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Abstract 
The present paper proposes a mathematical method to numerically treat a 
class of third-order linear Boundary Value Problems (BVPs). This method is 
based on the combination of the Adomian Decomposition Method (ADM) 
and, the modified shooting method. A complete derivation of the proposed 
method has been provided, in addition to its numerical implementation and, 
validation via the utilization of the Runge-Kutta method and, other existing 
methods. The method has been applied to diverse test problems and turned 
out to perform remarkably. Lastly, the simulated numerical results have been 
graphically illustrated and, also supported by some absolute error comparison 
tables. 
 

Keywords 
Linear Third Order BVPs, Shooting Method, Adomian Decomposition  
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1. Introduction 

Many physical problems arising in engineering, science, economics, social 
science and, business are modeled mostly using the Ordinary Differential Equa-
tions (ODEs) in the form of either the Boundary Value problems (BVPs) or Ini-
tial Value Problems (IVPs), or their combination. Additionally, not all of these 
ODEs have exact analytical solutions through the known analytical techniques. 
Thus, this reason has forced various mathematicians and researchers to direct 
their inquisitiveness in the search for optimal computational procedures that 
will serve as an alternative approach to at least get hold of approximate solutions 
whenever the exact solutions are not analytically realistic. 

However, the ODEs of particular concern in this study are the third-order li-
near BVPs. Many attempts have been made in the past literature to study differ-
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ent forms of third-order BVPs, including for instance the coupled systems of 
third-order BVPs and, laying a solid foundation for the existence and stability of 
the associated solutions, see [1]-[6] and, the references therewith. Moreover, as 
the methods for BVPs are very limited, Javeed et al. [7] proposed a numerical 
approach based on the application of the shooting method to solve different 
BVPs by coming up with higher-order initial guesses. It is remarkable to state 
here that the shooting method utilized in [7] is a promising iterative approach 
that starts off by transforming the governing BVPs to corresponding IVPs. To go 
further, some coupled systems of third-order BVPs were tackled using different 
methods like the finite difference method by Noor et al. [8] and, via the applica-
tion of a meticulous computational procedure by Al-Said [9]. See also the recent 
work of Nasira et al. [10] for a new numerical procedure to solve third-order 
BVPs with two-point and multipoint Robin boundary data. Furthermore, the 
well-known semi-analytical method called the Adomian Decomposition Method 
(ADM) has equally been greatly used in both the past and recent literature for 
solving various linear and nonlinear BVPs, see [11]-[20] and the references the-
rewith for some related studies and various modifications of the ADM. 

Furthermore, since we aim in this study to combine the ADM and shooting 
method to numerically examine the third-order linear BVPs, it is notable to 
mention the work of Attili and Syam [21] where the combination of these me-
thods was proposed and used to study the two-point BVPs of the form 

( ) ( ) ( ) ( ) ( ), , ,q t u t q t u t f t u u′′ ′ ′ ′+ =                 (1) 

with the following prescribed Dirichlet boundary data 

( ) ( ), ,u a u bα β= =                       (2) 

where the functions ( ) ( ),q t q t′  and ( ), ,f t u u′  are known continuous func-
tions. Further, the following inverse operator was particularly utilized while 
studying the problem [21] 

( ) ( ) ( ) ( )1 d d, ,
t x

a a

x sL t D u s
q x sξ

− = ∫ ∫                   (3) 

where 

( ) ( ) ( ), ,L t D t Dq t Dξ=                      (4) 

with 
( )
dD

d t
= , and 

( )
1

q t
 is locally integrable; while ( )q t  and ( )tξ  are 

smooth functions.  
However, the present paper proposes a numerical method to study a class of 

third-order linear BVPs by utilizing the combination of the ADM and, the mod-
ified shooting method. A complete derivation of this method will be provided, 
executed and, validated using promising methods in the literature. 

