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Abstract 
The reaction diffusion Gray-Scott model with time delay is put forward with 
the assumption of Neumann boundary condition is satisfied. Based on the 
Turing bifurcation condition, the Turing curves on two parameter plane are 
discussed without time delay. The normal form is computed via applying 
Lyapunov-Schmidt reduction method in system of PDE, and the bifurcating 
direction of pitchfork bifurcation underlying codimension-1 singularity of 
Turing point is computed. The continuation of Pitchfork bifurcation is simu-
lated with varying free parameter continuously near the turing point, which is 
in coincidence with the theoritical analysis results. The wave pattern forma-
tion in the case of turing instability is also simulated which discover Turing 
oscillation phenomena from periodicity to irregularity. 
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1. Introduction 

Reaction diffusion model is ubiquitous in describing the spatial-temporal dy-
namical evolutionary behavior and to discover a variety of wave patterns which 
as often are seen in biological species in real life. The Gray-Scott diffusion model 
is motivated to do such simulations and have attracted attention in many re-
searchers investigation work. Initially it was set forth by Gray and Scott as a va-
riant of the autocatalytic model of glycolysis proposed by Sel’kov. Later authors 
in the papers ([1] [2] [3] [4]) put forth its new reaction mechanism by an au-
to-catalytic sequence and modelling its state variable control by time delay feed-
back method. For simplicity, the Gray and Scott model comes from mathemati-
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cally model governed by  
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with the initial conditions and Neumann boundary condition  
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            (1.2) 

where , , ,a b d ε  are constants, ∆  is Laplacian operator and Ω  is the domain 
of space variable x. 

It is easily to calculate that Equation (1.1) has a homogeneous stationary solu-
tion  

( )
( )

2 2 2 2

1 2 2

8 16
,

4 4

a b b babu u
b b b

σ σ σ

σ σ

+ + +
= =

+ +
             (1.3) 

Motivated by the aims to discover the complex dynamical evolution behavior 
both of the inhomogeneous solutions, we investigate the turing bifurcation me-
chanism inherently with time delay effects. Lyapunov-Schmidt method can be 
applied to investigate the bifurcation behavior at the Turing-instability bifurca-
tion point with simple eigenvalue. Some authors as referring to the papers ([5] [6] 
[7] [8]) also develop the numerical algorithm of Lyapunov-Schmidt method to 
explore the bifurcation scenario near simple bifurcation point. According to 
Lyapunov-Schmidt Reduction method, the original partial delay differential eq-
uation is expressed on the invariant center manifold to acquire the norm form 
correspondingly. With the analyzing results of the characteristic equation, for 
example the roots with zero real part crossing imaginary axis underlying the re-
lated positive or negative transversal conditions, the turing bifurcation mechan-
ism is exploited ([9] [10] [11] [12]). The numerical simulation results verify the 
analyzing result and near the threshold value the simulation bifurcating solution 
is in coincidence with its bifurcating directions. 

We get the periodical solutions in space near the turing bifurcation point and 
time-periodically solution mainly dependent on a series of DDEs by discretion 
method underlying time delay. The dynamics of Turing patterns in one dimen-
sion are simulated, which reflects the spatio-temporal oscillation under time de-
lay feedback. The wave simulations of reaction diffusion equation with time de-
lay still take some interesting methods, which alike the well known differential 
quadrature algorithms ([5] [13] [14] [15] [16]), element free Galerkin method, 
and Trigonometric B-spline functions interpolation method, etc. With free pa-
rameters varying in Turing instability region, the periodical travelling wave pat-
tern is induced ([17] [18]), and even from periodicity to un-regularity of wave 
patterns are discovered. 
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The whole paper is arranged as the listed. In section 2, the turing instability of 
Gray and Scott model underlying time delay is discussed. In section 3, the 
pitchfork bifurcation branch of turing bifurcation is discussed, which also de-
termine the bifurcation direction in turing point. In section 4, the numerical si-
mulation is done, the results is in coincidence with the theoretical analysis proof. 
Finally the discussion is given briefly. 

2. Turing Instability  

To solve Turing bifurcation problem, we first explains some notations in diffu-
sion Equation (1.2). Suppose X is the domain of Laplacian operator and respec-
tively, ,X Y  is Hilbert space defined by the inner product  
( ) ( ) ( )T, dx x xφ ψ φ ψ

Ω
π π= ∫  wherein φ  is defined in [ ]0,1 nΩ =  with 3n ≤ . 

Mapping ( )1,2 : ,G X Yα →  with 2Rα ∈ , we write the elliptic Equation of (1.2) 
as  

( )

( )

1 2
1 1 1 2

1

1 2
2 2 1 2

1

4,
1

,
1

u uG u v d u a u
u

u uG u v d u bu b
u

ε= ∆ + − −
+

= ∆ + −
+

                (2.1) 

with ( ),u v X∈  and ( ),dα ε= . 
Notice we set time delay 0τ =  in Equation (2.1), the discussion of Turing 

instability of Equation (2.1) is independent of time delay. The turing-Hopf in-
stability induce the periodical spatial oscillation phenomena doesn’t discuss here, 
however it may happen with time delay varying due to complex wave pattern 
phenomena. 

To analyze turing bifurcation point, we firstly investigate the characteristic eq-
uation with simple zero root. Based on the known knowledge of diffusion equa-
tion, the characteristic equation of Equation (2.1) is written as ( )0 0N

kk W λ
=

=∏ , 
with different 0k N∈ . It is easily to compute that  

( ) ( ) ( )( )
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Turing instability expands the non-homogeneous solution bifurcation branches 
with spectral assumption at singularity point. The characteristic equation with 
zero root with 0k =  is called as long wave modulation, however the named 
Turing instability happens if zero root appears with 1k ≥ . We set  

2 2 2 2 2 2 2

2

2 2 4 2 2

2

4 2 2 2 2 2 2

2

25 5 25 3 125 ,
25

5 25
25

4 25 100 25 .
25

a d k a dk d k ab dk aTr
a

a d k abd k dDet
a

k a dk ab dk dk a dk
a

ε ε

ε ε ε

+ + + + − +
=

+
+ +

=
+

− + + + +
+

+

       (2.3) 

As often as simple, we discuss the turing instability in the sequel paper which 
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satisfy with the following two assumption, 
H0: The parameters b lying in the regime above the curve 25 3 125 0ab a− + > ; 
H1: The necessary condition  

( )4 3 2 2 215625 9 130 25 750 1250 0a a b b a abε ε ε− − + + − + + <  is satisfied since  
( )min 0Det d < . 

