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Abstract

The reaction diffusion Gray-Scott model with time delay is put forward with
the assumption of Neumann boundary condition is satisfied. Based on the
Turing bifurcation condition, the Turing curves on two parameter plane are
discussed without time delay. The normal form is computed via applying
Lyapunov-Schmidt reduction method in system of PDE, and the bifurcating
direction of pitchfork bifurcation underlying codimension-1 singularity of
Turing point is computed. The continuation of Pitchfork bifurcation is simu-
lated with varying free parameter continuously near the turing point, which is
in coincidence with the theoritical analysis results. The wave pattern forma-
tion in the case of turing instability is also simulated which discover Turing
oscillation phenomena from periodicity to irregularity.

Keywords

Reaction Diffusion, Turing Bifurcation, Normal Form, Time Delay

1. Introduction

Reaction diffusion model is ubiquitous in describing the spatial-temporal dy-
namical evolutionary behavior and to discover a variety of wave patterns which
as often are seen in biological species in real life. The Gray-Scott diffusion model
is motivated to do such simulations and have attracted attention in many re-
searchers investigation work. Initially it was set forth by Gray and Scott as a va-
riant of the autocatalytic model of glycolysis proposed by Sel’kov. Later authors
in the papers ([1] [2] [3] [4]) put forth its new reaction mechanism by an au-
to-catalytic sequence and modelling its state variable control by time delay feed-

back method. For simplicity, the Gray and Scott model comes from mathemati-
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cally model governed by
du, (t - t—
%zgdAu, +a—-u — ul( T)uz( > T)
dt Lu(—7) -
- t— '
% =dAu, +bu, —b—u1 ( ‘r)uz ( > T)
t 1+u (t-7)
with the initial conditions and Neumann boundary condition
%:%:O, xed,t>0
on oOn (1.2)

u (x,0)=¢,u,(x,0)=¢,, xeQ,0e[-7,0]

where a,b,d,& are constants, A is Laplacian operator and Q is the domain
of space variable x.
It is easily to calculate that Equation (1.1) has a homogeneous stationary solu-
tion
ab 0(a2b2+b2 +8b0+160'2)

= ,u = (1'3)
b+do”” b(b+4c)

U

Motivated by the aims to discover the complex dynamical evolution behavior
both of the inhomogeneous solutions, we investigate the turing bifurcation me-
chanism inherently with time delay effects. Lyapunov-Schmidt method can be
applied to investigate the bifurcation behavior at the Turing-instability bifurca-
tion point with simple eigenvalue. Some authors as referring to the papers ([5] [6]
[7] [8]) also develop the numerical algorithm of Lyapunov-Schmidt method to
explore the bifurcation scenario near simple bifurcation point. According to
Lyapunov-Schmidt Reduction method, the original partial delay differential eq-
uation is expressed on the invariant center manifold to acquire the norm form
correspondingly. With the analyzing results of the characteristic equation, for
example the roots with zero real part crossing imaginary axis underlying the re-
lated positive or negative transversal conditions, the turing bifurcation mechan-
ism is exploited ([9] [10] [11] [12]). The numerical simulation results verify the
analyzing result and near the threshold value the simulation bifurcating solution
is in coincidence with its bifurcating directions.

We get the periodical solutions in space near the turing bifurcation point and
time-periodically solution mainly dependent on a series of DDEs by discretion
method underlying time delay. The dynamics of Turing patterns in one dimen-
sion are simulated, which reflects the spatio-temporal oscillation under time de-
lay feedback. The wave simulations of reaction diffusion equation with time de-
lay still take some interesting methods, which alike the well known differential
quadrature algorithms ([5] [13] [14] [15] [16]), element free Galerkin method,
and Trigonometric B-spline functions interpolation method, etc. With free pa-
rameters varying in Turing instability region, the periodical travelling wave pat-
tern is induced ([17] [18]), and even from periodicity to un-regularity of wave

patterns are discovered.
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The whole paper is arranged as the listed. In section 2, the turing instability of
Gray and Scott model underlying time delay is discussed. In section 3, the
pitchfork bifurcation branch of turing bifurcation is discussed, which also de-
termine the bifurcation direction in turing point. In section 4, the numerical si-
mulation is done, the results is in coincidence with the theoretical analysis proof.

Finally the discussion is given briefly.

2. Turing Instability

To solve Turing bifurcation problem, we first explains some notations in diffu-
sion Equation (1.2). Suppose X is the domain of Laplacian operator and respec-
tively, X,Y is Hilbert space defined by the inner product

(pw)= JQ¢(TUC)T w(mx)dx wherein ¢ is defined in Q=[0,1]" with n<3.
Mapping G, :(X,a) —Y with aeR?, we write the elliptic Equation of (1.2)

as
G _cdA 4u,u,
(uv)=¢ u1+a_u1_l+u]2
@2.1)
G, (u,v) =dNu, +bu, —bul—uz2
I+u,

with (u,v)eX and a=(&d).

Notice we set time delay 7=0 in Equation (2.1), the discussion of Turing
instability of Equation (2.1) is independent of time delay. The turing-Hopf in-
stability induce the periodical spatial oscillation phenomena doesn’t discuss here,
however it may happen with time delay varying due to complex wave pattern
phenomena.