2. Adomian Decomposition Method (ADM) 

The ADM is an efficient semi-analytical method that is widely used to solve a 
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variety of functional equations. To demonstrate how this method is utilized, let 
us consider the following generalized third-order linear ODE 

( ) ( ) ( ) ( ) , ,y p x y q x y r x y s x a x b′′′ ′′ ′= + + + ≤ ≤            (5) 

subject to the following initial conditions 

( ) ( ) ( ), , .y a y a y a tλ α′ ′′= = =                  (6) 

Now, expressing the above equation in an operator form, we write 

( ) ( ) ( ) ( ) , ,Ly p x y q x y r x y s x a x b′′ ′= + + + ≤ ≤            (7) 

where 
3

3

d
d

L
x

= , and the functions ( ) ( ) ( ) ( ), , ,p x q x r x s x  are known pre-

scribed functions; while ,λ α  and t are also known constants. The inverse op-
erator is expressed as 

( ) ( )1 . . d d d .
x x x

a a a

L x x x− = ∫ ∫ ∫                      (8) 

Therefore, applying the inverse operators given in Equation (8) to Equation 
(7), we have 

( ) ( ) ( ) ( ) ( ) ( )( )1 ,y x x L p x y q x y r x y s xφ − ′′ ′= + + + +          (9) 

such that 

( ) 0.L xφ =                          (10) 

Additionally, the ADM decomposed the solution ( )y x  as follows 

( ) ( )
0

,n
n

y x y x
∞

=

= ∑
 

such that upon substituting it into Equation (9) yields 

( ) ( ) ( ) ( ) ( )
2

1
2

0 0 0 0

d d ,
ddn n n n

n n n n
y x L p x y q x y r x y s x

xx
φ

∞ ∞ ∞ ∞
−

= = = =

      = + + + +      
     

∑ ∑ ∑ ∑
 

through which the ADM recurrently gives the following iterates 

( ) ( )( )1
0 ,y x L s xφ −= +  

( ) ( ) ( )( )1
1 , 0.n n n ny L p x y q x y r x y n−
+ ′′ ′= + + ≥           (11) 

such that the overall closed-form solution (approximate solution) of the go-
verning equation given in Equation (5) together with the conditions given in 
Equation (6) is expressed as 

( ) ( )
0

.
m

m n
n

y x y x
=

= ∑
 

3. Efficient Decomposition Shooting Method (EDSM) 

The shooting method is a promising iterative approach that starts off by trans-
forming the governing BVP to a corresponding system of IVPs with specified in-
itial value conditions. These unknown initial conditions are guessed to solve the 
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IVPs; whereas the accurateness of the guessed missing initial conditions is the-
reafter ascertained by putting both the given value at the terminal point and, the 
computed value of the dependent variable side by side. Furthermore, when these 
two values differ, a new value should be guessed continuously until an agreed 
value is attained between the two under a specified degree of accurateness. 

At the moment, let us consider the following third-order linear two-point 
BVP 

( ) ( ) ( ) ( ) , ,y p x y q x y r x y s x a x b′′′ ′′ ′= + + + ≤ ≤          (12) 

( ) ( ) ( ), , ,y a y a y bλ α β′= = =                 (13) 

Now, based on the shooting method, the third-order BVP given above will 
turn into two IVPs where the boundary conditions given in Equation (13) will be 
replaced with specific initial conditions for each IVP as follows 

( ) ( ) ( ) ( ) , ,u p x u q x u r x u s x a x b′′′ ′′ ′= + + + ≤ ≤          (14) 

( ) ( ) ( ), , 0,u a u a u aλ α′ ′′= = =                 (15) 

and  

( ) ( ) ( ) , ,v p x v q x v r x v a x b′′′ ′′ ′= + + ≤ ≤             (16) 

( ) ( ) ( )0, 0, 1.v a v a v a′ ′′= = =                  (17) 

Additionally, Equation (14) can be written as 

( ) ( ) ( ) ( ) ,Lu p x u q x u r x u s x′′ ′= + + +               (18) 

where the proposed differential operator may take the form of L earlier defined; 
together with inverse 1L−  given in Equation (8). 