To further compute the turing point, we solve 0Det =  to get turing curves  
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The turing-turing bifurcation also occurs at ( )* *,b d  by setting 1,0 ,1k kd d+ =  
to have  
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 (2.5) 

By the above discussion, 0Det =  has a simple threshold curve ( )d d ε=  of 
Turing bifurcation as depicted by Equation (2.4) if and only if ,k kb b b∗

∗ < < . We 
also compute the transversal condition  

( )( ) ( )
( ) ( )( ) ( )

2 2 2 2

2 2 2 2 2

25 1 3 5 125d 0
d 25 5

k a d a ab

b k a d k ab d

ε ελ
ε π ε

− + + + − −
= <

+

π

π +
        (2.6) 

Therefore we obtain the following results: 
Proposition 2.1 With fixed parameter , ,a b ε , the sequel points tracking on 

the Turing bifurcation curves has ,0 ,1k kd d<  by Equation (2.4), for all positive 
integer k. However, turing-turing bifurcation occurs if and only if 1,0 ,1k kd d+ =  
for some 1k > , therefore, the stability property of the homogeneous solution of 
system (1.1) (or system (2.1)), is changed when parameters pass over the Turing 
bifurcation curves, and the Turing instability regions are partitioned from the 
stability region. 

For example, choosing 20, 12a b= = , and by satisfying the basic assumptions 
H0 and H1, the turing bifurcation curves are drawn as shown in Figure 1(a) 
whilst ε  lying below * 0.91365064 1eε = − . It is seen that the steady state is 
usually asymptotically stable if *ε ε> . The alike conclusion is satisfied for 

20, 0.05565a ε= = , and we get the turing instability region given that the para-
meter b below the line * 19.70136134b b= = . The Turing bifurcation curves are 
plotted as shown in Figure 1(b).  

3. Pitchfork Bifurcation Branch from Turing Point  

As discussed in section 2, if Turing condition is satisfied, the non-constant  
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Figure 1. The turing bifurcation of parabolic Equation (2.1). (a) The Turing bifurcation curve on d-ε plane with fixed parameters 
as 20, 12a b= = . (b) The Turing bifurcation curve on b-d plane with fixed parameters as 20, 0.05565a ε= = . The interaction 
point which satisfies Equations (2.4) and (2.5) is happened with turing-turing bifurcation of codimension 2 sigularity. 
 

steady solution arise from the Turing point. We give a description of Pitchfork 
solution branch bifurcating from Turing point which is also verified by germ’s 
strong equivalent property. To clarify the bifurcating solution classifying prob-
lem, we conclude the following proposition: 

Proposition 3.1 Suppose on some neighborhood ,x λ  of the trivial solution, 
we define a function 2:g R R→  which is C∞ , then a germ ,xg λ∈  is strongly 
equivalent to polynomial 3x xα βλ±  if and only if at ( ) ( ), 0,0x λ = ,  

2

2

3 2

3

0

,

g g gg
x x

g gsign sign
xx

λ

α β
λ
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= = = =
∂ ∂∂

∂ ∂
= =
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Suppose 0α α=  is the bifurcation point of singularity. To discuss the stabili-
ty property of the homogeneous steady state ( )* *,u v , by doing axis transforma-
tion 1 *u u u= + , 2 *v u v= + , 0α α λ= + , the corresponding parabolic system is 
written as the addition of the linear system ( )1 1, ,L u v λ  and the corresponding 
nonlinear term ( )1 1, ,N u v λ , that is  

( ) ( ) ( )1 1 1 1 1 1, , , , , ,G u v L u v N u vλ λ λ= +               (3.1) 

with  
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and  
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To compute the norm form near ( )0,0 , considering the linear operator 
( )1 1, ,L u v λ , the corresponding Fredholm operator should has index zero, and 

we have the following proposition: 
Proposition 3.2 Underlying the sigularity condimension 1 bifurcation at 

Turing point 0α α=  in system (1.2), the normal form of Equation (2.7) under-
takes its strong equivalent form which can be expressed as 3g x xλ= + . In ad-
dition, the Turing bifurcation is a supercitial Pitchfork if 0λ < , or either mani-
fies a subcritical Pitchfork if 0λ > . 

Hence after the recognition of normal form problem arising from Turing bi-
furcation with simple zero characteristic root is solved. 

Proof: To carry out the normal form computation, we split space as  

( ) ( ),X Ker L M Y R L N= + = +                 (3.4) 

With ( )Ker L  and ( )R L  are respectively the kernal space and the range 
space of linear operator L. 

For example ( ) { }| 0Ker L βφ β= ≠ , φ  is the unit eigenvector with  
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π
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On the center manifold, define the projection mapping :E Y N→  which can 
separate Equation (2.7) into  

( )1 1, , 0EG u v λ =                        (3.5) 

and the corresponding bifurcation equation  

( ) ( )1 1, , 0I E G u v λ− =                      (3.6) 

By the space decomposition, we write 1

1

u
x W

v
φ

 
= + 
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, substituting it into Eq-

uation (2.9) and noticed that 0EL =  to get ( ):g Ker L M R N× × → ,  
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ψ φ ψ φ
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       (3.7) 

with definition of ( )T, dL L Lα ε=  while regard the bifurcation point as  

( )T, dL L Lα ε=  

or  

( )T, bL L Lα ε=  
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alike the definition at the turing point ( )T, bL L Lα ε=  respectively. 
It is easily to compute that  

2

2 2

0 0

2 5
25 25

bL a a
a a

 
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2 2
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0
0 1dL k
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We write the bifurcation equation as  

( ) ( ) ( ) ( ) ( ), , 0h x I E G x W LW N x W N x Wλ φ φ φ ψ φ= − + = + + − + =  (3.8) 

Since the operator L is Fredholm index 0, ( ):L M R L→  is invertible map-
ping. Hence by the implicit function theorem, Equation (3.8) determines the 
unique expression ( ),W W x λ= , then by Equation (3.7) we get the reduction 
equation on the center manifold  

( ) ( )( ), , ,g x N x W xλ ψ φ λ= +                 (3.9) 

To verify the strong equivalent form of germ g in proposition 3.1, suppose *L  
being adjoint operator of L, we can choose  
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Underlying Neumamn boundary condition, we compute 0xxg = , and  

( )( )3 3
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, 0,0 , , ,
x

xxx

g L x

g psi d N x
λ αψ φ λ

φ φ φ

=

=
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Therefore, the normal form in Proposition 3.2 is verified and the pitchfork 

bifurcation direction is determined by the sign of x

xxx

g
g

λλ = .  