To analyze turing bifurcation point, we firstly investigate the characteristic eq-
uation with simple zero root. Based on the known knowledge of diffusion equa-
tion, the characteristic equation of Equation (2.1) is written as H,]{V:OW,{ (1)=0,
with different & e N, . It is easily to compute that

W, (1) =((~4dk’n’ —42)a” +5b(dek’n’ + 2+ 5)a +100dk’x’ +1002)
+(a® +25)(dk’n” + ) (dek’n’ + A+1) (2.2)
=0
Turing instability expands the non-homogeneous solution bifurcation branches
with spectral assumption at singularity point. The characteristic equation with

zero root with k=0 is called as long wave modulation, however the named

Turing instability happens if zero root appears with &k >1. We set

e a’dek’ +a’dk’ +25dek’ +5ab +25dk> —3a® +125

a’+25 ’
2 72 4 2 2
Det — a“d ek +5;1bdgk +25d°¢ (2.3)
a +25
N k* —4a’dk® +25ab +100dk? + dk*a® + 25dk*
a’+25 '

As often as simple, we discuss the turing instability in the sequel paper which
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satisfy with the following two assumption,
H,: The parameters blying in the regime above the curve Sab—3a’ +125>0;
H,: The necessary condition
—~15625—9a" +130a’bs +(-25b"5" +750)a’ +1250abs <0 is satisfied since
Det, (d)<0.

To further compute the turing point, we solve Det =0 to get turing curves

g -1 -Sabe+3a’ ~125+25a%%* ~130a’be +9a* ~1250abe —750a° +15625
) 5(a2 +25)k2n2 ’
(2.4)
g -1 Sabs+ 3a® —125++/25a°b6* —130a°bs +9a* —1250abe —750a> +15625
S g(a2 -|-25)kzrc2
The turing-turing bifurcation also occurs at (b*,d*) by setting d,,,,=d,,
to have
o 5(2a°K° +2a7k +a” +50k” ) (2k” + 2k +1) |3 -125
' 1062 (k+1) az Sas
2 (2.5)
2310 (a2 +25) Kook s B e D g +125(k+1J (Zk2 +2k+1)
8 8 32 8 2
+ - 5
5k* (k+1) ae

By the above discussion, Def=0 has a simple threshold curve d =d (5) of
Turing bifurcation as depicted by Equation (2.4) if and only if b,, <b<b,. We

also compute the transversal condition
dy —k'n (a2 + 25)(8 +1)d(&)+3a’ —5ab—125

db K’ (<a2 +25)a’(5)k27z2 +5ab)d(8) <0 20

Therefore we obtain the following results:

Proposition 2.1 With fixed parameter a,b,&, the sequel points tracking on
the Turing bifurcation curves has d, , <d,, by Equation (2.4), for all positive
integer k& However, turing-turing bifurcation occurs if and only if d,,,,=d,,
for some k >1, therefore, the stability property of the homogeneous solution of
system (1.1) (or system (2.1)), is changed when parameters pass over the Turing
bifurcation curves, and the Turing instability regions are partitioned from the
stability region.

For example, choosing a=20,b=12, and by satisfying the basic assumptions
H, and H,, the turing bifurcation curves are drawn as shown in Figure 1(a)
whilst ¢ lying below & =0.91365064¢—1. It is seen that the steady state is
usually asymptotically stable if &>¢". The alike conclusion is satisfied for
a=20,6 =0.05565, and we get the turing instability region given that the para-
meter b below the line »=5"=19.70136134. The Turing bifurcation curves are
plotted as shown in Figure 1(b).

3. Pitchfork Bifurcation Branch from Turing Point

As discussed in section 2, if Turing condition is satisfied, the non-constant
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T-T
102 | 1 L | 1 | 1
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Figure 1. The turing bifurcation of parabolic Equation (2.1). (a) The Turing bifurcation curve on d-¢ plane with fixed parameters
as a=20,b=12. (b) The Turing bifurcation curve on b-d plane with fixed parameters as a =20,&=0.05565. The interaction

point which satisfies Equations (2.4) and (2.5) is happened with turing-turing bifurcation of codimension 2 sigularity.

steady solution arise from the Turing point. We give a description of Pitchfork
solution branch bifurcating from Turing point which is also verified by germ’s
strong equivalent property. To clarify the bifurcating solution classifying prob-
lem, we conclude the following proposition:

Proposition 3.1 Suppose on some neighborhood B, ; of the trivial solution,
we define a function g:R’> — R which is C”, then a germ ge B, , is strongly
equivalent to polynomial ax’ + B1x if and only if at (x,l) =(0,0),

_% _0g_2%_,
ox  oxt 04
a= sign3—‘§, P =sign o
ox

Suppose a =g, is the bifurcation point of singularity. To discuss the stabili-
ty property of the homogeneous steady state (u*,v*) , by doing axis transforma-
tion u=u +u., v=u,+v, a=q,+A1, the corresponding parabolic system is
written as the addition of the linear system L(ul,vl,i) and the corresponding

nonlinear term N (u] ,vl,/l) , that is

G (u,v,,A) = L(uy, v, A)+ N (uy,v,,2) (3.1)
with
3¢ =125 —20a
Au 2 2 u
L(upvl’/l):( 1J+ a*+25 da’+25 (IJ (3.2)
AV] 2ba2 —Sba V]
a’+25 a*+25
and
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N(u;,v,4)

20a(a*=75) , 100a>-2500 100a* —150004> +62500 , S00a(a’-75) .