By applying 1L−  on Equation (18), one gets 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )1 1 1 1
1 ,u x x L p x u L q x u L r x u L s xφ − − − −′′ ′= + + + +   (19) 

such that ( )1 0L xφ = . 
Next, the ADM decomposes the solution ( )u x  by the following infinite series 

( ) ( )
0

,n
n

u x u x
∞

=

= ∑                        (20) 

where the component ( )nu x  are recurrently determined. More, substituting 
the above series solution into Equation (19) yields 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

1 1
1

0 0 0

1 1

0
,

n n n
n n n

n
n

u x L p x u x L q x u x

L r x u x L s x

φ
∞ ∞ ∞

− −

= = =

∞
− −

=

   ′′ ′= + +   
   

 + + 
 

∑ ∑ ∑

∑
      (21) 

of which the components ( )nu x  are recurrently found as follows 

( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

1
0 1

1
1 0 0 0

1
2 1 1 1

,

,

,

u x L s x

u L p x u x q x u x r x u x

u L p x u x q x u x r x u x

φ −

−

−

= +

′′ ′= + +

′′ ′= + +



          (22) 
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and so on. Also, for the sake of numerical computation, the m-term approx-
imant are considered as 

( ) ( )1,
0

,
m

m k
k

u x u xψ
=

= = ∑                     (23) 

Similarly, corresponding to the second BVP given in Equation (16), we can 
compute 

( ) ( )2,
0

,
m

m k
k

v x v xψ
=

= = ∑                     (24) 

where the components ( )kv x  can be determined as 

( )
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

0 2

1
1 0 0 0

1
2 1 1 1

,

,

,

v x

v L p x v x q x v x r x v x

v L p x v x q x v x r x v x

φ
−

−

=

′′ ′= + +

′′ ′= + +



          (25) 

and so on. Subsequently, we construct z where z can be written as 

( ) ( ) ( )
( ) ( ) ( )

1 1 1

2 2 2

,

,

z x u x v x

z x u x v x

θ

θ

= +

= +



                    (26) 

and so on, where θ  is a constant number. 
Hence, let ( )u x  and ( )v x  denote the solutions to the third-order linear 

IVPs given in Equations (14)-(17), respectively, then, we define 

( ) ( ) ( )
( ) ( ) ( ), 0,
u b

z x u x v x v b
v b

β −
= + ≠              (27) 

where ( )z x  is the solution to the third-order linear BVP given Equations ((12), 
(13)). 

4. Numerical Examples 

This section examines the proposed methodology for the third-order linear 
BVPs by demonstrating its applicability to some selected test problems. The 
method is also compared with the mixture of the fourth-order Runge-Kutta ap-
proach and the shooting method to further assess the performance of the pro-
posed method. Similarly, we will compare our results with other numerical me-
thods in the literature [22]-[28] according to the value of m used in them. There-
fore, each method used in the comparison was indicated by an abbreviated 
symbol as follows: 
• LSRKM4: Fourth-Order Linear Shooting Runge-Kutta Method in [22]. 
• FDM: Finite Difference Method in [22]. 
• PAM (3, 3): Pade Approximation (3, 3) Method in [22]. 
• RCAM: Rational Chebyshev Approximation Method in [22]. 
• QBSM: Quartic B-Spline Method in [22]. 
• HPM2 Second-Order Homotopy Perturbation Method [23]. 
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• LSHPM2: Second-Order Least Square Homotopy Perturbation Method [23]. 
• RKT3s4: Three-Stage Fourth-Order Explicit Runge-Kutta Type Method [24]. 
• GJGOMM: Generalized Jacobi-Galerkin Operational Matrix Method in [25]. 
• OCM: Operational Collocation Method in [26]. 
• ESM: Exponential Spline Method [27]. 
• QNSM: Quintic Non-polynomial Spline Method [28]. 

Further, we present certain supportive Tables 1-8 and Figures 1-6 reporting 
the absolute error difference between the exact analytical solution and, on the 
other hand, the obtained numerical results using the proposed Efficient De-
composition Shooting Method (EEDSM) and, further validated with the fourth- 
order Runge-Kutta method (ESRKM4). Furthermore, it is worth mentioning here 
that, in all the graphical comparative illustrations given in Figures 1-6, the exact 
analytical solution is portrayed using a blue line, the proposed approximate so-
lution EEDSM is shown using a dashed dotted red line and, finally, the approx-
imate benchmark solution ESRKM4 is depicted using asterisked curve black. 