4. Numerical Simulation  

Based on the results in section 2 and section 3, we can compute the correspond-
ing Turing point via varying free parameters. For example, by simple calculation, 
the Turing bifurcation happens at the homogeneous equilibrium solution with 
chosen parameters 20a = , 16b = , 0.05565ε =  whilst 1k = , 1.1181d = , and 
from the above discussion in section 3, we can compute the base φ  of kernal  

of linear operator L as ( ) 0.44103
cos

0.89749
k xφ


= π


 
 

, which further derive the formula  

( ) 3, 0.4001062699 1 0.8362161555g x d e x d xε ε= − + , then the nonhomogeneous 
steady state solution branch bifurcates from Turing point in accordance with the 
direction 0dε < , which is pitchfork and subcritical bifurcation. However with 

2k = , 0.7764d = , we have ( ) 3, 0.1050273688 1.282881210g x d x d xε ε= − , 

https://doi.org/10.4236/ijmnta.2023.122004


S. Q. Ma 
 

 

DOI: 10.4236/ijmnta.2023.122004 62 Int. J. Modern Nonlinear Theory and Application 
 

which is supercritical pitchfork of Turing bifurcation. Choosing 20a = ,  
0.05565ε =  to get Turing point 1k = , 1d = , 14.96776630b =  and 2k = , 
0.83d = , 14.40714340b = , the normal form at two different bifurcation point 

are respectively ( ) 3, 0.3884830554 1 0.1144224171g x b e x b xε ε= − −  and  
( ) 3, 0.1191247571 0.4528851324 1g x b x e b xε ε= − − , which is Turing subcritical 

bifurcation. As shown in Figure 2(a), with fixed parameters 20a = , 0.05565ε = , 
16b = , the continuation of Turing bifurcation is carrying out with the conti-

nuous varying of parameter d, which illustrates the Turing bifurcation point at 
1.1181d =  which is subcritical. As shown in Figure 2(b), the parameters are 

fixed as 20a = , 0.05565ε = , 1d = , we vary parameter b continuously, the 
continuation of supercritical Turing bifurcation at 14.96776630b =  is simu-
lated. The simulation algorithms are as often familiar as the well known diffe-
rential quadrature algorithms, element free Galerkin method, and trigonometric 
B-spline functions interpolation method, etc. 

The temporal-spatial solutions near Turing points as shown in Figure 3 illu-
strate the direction of pitchfork bifurcation, which is in coincidence with the 
sign of the coefficients λ  in normal form. For example, fixed parameter with 

20a = , 16b = , 0.05565ε = , as shown in Figure 3(a) and Figure 3(b), the 
subcritical Turing bifurcation happens at 1.1181d = . The constant steady state 
is asymptotically stable at 1.1190d =  and the non-homogeneous solution is 
observed at 1.1080d = . The supercritical Turing bifurcation manifests bifur-
cating non-constant solution at 0.7804d =  as shown in Figure 3(c), however 
the constant steady state is stable at 0.7704d =  as shown in Figure 3(d). The 
Turing solution and the Turing oscillation solution are observed at 0.05τ = ,

0.78d =  and 0.07τ = , 1.112d = , as shown in Figure 3(e) and Figure 3(f), 
respectively. 

 

 
Figure 2. The continuation of turing bifurcation with 20a = , 0.05565ε = . (a) Chosen with 16b = , the sub-
critical turing bifurcation happens at 1.1181d = ; (b) Chosen with 1d = , the supercritical turing bifurcation 
happens at 14.96776630b = . 
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Figure 3. The supercritical turing bifurcation with 20a = , 16b = , 0.05565ε =  and (a) 1.1190d = , (b) 1.1080d = ; The sub-
critical turing bifurcation with (c) 0.7804d = ; (d) 0.7704d = ; (e) 0.05τ = , 0.78d =  (f) 0.07τ = , 1.112d = . 
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Figure 4. The turing bifurcation and turing oscillation occurs via varying time delay, the parameters are fixed with 20a = , 

12b = , 0.04565ε = , 0.89d = . (a) Nonhomogeneous solution occurs with 0τ = ; (b) The turing oscillation solution with 
0.04τ = ; (c) The turing oscillation solution with 0.049τ = ; (d) The turing oscillation solution with 0.0498τ = ; (e) The wave 

pattern with 0.049τ = ; (f) The wave pattern with 0.0498τ = . 
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We also simulate the 2D tempo-spatial solutions and produce pictures via 
stretching y-axis in accordance with x-axis direction, which show us the numer-
ical solutions of PDE in an easy way, as shown in Figures 4(a)-(d). With fixed 
parameter 20a = , 12b = , 0.04565ε = , 0.89d = , varying time delay, system 
(1.1) manifests the nonhomogeneous solution at 0τ = , however, the occurrence 
of the Turing oscillation are simulated at 0.04τ = , 0.049τ =  and 0.0498τ = , 
respectively. The periodical wave patterns are schemed by projection onto X-Y 
plane hence is given in Figure 4(e) and Figure 4(f). 

We further do simulation to verify the wave pattern formation in Gray-Scott 
diffusion model with time delay effects. We choose 0.4τ = , fixed parameters 
with 20a = , 9.6b = , the wave pattern formation is simulated which illustrates 
the route of periodical oscillation to chaos, as shown in Figures 5(a)-(d), With 
different value of ε  and d, from its periodicity to irregularity, the wave patterns 
underlying Turing oscillation are simulated, which manifests turing-turing bifur-
cation can bring complex dynamical behavior underlying time delay effects. 

