editorial Board
	Table of Contents
	Journal Information
	81-Efficient Decomposition Shooting Method for Solving Third-Order Boundary Value Problems
	Inside Back Cover-Call for Papers
	Back Cover