Example 1. Consider the third-order linear BVP given by [22] 

( )2 2 2 3 22 3 5 e 3 5 4 , 0 1,xy x y xy x y x x x x′′′ ′′ ′= − − + − − − ≤ ≤
 

( ) ( ) ( )0 1, 0 1, 1 0.y y y′= = =  
The exact analytical solution is given by ( ) ( )2e 1xy x x= − . 
Now, based on the proposed modified shooting decomposition method, we 

make consideration to the following two IVPs 

( )2 2 2 3 22 3 5 e 3 5 4 ,xu x u xu x u x x x′′′ ′′ ′= − − + − − −          (28) 

( ) ( ) ( )0 1, 0 1, 0 0,u u u′ ′′= = =                  (29) 

and 
2 22 3 5 ,v x v xv x v′′′ ′′ ′= − −                     (30) 

( ) ( ) ( )0 0, 0 0, 0 1.v v v′ ′′= = =                  (31) 

The operator versions of Equations (28) and (30) can be written as 

( )2 2 2 3 22 3 5 e 3 5 4 ,xLu x u xu x u x x x′′ ′= − − + − − −          (32) 

2 22 3 5 .Lv x v xv x v′′ ′= − −                     (33) 

Applying 1L−  to both sides in Equation (32) using the conditions in Equa-
tion (29), we get 

( )

( )

2 3 2 2 2 2

2 1 2 2

15 27 17 3 29 25e e e
4 8 16 8 16 8
11 e 2 3 5 .
4

x x x

x

u x x x x x x

L x u xu x u−

= + + + − +

′′ ′− + − −
        (34) 

Similarly, applying 1L−  to both sides of Equation (33) using the conditions in 
Equation (31), we get 

( ) ( )
2

1 2 22 3 5 .
2
xv x L x v xv x v− ′′ ′= + − −               (35) 
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What’s more, decomposing the respective solutions in Equations (34) and 
(35) based on the ADM, then respective recursive relationships are thus given by 

( )

( ) ( ) ( ) ( )

2 3 2 2 2 2 2
0

1 2 1 1 2
1

15 27 17 3 29 25 11e e e e ,
4 8 16 8 16 8 4
2 3 5 , 0,

x x x x

n n n n

u x x x x x x

u x L x u L xu L x u n− − −
+

 = + + + − + −

 ′′ ′= − − ≥  

and 

( )

( ) ( ) ( ) ( )

2

0

1 2 1 1 2
1

,
2
2 3 5 , 0.n n n n

xv x

v x L x v L xv L x v n− − −
+


=


 ′′ ′= − − ≥  

In addition, expressing some of the terms from the above recursive relation-
ships, we get 

( )

( ) 2 2

2 2 2 2

2 3 2 2 2 2 2
0

7 6 5 4 5 4
1

3 2 2

15 27 17 3 29 25 11e e e e ,
4 8 16 8 16 8 4

87 17 9 167 27 9 57e e
128 672 64 480 64 64 64
73 397 333 123 23 123e e e e ,
32 128 128 128 128 128

x x x x

x x

x x x x

u x x x x x x

u x x x x x x x x

x x x x

 = + + + − + −

 = − − − − − + −



+ − + − − +

   

and 

( )

( )

2

0

5 7
1

,
2

1 1
60 84

,

xv x

v x x x


=


 = − −

   

Then, the solutions of Equations (28) and (30) with 10m =  are obtained in a 

series form. Finally, the approximate solution ( )z x  with 10m = , 1
10

h = , and 

kx kh=  for 0,1, ,k m=  , is given by 

( ) ( ) ( )
( ) ( )

1
.