 

 
Figure 5. The wave pattern formation with 20a = , 9.6b =  and (a) 0.02ε = , 0.4565d = , (b) 0.018ε = , 

0.3565d = ; (c) 0.015ε = , 0.35d = ; (d) 0.01565ε = , 0.3d = . 
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5. Discussion 

We discuss the dynamics in Gray-Scott diffusion model produced via turing bi-
furcation, which usually emphasis on the significant turing condition. In an ob-
vious way, the turing-turing bifurcation can be either independent on time delay. 
Underlying small time delay, the Gray-Scott diffusion model brings forth the 
rich formation of wave patterns. By applying Lyapunov-Schimdt reduction me-
thod, the normal form of the turing bifurcation was computed. Correspondingly, 
the pitchfork bifurcation direction is determined by the coefficients of the strong 
equivalent form of germs in R2. However, the turing oscillation was observed as 
ascending time delay, which discovers that system of PDE may manifest codi-
mesion-2 singularity and the bifurcation mechanism need to be further studied. 
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Abstract 
This paper concerns the implementation of the orthogonal polynomials using 
the Galerkin method for solving Volterra integro-differential and Fredholm 
integro-differential equations. The constructed orthogonal polynomials are 
used as basis functions in the assumed solution employed. Numerical exam-
ples for some selected problems are provided and the results obtained show 
that the Galerkin method with orthogonal polynomials as basis functions 
performed creditably well in terms of absolute errors obtained. 
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1. Introduction 

Integro-differential equations (IDEs) have attracted growing interest over the 
years because of the mathematical application in real life problems. Mathemati-
cal modeling of real life problems usually resulted in fractional equations. Many 
mathematical formulations of physical phenomena contain integro-differential 
equations. These equations arise in many fields like Physics, Astronomy, Poten-
tial theory, Fluid dynamics, Biological models and Chemical kinetics. Integro- 
differential equations contain both integral and differential operators. The de-
rivatives of the unknown functions may appear to any order (see [1] and [2]). [3] 
obtained solution of an integro-differential equation arising in oscillating mag-
netic field using Homotopy perturbation method. Galerkin method is a powerful 
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tool for solving many kinds of equations in various fields of science and engi-
neering. It is one of the most important weighted residual methods inverted by 
Russians mathematicians Boris Grigoryevrich Galerkin. Recently, various Galer-
kin algoriyhm have been applied in numerical solution of integral and integro- 
differential equations. The following methods that are based on the Galerkin 
ideas, includes Galerkin Finite Element [4], iterative Galerkin with hybrid func-
tions [5], Crank-Nicolson least squares Galerkin [6], and Legendre Galerkin [7]. 
[8] published a note on three numerical procedures to solve Volterra integro- 
differential equations on structural analysis. 

2. Problem Considered 

We consider the higher order linear integro-differential equation as follows: 

( ) ( ) ( )( )
( ) ( )

0
, d

n h xi
i g x

i
P y k x t y t t f xλ

=

+ =∑ ∫                 (1) 

Subject to the following conditions 
( ) ( ) , 1,2, ,k

ky a k nα= =                      (2) 

where ( )0k kα ≥  are constant coefficients, ( )g x  and ( )h x  are lower and 
upper limits of integration, λ is a constant parameter and ( ),k x t is a function 
of two variables x and t called the kernel, ( )f x  is a known function and ( )y x  
is the unknown function to be determined. 

3. Definitions  

Integro-differential equation 
An integro-differential equation is an equation involving both integral and 

derivatives of a function. Example of such equation is stated below: 

( ) ( ) ( ) ( ) ( ) ( )2 1 0 , d
b

a
a y x a y x a y x H x t y t t f xλ′′ ′+ + + =∫         (3) 

Galerkin method 
Galerkin method is a method of determining coefficient ka  in a power series 

solution of the form: 

( ) ( ) ( )0
0

n

k k
k

y x y x a y x
=

≅ +∑                    (4) 

of the ordinary differential equation ( ) 0L y x  =   so that ( )L y x   , the result 
of applying the ordinary differential operator to ( )y x , is orthogonal to every 

( )ky x  for 1,2, ,k n=   
Chebyshev Polynomial 
The Chebyshev polynomials of the first kind are a set of orthogonal polyno-

mials defined as the solutions to the Chebyshev differential equation and de-
noted by ( )nT x . The Chebyshev polynomial of the first kind denoted by ( )nT x  
is defined by the contour integral  

( )
( )

2 1

2

11( ) d
4 1 2

n

n

t t
T x t

i tz t

− −−
=

π − +∫  
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Where the contour encloses the origin and is traversed in a counter clockwise 
direction. 

Orthogonal over a set  
A set of function ( ){ }r xφ  is said to be orthogonal over a set of points { }ix  

with respect to the weight function ( )w x , if  

( ) ( ) ( )
0

0,
N

i j i k i
i

w x x x i kφ φ
=

= ≠∑  

Orthogonal over an interval 
A set of functions ( ){ }r xφ  is said to orthogonal on an interval [ ],a b  with 

respect to the weight function ( )w x , if  

( ) ( ) ( )d 0,
b

i ja
w x x x x i jφ φ = ≠∫  

Approximate solution  
Approximate solution is used for the expression obtained after the unknown 

constants have been generated and substituting back into the assumed solution. 
It is hereby call approximate solution since it is a reasonable approximation to 
the exact solution.  

4. Construction of Orthogonal Polynomials 

In this section, we constructed orthogonal polynomials ( )if x , valid on the in-
terval [ ],a b  with the leading term ix   

Then, starting with 

( )0 1f x = ,                           (5) 

Thus, we find the linear polynomials ( )1f x , with leading term x, is written as 

( ) ( )1 1,0 0f x x k f x= + ,                      (6) 

where, 1,0k  is a constant to be determined. Since ( )0f x  and ( )1f x  are or-
thogonal, we have, 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2
0 1 0 1,0 0d 0 d d

b b b

a a a
w x f x f x x xw x f x x k w x f x x= = +∫ ∫ ∫  

using (5) and (6). 
From the above, we have, 

( ) ( )
( ) ( )( )

0
1,0 2

0

d
b

a
b

a

xw x f x
k x

w x f x
= − ∫
∫

  

Hence, (6) gives, 

( )
( ) ( )

( ) ( )( )
0

1 2
0

d
b

a
b

a

xw x f x
f x x x

w x f x
= − ∫

∫
 

Now, the polynomials ( )2f x , of degree 2 and the leading term 2x  is written 
as  

( ) ( ) ( )2
2 2,0 0 2,1 1f x x k f x k f x= + +                  (7) 
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where the constants 2,0k  and 2,1k  are determined by using orthogonality con-
ditions  