1k k k

u
z x u x v x

v
−

= +
 

In Table 1, we report the absolute error difference between the exact analyti-
cal solution and, the proposed solution EEDSM and, further validated with ESRKM4 
and the other methods described in [22]. In ESRKM4 and ELSRKM4, the same method 
was used, which is the shooting method with Runge-Kutta method of order four, 
but using different hypotheses, so that in ESRKM4, hypotheses (29) and (31) were 
used, but in ELSRKM4 other hypotheses were used, which are as follows  

( ) ( ) ( )0 1, 0 0, 0 0,u u u′ ′′= = =  
and 

( ) ( ) ( )0 0, 0 1, 0 0,v v v′ ′′= = =  
thus, we note that ESRKM4 was more accurate than ELSRKM4. 
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Table 1. The absolute error for EDSM, SRKM4 and the methods described in [22] when 
10m = . 

x ELSRKM4 EFDM EPAM(3,3) ERCAM EQBSM ESRKM4 EEDSM 

0.0 0 0 0 0 0 0 0 

0.1 3.3 × 10−6 2.5 × 10−4 1.1 × 10−10 8.2 × 10−8 1.5 × 10−4 7.1 × 10−7 4.9 × 10−15 

0.2 6.4 × 10−6 3.5 × 10−4 1.3 × 10−10 2.1 × 10−7 5.9 × 10−4 9.0 × 10−7 2.0 × 10−14 

0.3 9.1 × 10−6 3.1 × 10−4 6.7 × 10−10 3.8 × 10−7 1.2 × 10−3 6.4 × 10−7 4.4 × 10−14 

0.4 1.1 × 10−5 1.3 × 10−4 1.4 × 10−9 5.8 × 10−7 2.0 × 10−3 2.0 × 10−8 7.8 × 10−14 

0.5 1.3 × 10−5 1.5 × 10−4 2.2 × 10−9 7.7 × 10−7 2.8 × 10−3 8.5 × 10−7 1.2 × 10−13 

0.6 1.3 × 10−5 6.3 × 10−4 2.9 × 10−9 9.2 × 10−7 3.5 × 10−3 1.8 × 10−6 1.8 × 10−13 

0.7 1.3 × 10−5 9.0 × 10−4 3.3 × 10−9 9.9 × 10−7 3.9 × 10−3 2.6 × 10−6 2.4 × 10−13 

0.8 1.1 × 10−5 1.1 × 10−3 3.2 × 10−9 9.2 × 10−7 3.7 × 10−3 3.0 × 10−6 3.1 × 10−13 

0.9 7.2 × 10−6 9.6 × 10−4 2.2 × 10−9 6.3 × 10−7 2.5 × 10−3 2.4 × 10−6 3.7 × 10−13 

1.0 0 0 0 0 0 0 0 

 
Table 2. Comparison between different methods when 10m = . 

Numerical Methods Maximum Error 

EDSM 3.7 × 10−13 

SRKM4 3.0 × 10−6 

LSRKM4 1.3 × 10−5 

FDM 1.1 × 10−3 

PAM(3,3) 3.3 × 10−9 

RCAM 9.9 × 10−7 

QBSM 3.9 × 10−3 

 
From Table 2, we can see that EDSM is the most efficient method for solving 

example 1, compare with the results of the five methods in ref. [22] and SRKM4.  
Again, we portray the exact analytical and approximate solutions in Figure 1; 

one would notice an ideal agreement between these solutions. 
Example 2. Consider the third-order linear BVP given by [23] [24] [25] [26] 

( )3 2e 2 5 3 , 0 1xy xy x x x x′′′ − = − − − ≤ ≤
 

( ) ( ) ( )0 0, 0 1, 1 0.y y y′= = =  
The exact analytical solution is given by ( ) ( )1 exy x x x= − . 

The approximate solution ( )z x  with 10m = , 1
10

h = , and kx kh=  for 

0,1, ,k m=  , is given by 

( ) ( ) ( )
( ) ( )

1
.

1k k k

u
z x u x v x

v
−

= +
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In Table 3, we report the absolute error difference between the exact analyti-
cal solution and, the proposed solution EEDSM and, further validated with ESRKM4 
and the other methods described in [23]. 

From Table 4, we can see that EDSM is the most efficient method for solving 
example 2, compare with the results of the all methods in [23] [24] [25] [26] and 
SRKM4. 