( ) ( ) ( )
( ) ( )2

0,
d

d ,
b

bp qa
pa

p q
w x f x f x x

w x f x x p q

≠= 
=

∫ ∫
         (8) 

Since ( )2f x  is orthogonal to ( )0f x , we have  

( ) ( ) ( ) ( )2
0 2,0 0 2,1 1 d 0

b

a
w x f x x k f x k f x x + + = ∫            (9) 

Since, 

( ) ( ) ( )0 1 d 0
b

a
w x f x f x x =∫  

The above equation gives  

( ) ( )
( ) ( )( )

( )
( )

2 2
0

2,0 2
0

d
d

d

b b

a a
b b

a a

x w x f x x w x x
k x

w x f x w x x
= − = −∫ ∫
∫ ∫

           (10) 

Again, since ( )2f x  is orthogonal to ( )1f x , we have 

( ) ( ) ( ) ( )2
1 2,0 0 2,1 1 d 0

b

a
w x f x x k f x k f x x + + = ∫  

Thus, using (7), we obtain  

( ) ( )
( ) ( )( )

2
1

2,1 2
1

d
b

a
b

a

x w x f x
k x

w x f x
= − ∫
∫

                   (11) 

Since 2,1k  and 2,0k  are known, (7) determines ( )2f x . Proceeding in the 
same way, the method is generalized and we have, 

( ) ( ) ( ),0 0 ,1 1 , 1
j

j j j j jf x x k f x k f x k −= + + + +            (12) 

where the constants ,j ik  and so chosen that ( )jf x  is orthogonal to  

( ) ( ) ( )0 1 1, , , jf x f x f x−  

These conditions yield, 

( ) ( )
( ) ( )( ), 2 d

b j
ia

j i b
ia

x w x f x
k x

w x f x
= − ∫
∫

                  (13) 

Few terms of orthogonal polynomials valid in the interval [−1, 1] are given 
below. 

( )
( )

( )

( )

( )

0

1

2
2

3
3

4 2
4

1

1
3
3
5
6 3
7 35

f x

f x x

f x x

f x x x

f x x x

=

=

= −

= −

= − +



 

etc. 
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5. Demonstration of Orthogonal Galerkin Method on  
General Problem Considered 

In this section, we considered (1) and (2).  
Here we assumed an approximate solution of the form 

( ) ( ) ( )
0

, 1 1
N

N i i
i

u x u x a f x x
=

≅ = − ≤ ≤∑                (14) 

where ( )( )0if x i ≥  are the orthogonal polynomial constructed and valid in the 
interval [−1, 1]. 

Thus, differentiating (14)/with respect to x, n times, we have  

( ) ( ) ( ) ( ) ( ) ( )
0

N
n n n

N i i
i

u x u x a f x
=

≅ =∑                  (15) 

Substituting (14) and (15) into (1), we obtain  

( ) ( ) ( ) ( ) ( )
0

0 0 0 0
, d

n N N Nxn
k i i i i

k i i i
P a f x f x a k x t f t tλ

= = = =

= +∑∑ ∑ ∑∫         (16) 

We determined the unknown coefficients ia  using the Galerkin idea by mul-
tiplying both sides of (16) by ( )jf x  and then integrating with respect to x from 
−1 to 1. 

Thus, we obtain 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1
0 0

1 1

1 0 1
0 0

d

d , d d , 0,1, ,

n N
n

k i i j
k i

N Nx
j i i j

i i

P a f x f x x

f x f x x a k x t f t f x t x j Nλ

−
= =

− −
= =

= + =

∑∑ ∫

∑ ∑∫ ∫ ∫ 

 (17) 

This process generates a system of linear equations for the unknown { } 0

N
i i

a
=

 
together with the conditions  

( ) ( )
0

, 1,2, ,
N

j
i i j

i
a f a j nα

=

= =∑                   (18)  

for the same number of equations in the linear system. 
The unknown parameters are determined by solving the system (17) and (18). 

The values of the constants obtained are then substituted back into (14) to get 
the required approximate solution for the appropriate order.  

6. Numerical Experiments 

In this section, we consider four selected problems for experimenting and com-
pare our results with existing results. 

Numerical example 1 
We consider the Volterra integro-differential equations of the second kind of 

the form: 

( ) ( )
0

1 2 sin d
x

y x x x y t t′ = − + ∫                    (19) 

together with the condition given as 
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( )0 0y =                           (20) 

The exact solution is given as 

( ) cosy x x x=  

Here we solved example 1 for case 4N = . 
Thus, Equation (14) becomes 

( ) ( )
4

4
0

i i
i

y x a f x
=

= ∑                       (21) 

Substituting the values of ( ) ,0 4if x i≤ ≤ , we obtain 

( ) ( ) ( ) ( ) ( )

( ) ( )

2 3
4 0 1 2 3

4 2
4

1 32 1 2 1 2 1 2 1
3 5

6 32 1 2 1
7 35

y x a x a x a x x a

x x a

   = + − + − − + − − −   
   

 + − − − + 
 

  (22)
 

and, 

( ) ( ) ( ) ( )2 3
4 1 2 3 4

6 48 242 8 4 6 2 1 8 2 1
5 7 35

y x a x a x a x x a   ′ = + − + − − + − − +   
   

 (23) 

Substituting (23) into (19) for case N = 4, we obtain 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 3
1 2 3 4

2 3
0 1 2 3

4 2
4

6 48 242 8 4 6 2 1 8 2 1
5 7 35
1 32 1 2 1 2 1 2 1
2 5

6 32 1 2 1 d 1 2 sin
7 35

x

a

a x a x a x x a

a t a t a t t a

t t a t x x

   + − + − − + − − +   
   

    − + − + − − + − − −    
   

 + − − − + = − 
  

∫    (24)
 

Thus, evaluating the integral in (24) and simplifying, we obtain 

( )

( )

( )

2 2 3
0 1 2

2 4 3 2
3

3 5 4 3 2
4

15 42 2 4
2 3

2 12 66 2 1 2 4
3 5 5
248 16 48 16 248 2 1 8 1 2 sin
35 5 7 7 35

xa x x a x x x a

x x x x x a

x x x x x x a x x

 − + + − + + − + 
 

 + − + − + − − 
 
 + − − − + − + + = − 
 

 (25) 

The unknown coefficients ( )4ia i ≤  are determined using the Galerkin idea 
by multiplying both sides of (25) by ( )2 1jf x −  and then integrating the re-
sulted equation between x = −1 to x = 1. 

For case j = 1, we multiplied both sides of (25) by (2x − 1) and then integrat-
ing the resulted equation between x = −1 to x = 1, to obtain 

0 1 2 3 4
4 2 460 60322 0.7953
3 5 9 35

a a a a a− − − − + = −            (26) 

For case j = 2, we multiplied both sides of (25) by ( )2 12 1
3

x − −  and then in-

tegrating the resulted equation between x = −1 to x = 1, to obtain 
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0 1 2 3 4
8 148 20 183272 128032 0.363
3 45 9 1575 315

a a a a a+ + + − =         (27)
 

For case j = 3, we multiplied both sides of (25) by ( ) ( )3 32 1 2 1
5

x x− − −  and 

then integrating the resulted equation between x = −1 to x = 1, to obtain 

0 1 2 3 4
32 92 1544 20776 11053408 0.18
5 15 525 75 11025

a a a a a− − − − + =        (28) 

For case j = 4, we multiplied both sides of (25) by ( ) ( )4 26 32 1 2 1
7 35

x x− − − +  

and then integrating the resulted equation between x = −1 to x = 1, to obtain 

0 1 2 3 4
1664 432 416 2518688 124288 2.3
105 35 105 3675 49

a a a a a+ + + − = −        (29) 

Now, using the condition given in (22), we obtain 

0 1 2 3 4
2 2 8 0
3 5 25

a a a a a− + − + =                   (30) 

Hence, (26)-(30) are then solved to obtain the unknown constants  
( )0,1,2,3,4ia i =  which are then substituted to the approximate Equation (22). 
Again, we solved (1) and (2) for case N = 6 by re-writing (21) as: 

( ) ( )
6

6
0

i i
i

y x a f x
=

= ∑                         (31)
 

Hence, (31) becomes 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2
6 0 1 2

3
3

4 2
4

5 3
5

6 4 2
6

12 1 2 1
3

32 1 2 1
5
6 32 1 2 1
7 35
10 52 1 2 1 2 1
9 21

15 5 52 1 2 1 2 1
11 11 231

y x a x a x a

x x a

x x a

x x x a

x x x a

 = + − + − − 
 

 + − − − 
 
 + − − − + 
 
 + − − − + − 
 
 + − − − + − − 
 

      (32)
 

And, 

( ) ( ) ( )

( )

( ) ( )

( ) ( )

2
6 1 2 3

3
4

3
4

5

3
5

6

62 8 4 6 2 1
5

48 248 2 1
7 35

20 2 1 1010 2 1
3 21

120 2 1 40 2012 2 1
11 11 11

y x a x a x a

x x a

x
x a

x xx a

 ′ = + − + − − 
 

 + − − + 
 
 −
 + − − +
 
 
 −
 + − − + −
 
 

        (33)  

Thus substituting (32) and (33) into (19), we obtain 
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 3
1 2 3 4

3 3
4 5

5

2 3
6 0 1 2 30

4 2

6 48 242 8 4 6 2 1 8 2 1
5 7 35

20 2 1 120 2 110 4010 2 1 12 2 1
3 21 11 11

20 1 32 1 2 1 2 1 2 1
11 2 5

6 32 1 2 1
7 35

x

a x a x a x x a

x x xx a x

a a t a t a t t a

t t

   + − + − − + − − +   
   

  − −
  + − − + + − − +
  
  

    − − + − + − − + − − −    
    

 + − − − +


∫

( ) ( )

( ) ( )

3
4

4 5

3
5

6

20 2 1 1010 2 1
3 21

120 2 1 40 2012 2 1 d 1 2 sin
11 11 11

t
a t a

t tt a t x x

 −
 + − − +    

 −  + − − + − = −    

 (34)
 

Thus, evaluating the integral in (34) and simplifying, we obtain 

( )

( )

( )

( ) ( )

( ) ( )

2 2 3
0 1 2

2 4 3 2
3

3 5 4 3 2
4

4 3 5 4 3 2
5

5 3

15 42 2 4
2 3

2 12 66 2 1 2 4
3 5 5
248 16 48 16 248 2 1 8
35 5 7 7 35
20 1200 280 32010 2 1 2 1 32 60
3 147 3 3

12012 2 1 2 1
11

xa x x a x x x a

x x x x x a

x x x x x x a

x x x x x x x a

x x

 − + + − + + − + 
 

 + − + − + − − 
 
 + − − − + − + + 
 
 + − − − + − + − + 
 

− −+ − 6 5 4

3 2
6

72 1280 2400192
11 11 11

1280 320 1 2 sin
11 11

x x x x

x x a x x

 + − + −

+ − 
 −



=


 (35) 

The unknown coefficients ( )4ia i ≤  are determined using the Galerkin idea 
by multiplying both sides of (35) by ( )2 1jf x −  and then integrating the re-
sulted equation between x = −1 to x = 1. 

For case j = 1, we multiplied both sides of (35) by (2x − 1) and then integrat-
ing the resulted equation between x = −1 to x = 1, to obtain 

0 1 2 3 4 5 6
4 2 460 6032 97264 3601602 0.7953
3 5 9 35 189 231

a a a a a a a− − − − + − + = −  (36)
 

For case j = 2, we multiplied both sides of (35) by ( )2 12 1
3

x − −  and then in-

tegrating the resulted equation between x = −1 to x = 1, to obtain 

0 1 2 3 4 5 6
8 148 20 183272 128032 238816 1507904 0.363
3 45 9 1575 315 189 385

a a a a a a a+ + + − + − = (37) 

For case j = 3, we multiplied both sides of (35) by ( ) ( )3 32 1 2 1
5

x x− − −  and 

then integrating the resulted equation between x = −1 to x = 1, to obtain 

0 1 2 3 4 5

6

32 92 1544 20776 11053408 1007648
5 15 525 75 11025 315
2330560 0.18

231

a a a a a a

a

− − − − + −

=+
    (38)
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For case j = 4, we multiplied both sides of (35) by ( ) ( )4 26 32 1 2 1
7 35

x x− − − +  

and then integrating the resulted equation between x = −1 to x = 1, to obtain 

0 1 2 3 4 5

6

1664 432 416 2518688 124288 360321152
105 35 105 3675 49 47659

63937952 2.3
24255

a a a a a a

a

+ + + − +

− = −
  (39) 