Again, we portray the exact analytical and approximate solutions in Figure 2; 
one would notice an ideal agreement between these solutions. 

Example 3. Consider the third-order linear singularly perturbed BVP given 
by [24] [25] [27]: 

( ) ( )281 cos 3 3 sin 3 , 0 1y y x x x′′′− + = + ≤ ≤    
 

 
Figure 1. Graphical comparative depictions of the exact and approximate solutions with 10m = . 
 

Table 3. The absolute error for EDSM, SRKM4 and the methods described in [23] when 
10m = . 

x ELSHPM2 EHPM2 ESRKM4 EEDSM 

0.0 1.8 × 10−15 0 0 0 

0.1 3.4 × 10−10 3.1 × 10−7 3.1 × 10−7 5.3 × 10−23 

0.2 5.4 × 10−10 1.2 × 10−6 6.0 × 10−7 3.2 × 10−23 

0.3 2.0 × 10−10 2.7 × 10−6 8.7 × 10−7 2.3 × 10−23 

0.4 8.0 × 10−10 4.7 × 10−6 1.1 × 10−6 5.1 × 10−23 

0.5 4.2 × 10−10 7.0 × 10−6 1.3 × 10−6 3.8 × 10−23 

0.6 3.1 × 10−10 9.3 × 10−6 1.4 × 10−6 4.8 × 10−23 

0.7 4.1 × 10−10 1.1 × 10−5 1.4 × 10−6 6.7 × 10−24 

0.8 1.7 × 10−11 1.0 × 10−5 1.2 × 10−6 3.8 × 10−23 

0.9 1.2 × 10−10 7.2 × 10−6 7.7 × 10−7 6.9 × 10−23 

1.0 7.5 × 10−15 1.6 × 10−13 0 0 

https://doi.org/10.4236/ijmnta.2023.123006


N. Al-Zaid et al. 
 

 

DOI: 10.4236/ijmnta.2023.123006 90 Int. J. Modern Nonlinear Theory and Application 
 

Table 4. Comparison between different methods. 

m Numerical Methods Maximum Error 

4 

EDSM 3.2 × 10−16 

SRKM4 4.7 × 10−5 

RKT3s4 4.3 × 10−6 

GJGOMM 1.0 × 10−6 

OCM 9.9 × 10−7 

6 

EDSM 1.3 × 10−24 

SRKM4 1.0 × 10−5 

GJGOMM 8.4 × 10−10 

OCM 8.4 × 10−10 

8 

EDSM 9.8 × 10−26 

SRKM4 3.4 × 10−6 

RKT3s4 2.3 × 10−7 

GJGOMM 5.1 × 10−13 

OCM 5.0 × 10−13 

10 

EDSM 6.9 × 10−23 

SRKM4 1.4 × 10−6 

LSHPM2 8.0 × 10−10 

HPM2 1.1 × 10−5 

GJGOMM 4.9 × 10−16 

OCM 2.3 × 10−16 
 

 
Figure 2. Graphical comparative depictions of the exact and approximate solutions with 10m = . 
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( ) ( ) ( ) ( )0 0, 0 9 , 1 3 sin 3 .y y y′= = =   
The exact analytical solution is given by ( ) ( )3 sin 3y x x=  . 

The approximate solution ( )z x  with 10m = , 1
10

h = , and kx kh=  for 

0,1, ,k m=  , is given by 

( ) ( ) ( ) ( )
( ) ( )

3 sin 3 1
.

1k k k

u
z x u x v x

v
−

= +


 
In Table 5, we report the absolute error difference between the exact analyti-

cal solution and, the proposed solution EEDSM and, further validated with ESRKM4. 
From Table 6, we can see that EDSM is the most efficient method for solving 

example 3, compare with the results of the all methods in [24] [25] [27] and 
SRKM4. 

Again, we portray the exact analytical and approximate solutions in Figures 
3-5; one would notice an ideal agreement between these solutions. 