For case j = 5, we multiplied both sides of (25) by  

( ) ( ) ( )5 310 52 1 2 1 2 1
9 21

x x x− − − + −  and then integrating the resulted equation 

between x = −1 to x = 1, to obtain 

( )

0 1 2 3 4 5

6

2528 4976 2720 550112 1396705664 85672064
63 180 7 315 218295 3969

48377661184 3152 2002592 144cos 1
693693 63 63 7

a a a a a a

a

− − + − + −

+ = − − +
 (40) 

For case j = 6, we multiplied both sides of (35) by  

( ) ( ) ( )6 4 215 5 52 1 2 1 2 1
11 11 231

x x x− − − + − −  and then integrating the resulted eq-

uation between x = −1 to x = 1, to obtain 

( ) ( )

0 1 2 3 4 5

6

2528 4976 2720 550112 1396705664 85672064
63 180 7 315 218295 3969

48377661184 1376 230568512 1290272cos 1 sin 1
693693 11 231 63

a a a a a a

a

− − + − + −

+ = − − +
 (41)

 

Now, using the condition given in (22), we obtain 

0 1 2 3 4 5 6
2 2 8 8 16 0
3 5 25 63 231

a a a a a a a− + − + − + =                 (42)
 

Hence, (36)-(42) are then solved to obtain the unknown constants  
( )0,1,2,3,4,5,5,6ia i =  which are then substituted to the approximate equation 

(32). More values of N are computed follow the same procedure and the results 
obtained are tabulated below. 

Example 2: 

( ) ( ) ( ) ( )1

1
e 2sin dxy x xy x xy x x y t t

−
′′ ′+ − = − + ∫

 
With the conditions  
( )0 1y =  and ( )0 1y′ = , The exact solution is ( ) exy x = .

 Example 3: Consider the Fredholm integro-differential equation (See [2]) 

( ) ( )1 2
0

1 e d , 0 1xy'''' x y t t x−= + < <∫  

Together with the conditions ( ) ( )0 0 1y y′= = ; ( )1 ey = ; ( )1 ey′ = . The ex-
act solution is ( ) exy x = . 
• Denotes the results are not available for comparison 
• Denotes Results are not available for comparison 

Example 4: Consider the Fredholm integro-differential equation (See [2]) 

( ) ( ) ( ) ( )
0

3 e d , 0 1
xxy'''' x x x y x y t t x= + + + − < <∫
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With the following conditions  
( )0 1y = ; ( )1 1 ey = + ; ( )0 2y′′ = ; ( )1 3ey′′ = . The exact solution is  

( ) 1 exy x x= + .
 • Denotes Results are not available for comparison 

• Denotes Results are not available for comparison 

7. Discussion of Results 

The approximate solution obtained by means of Galerkin method is a finite 
power series which can be in turn expressed in closed form of exact solution as 
the degree of the approximant increases. The finite series solution is obtained for 
each problem considered by increasing the value of N, which in turn converges 
to closed form of exact solution, the absolute errors obtained tend to zero and 
ensures stability of our method (See Tables 1-8). Also, from the results obtained 
by [2], our method proved superior to [2]. As N increases, the results obtained in 
some cases converged. It proves a very efficient method for the problems at-
tempted, for which the form of the solution is known. 

 
Table 1. Numerical results and absolute errors of example 1 for case N = 4. 

X Exact solution Approximate solution Approximate solution 

0 0 0 0 

0.1 0.09999984769 0.1007787777 7.7893 × 10−4 

0.2 0.19999871500 0.20007989915 8.0021 × 10−4 

0.3 0.29999588772 0.30082048742 8.2460 × 10−4 

0.4 0.39990252364 0.40085698231 9.5446 × 10−4 

0.5 0.49998096153 0.50093900554 9.5813 × 10−4 

0.6 0.59996710167 0.60128870164 1.2920 × 10−3 

0.7 0.69994775882 0.70214095881 2.1932 × 10−3 
0.8 0.79992201922 0.80415158192 4.2296 × 10−3 

0.9 0.89988896922 0.90630266921 6.4113 × 10−3 

1.0 0.99984769523 1.00008011995 2.3242 × 10−4 
 

Table 2. Numerical results and absolute errors of example 1 for case N = 6. 

X Exact solution Approximate solution Approximate solution 

0 0 0 0 
0.1 0.09999984769 0.1000123167 1.2409 × 10−5 

0.2 0.19999871500 0.2000261375 2.7350 × 10−5 

0.3 0.29999588772 0.3000306197 3.4732 × 10−5 

0.4 0.39990252364 0.4000469833 5.6731 × 10−5 

0.5 0.49998096153 0.5000608685 7.9907 × 10−5 

0.6 0.59996710167 0.6000487216 8.1620 × 10−5 

0.7 0.69994775882 0.7000377598 9.0001 × 10−5 

0.8 0.79992201922 0.8003215592 3.9951 × 10−5 

0.9 0.89988896922 0.9002501792 3.6121 × 10−5 

1.0 0.99984769523 1.0003425534 5.5778 × 10−5 
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Table 3. Numerical results and absolute errors of example 2 for case N = 4. 

X Exact solution Approximate solution Approximate solution 

−1 0.36787944 0.37418684 6.3074 × 10−3 

−0.8 0.44932896 0.45641056 7.0816 × 10−3 

−0.6 0.54881164 0.55712374 8.3121 × 10−3 

−0.4 0.67032005 0.68009815 9.7781 × 10−3 

−0.2 0.81873075 0.82014445 1.4137 × 10−2 

0 1.00000000 1.00180376 1.8937 × 10−2 

0.2 1.22140283 1.24357182 2.2169 × 10−3 

0.4 1.47182472 1.49774274 2.5918 × 10−2 

0.6 1.82211881 1.85630581 3.4187 × 10−2 

0.8 2.22551000 2.26616893 4.0928 × 10−2 

1.0 2.71828182 2.78212785 6.3846 × 10−3 
 

Table 4. Numerical results and absolute errors of example 2 for case N = 4. 