Example 4. Consider the third-order linear BVP given by [24] [27] [28]: 

( ) ( )( ( )

( ) ( ) )

5 5 43 2

3 22 3

6 1 6 6 1 90 1

180 1 60 1 , 0 1,

y y x x x x x

x x x x x

′′′− + = − − − − −

+ − − − ≤ ≤

  

 
( ) ( ) ( )0 0, 0 0, 1 0.y y y′= = =  

The exact analytical solution is given by ( ) ( )536 1y x x x= − . 

The approximate solution ( )z x  with 10m = , 10h = , and kx kh=  for 
0,1, ,k m=  , is given by 

 
Table 5. The absolute error for EDSM and SRKM4 when 10m =  and different values 
 . 

x 
1

16
=

 

1
32

=
 

1
64

=
 

ESRKM4 EEDSM ESRKM4 EEDSM ESRKM4 EEDSM 

0.0 0 0 0 0 0 0 

0.1 7.9 × 10−7 2.6 × 10−28 3.1 × 10−7 2.2 × 10−25 5.8 × 10−8 1.5 × 10−22 

0.2 2.3 × 10−6 1.0 × 10−27 1.4 × 10−6 8.6 × 10−25 8.4 × 10−7 6.2 × 10−22 

0.3 4.4 × 10−6 2.4 × 10−27 3.0 × 10−6 2.0 × 10−24 2.2 × 10−6 1.4 × 10−21 

0.4 6.7 × 10−6 4.2 × 10−27 5.0 × 10−6 3.6 × 10−24 3.8 × 10−6 2.6 × 10−21 

0.5 8.8 × 10−6 6.7 × 10−27 6.8 × 10−6 5.7 × 10−24 5.3 × 10−6 4.3 × 10−21 

0.6 1.0 × 10−5 9.9 × 10−27 8.1 × 10−6 8.6 × 10−24 6.3 × 10−6 6.8 × 10−21 

0.7 1.0 × 10−5 1.4 × 10−26 8.4 × 10−6 1.3 × 10−23 6.6 × 10−6 1.0 × 10−20 

0.8 9.1 × 10−6 1.9 × 10−26 7.4 × 10−6 1.8 × 10−23 5.8 × 10−6 1.6 × 10−20 
2.2 × 10−20 0.9 5.7 × 10−6 2.4 × 10−26 4.7 × 10−6 2.4 × 10−23 3.6 × 10−6 

1.0 0 0 0 0 0 0 
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Table 6. Comparison between different methods when different values m and  . 

Numerical Methods m 

Maximum Error 

1
16

=
 

1
32

=
 

1
64

=
 

EDSM 

10 2.4 × 10−26 2.4 × 10−23 2.2 × 10−20 

20 1.0 × 10−40 4.5 × 10−39 7.0 × 10−33 

40 2.0 × 10−40 1.3 × 10−37 2.1 × 10−25 

SRKM4 

10 1.0 × 10−5 8.4 × 10−6 6.6 × 10−6 

20 7.0 × 10−7 5.5 × 10−7 4.1 × 10−7 

40 4.5 × 10−8 3.5 × 10−8 2.6 × 10−8 

RKT3s4 

10 1.9 × 10−5 3.7 × 10−5 7.0 × 10−5 

20 2.6 × 10−6 5.0 × 10−6 9.9 × 10−6 

40 3.4 × 10−7 6.6 × 10−7 1.3 × 10−6 

GJGOMM 10 9.3 × 10−13 4.2 × 10−13 4.2 × 10−13 

ESM 

10 4.4 × 10−8 1.9 × 10−8 7.9 × 10−9 

20 2.1 × 10−10 8.9 × 10−11 3.6 × 10−11 

40 1.1 × 10−12 4.5 × 10−13 1.8 × 10−13 

QNSM 

10 3.1 × 10−7 1.3 × 10−7 5.7 × 10−8 

20 4.9 × 10−9 2.1 × 10−9 8.5 × 10−10 

40 7.5 × 10−11 3.2 × 10−11 1.3 × 10−11 

 

 

Figure 3. Graphical comparative depictions of the exact and approximate solutions with 10m =  and 1
16

= . 
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Figure 4. Graphical comparative depictions of the exact and approximate solutions with 10m =  and 1
32

= . 

 

 

Figure 5. Graphical comparative depictions of the exact and approximate solutions with 10m =  and 1
64

= . 

 

( ) ( ) ( )
( ) ( )

1
.

1k k k

u
z x u x v x

v
−

= +
 

In Table 7, we report the absolute error difference between the exact analyti-
cal solution and, the proposed solution EEDSM and, further validated with ESRKM4. 

From Table 8, we can see that EDSM is the most efficient method for solving 
example 4, comparison with the results of the all methods in [24] [27] [28] and 
SRKM4 when 10m = . Also, the EDSM was more accurate when compared with 
the same methods at 20m ≥ , where we obtained the absolute error value of zero  
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Table 7. The absolute error for our method when 10m =  and different values  . 

x 

1
16

=
 

1
32

=
 

1
64

=
 

ESRKM4 EEDSM ESRKM4 EEDSM ESRKM4 EEDSM 

0.0 0 0 0 0 0 0 

0.1 7.0 × 10−6 4.8 × 10−31 3.3 × 10−6 4.0 × 10−28 1.5 × 10−6 2.8 × 10−25 

0.2 1.0 × 10−5 1.9 × 10−30 4.5 × 10−6 1.6 × 10−27 1.7 × 10−6 1.1 × 10−24 

0.3 1.2 × 10−5 4.4 × 10−30 4.8 × 10−6 3.6 × 10−27 1.6 × 10−6 2.6 × 10−24 

0.4 1.2 × 10−5 7.9 × 10−30 4.6 × 10−6 6.6 × 10−27 1.4 × 10−6 4.9 × 10−24 

0.5 1.1 × 10−5 1.2 × 10−29 4.0 × 10−6 1.1 × 10−26 1.2 × 10−6 8.1 × 10−24 

0.6 9.1 × 10−6 1.8 × 10−29 3.2 × 10−6 1.6 × 10−26 8.1 × 10−7 1.3 × 10−23 

0.7 7.2 × 10−6 2.6 × 10−29 2.2 × 10−6 2.3 × 10−26 4.3 × 10−7 1.9 × 10−23 

0.8 5.1 × 10−6 3.5 × 10−29 1.4 × 10−6 3.3 × 10−26 1.4 × 10−7 2.9 × 10−23 
4.2 × 10−23 0.9 2.8 × 10−6 4.6 × 10−29 7.0 × 10−7 4.4 × 10−26 1.5 × 10−8 

1.0 0 0 0 0 0 0 

 
Table 8. Comparison between different methods when 10m =  and different values  . 

Numerical Methods 

Maximum Error 

1
16

=
 

1
32

=
 

1
64

=
 

EDSM 4.6 × 10−29 4.4 × 10−26 4.2 × 10−23 

SRKM4 1.2 × 10−5 4.8 × 10−6 1.7 × 10−6 

RKT3s4 6.5 × 10−6 2.8 × 10−6 1.0 × 10−6 

ESM 1.0 × 10−6 4.3 × 10−7 1.8 × 10−7 

QNSM 6.9 × 10−6 2.9 × 10−6 1.2 × 10−6 

 
for all values of  . 

Again, we portray the exact analytical and approximate solutions in Figures 
6-8; one would notice an ideal agreement between these solutions. 

5. Conclusion 

In conclusion, the present paper proposed a numerical method to treat a partic-
ular class of third-order BVPs based on the combination of the shooting method 
and, the Adomian decomposition method (EDSM). A complete derivation of the 
method has been provided, in addition to its numerical implementation and, va-
lidation with the help of the shooting method with the fourth-order Runge- 
Kutta method (SRKM4). The proposed method was further applied to certain 
test problems and turned out to outperform the SRKM4 and, other available 
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Figure 6. Graphical comparative depictions of the exact and approximate solutions with 10m =  and 1
16

= . 

 

 

Figure 7. Graphical comparative depictions of the exact and approximate solutions with 10m =  and 1
32

= . 
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Figure 8. Graphical comparative depictions of the exact and approximate solutions with 10m =  and 1
64

= . 

 
methods in the literature. Lastly, we reported the simulated numerical results via 
graphical illustrations and, comparison tables. 
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