X Exact solution Approximate solution Approximate solution 

−1 0.36787944 0.367966169 8.6729 × 10−5 

−0.8 0.44932896 0.449409094 8.0134 × 10−5 

−0.6 0.54881164 0.548889417 7.7837 × 10−5 

−0.4 0.67032005 0.676389371 6.9321 × 10−5 

−0.2 0.81873075 0.818758949 7.8199 × 10−5 

0 1.00000000 1.000966532 7.6653 × 10−4 

0.2 1.22140283 1.222229894 8.9614 × 10−4 

0.4 1.47182472 1.472514031 6.8933 × 10−4 

0.6 1.82211881 1.822781972 5.9397 × 10−4 

0.8 2.22551000 2.226029824 4.8892 × 10−4 

1.0 2.71828182 2.718738011 4.5621 × 10−4 
 

Table 5. Numerical results and absolute errors of example 3 for case N = 4. 

X Exact 
Approximate 

of [2] 
Approx. of Our 

Method 
Absolute errors of 

[2] 
Absolute errors of 

Our Method 

0.0 1.0000000 1.0000000 1.00000000 0 0 

0.1 1.105171  1.105173451 * 2.451 × 10−6 

0.2 1.2214027 1.2214 1.221409351 1.0270 × 10−4 6.651 × 10−6 

0.3 1.349859 * 1.349868872 * 9.872 × 10−6 

0.4 1.4918246 1.4918 1.491856800 1.1246 × 10−3 3.220 × 10−5 

0.5 1.648721 * 1.648800850 * 7.985 × 10−5 

0.6 1.8221188 1.8221 1.822700800 6.1188 × 10−3 5.820 × 10−4 

0.7 2.013753 * 2.014370200 * 6.172 × 10−4 

0.8 2.2255409 2.2255 2.228210900 2.0241 × 10−2 2.670 × 10−3 

0.9 2.459603 * 2.465275000 * 5.672 × 10−3 

1.0 2.71828183 2.7183 2.725281830 5.1282 × 10−2 7.000 × 10−3 

*Denotes the results are not available for comparison.  
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Table 6. Numerical results and absolute errors of example 3 for case N = 10. 

X Exact 
Approximate  

of [2] 
Approx. of  

Our Method 
Absolute  

errors of [2] 
Absolute errors  
of Our Method 

0.0 1.0000000 1.0000 1.00000000000 0 0 
0.1 1.105171 * 1.10517109874 * 9.874 × 10−8 
0.2 1.2214027 1.2214 1.22140278125 2.700 × 10−6 8.125 × 10−8 
0.3 1.349859 * 1.34985906846 * 6.845 × 10−8 
0.4 1.4918246 1.4918 1.49182466533 2.460 × 10−5 5.329 × 10−8 
0.5 1.648721 * 1.64872104101 * 4.101 × 10−8 
0.6 1.8221188 1.8221 1.82211884674 1.880 × 10−5 4.674 × 10−8 
0.7 2.013753 * 2.01375304115 * 4.115 × 10−8 
0.8 2.2255409 2.2255 2.22554093985 4.090 × 10−5 3.985 × 10−8 
0.9 2.459603 * 2.45960302679 * 2.679 × 10−8 
1.0 2.71828183 2.7183 2.71828184068 1.820 × 10−5 1.068 × 10−8 

*Denotes the results are not available for comparison. 
 

Table 7. Numerical results and absolute errors of example 4 for case N = 4. 

X Exact Approx. of [2] 
Approx. of  

Our Method 
Absolute  

errors of [2] 
Absolute errors  
of Our Method 

0.0 1.0000000 1.0000 1.0000000000 0 0 
0.1 1.110517 * 1.1105179874 * 9.874 × 10−7 
0.2 1.2442805 1.244 1.2442922210 2.8055 × 10−4 1.172 × 10−6 
0.3 1.404958 * 1.4049590990 * 1.099 × 10−6 
0.4 1.5967298 1.592 1.4967570200 2.7299 × 10−4 9.722 × 10−5 
0.5 1.824361 * 1.8244327200 * 7.172 × 10−5 
0.6 2.0932712 2.068 2.0933164710 2.5270 × 10−2 4.527 × 10−5 
0.7 2.409627 * 2.4096387200 * 1.172 × 10−5 
0.8 2.7804327 2.696 2.7805028800 8.4430 × 10−2 9.018 × 10−4 
0.9 3.213943 * 3.2140147700 * 7.177 × 10−4 
1.0 3.71828183 3.5 2.7183814900 2.1820 × 10−1 6.966 × 10−4 

*Denotes the results are not available for comparison. 
 

Table 8. Numerical results and absolute errors of example 4 for case N = 10. 

X Exact Approx. of [2] 
Approx. of  

Our Method 
Absolute  

errors of [2] 
Absolute errors  
of Our Method 

0.0 1.0000000 1.0000 1.000000000000 0 0 
0.1 1.110517 * 1.1105170009231 * 9.231 × 10−10 
0.2 1.2442805 1.2443 1.2442805007638 1.950 × 10−5 7.638 × 10−10 
0.3 1.404958 * 1.4049580006618 * 6.618 × 10−10 
0.4 1.5967298 1.5967 1.5967298002963 3.000 × 10−10 2.963 × 10−10 
0.5 1.824361 * 1.8243610001316 * 1.316 × 10−10 
0.6 2.0932712 2.0933 2.0932712009316 1.772 × 10−8 9.316 × 10−9 
0.7 2.409627 * 2.4096270492700 * 4.927 × 10−8 
0.8 2.7804327 2.7804 2.7804327297800 3.214 × 10−7 2.978 × 10−8 
0.9 3.213643 * 3.2136430198200 * 1.982 × 10−8 
1.0 3.71828183 3.7184 2.7182827690000 1.820 × 10−5 9.390 × 10−7 

*Denotes the results are not available for comparison. 
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8. Conclusion 

In this work, we have proposed the Galerkin method for solving both the boun-
dary and initial value problems for a class of higher order linear and nonlinear 
Volterra and Fredholm integro-differential based on the constructed orthogonal 
polynomials as basis function. Illustrative examples are included to demonstrate 
the validity and applicability of the technique and the tables of results presented 
reveal that the absolute error decreases when the degree of approximation in-
creases. Furthermore, since basis functions constructed are polynomials, the 
values of the integrals for the nonlinear integro differential equations are calcu-
lated as approximately close to the exact solutions. 
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