- ul + uu, + u - iy +o(u, +u,)
(a*+25) (a* +25) (a* +25) (a* +25) (3.3)
a a a a .

- 2 4 2 2

_Siafa 25;25)1412 + 2Zazb _2§§25b uu, + 25b<a( 21522)3+ 625)”13 - lzzbj(a25)375>u12uz +0(u1 +u, )3

a + a + a + a +

To compute the norm form near (0,0) , considering the linear operator
L(ul,vl,/l) , the corresponding Fredholm operator should has index zero, and
we have the following proposition:

Proposition 3.2 Underlying the sigularity condimension 1 bifurcation at
Turing point a =¢, in system (1.2), the normal form of Equation (2.7) under-
takes its strong equivalent form which can be expressed as g = X’ +Ax . In ad-
dition, the Turing bifurcation is a supercitial Pitchfork if A <0, or either mani-
fies a subcritical Pitchfork if 1>0.

Hence after the recognition of normal form problem arising from Turing bi-
furcation with simple zero characteristic root is solved.

Proof To carry out the normal form computation, we split space as
X=Ker(L)+M, Y=R(L)+N (3.4)
With Ker(L) and R(L) are respectively the kernal space and the range

space of linear operator L.
For example Ker(L) = {ﬂgb | B # 0} , ¢ isthe unit eigenvector with

¢=\/§cos(krtx)[ o

dk*r (a* +25) +5baT

On the center manifold, define the projection mapping E:Y — N which can

separate Equation (2.7) into

EG(u,,v,,4)=0 (3.5)

and the corresponding bifurcation equation

(I—E)G(u],vl,/l)=0 (3.6)

u
By the space decomposition, we write [ 'j: x¢+W , substituting it into Eq-

vl
uation (2.9) and noticed that EL=0 toget g: Ker(L)xM xXR—>N,
g(x,/l) = <l//,G(x¢+ W)> = <l//,L(x¢+ W) + N(x¢+ W)>
=(¥.Loo#)x+ (v, N(xp+W))

with definition of L, =(L,,L,)" while regard the bifurcation point as

(3.7)

La = (Ls’Ld )T
or

L,=(L,L,)"

a o
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alike the definition at the turing point L, =(L,,L,) respectively.
It is easily to compute that

0 0
L= 24° —Sa
a*+25 a*+25

g 0
Ld:—kozfcz[o J

We write the bifurcation equation as

h(x,A)=(1-E)G(xp+W)=LW +N(xp+W)—{y,N(xp+W))=0 (3.8)

or

Since the operator L is Fredholm index 0, L:M — R(L) is invertible map-
ping. Hence by the implicit function theorem, Equation (3.8) determines the
unique expression W=W(x,l) , then by Equation (3.7) we get the reduction

equation on the center manifold
g(x,2)=(w,N(xp+W (x.4))) (3.9)

To verify the strong equivalent form of germ gin proposition 3.1, suppose L’

being adjoint operator of Z, we can choose

W= 2 cos(knx)[

(akn* (a + 25)+5ba)2 _40bd’

T

di°n’ (@ +25)+ Sba
—20a

Underlying Neumamn boundary condition, we compute g _ =0, and

& = <l//a La¢>x;ta
g = <psi,d3N(0,0)(¢,¢,¢)>x3,

Therefore, the normal form in Proposition 3.2 is verified and the pitchfork

(3.10)

bifurcation direction is determined by the sign of 4= Ex
g.\l/\;‘(

4. Numerical Simulation

Based on the results in section 2 and section 3, we can compute the correspond-
ing Turing point via varying free parameters. For example, by simple calculation,
the Turing bifurcation happens at the homogeneous equilibrium solution with
chosen parameters ¢=20, b=16, £=0.05565 whilst k=1, d=1.1181, and

from the above discussion in section 3, we can compute the base ¢ of kernal
0.44103

0.89749
g(x,d,)=0.4001062699¢ — 1x’ +0.8362161555d,x, then the nonhomogeneous

steady state solution branch bifurcates from Turing point in accordance with the

of linear operator Las ¢= cos(knx)( J, which further derive the formula

direction d, <0, which is pitchfork and subcritical bifurcation. However with
k=2, d=0.7764 , we have g(x,dg) =0.1050273688x" —1.282881210d, x ,
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which is supercritical pitchfork of Turing bifurcation. Choosing a =20,
£=0.05565 to get Turing point k=1, d=1, b=14.96776630 and k=2,
d=0.83, b=14.40714340, the normal form at two different bifurcation point
are respectively g(x,b,)=0.3884830554¢ - 1’ —0.1144224171b,x and
g(x,b,)=0.1191247571x’ —0.4528851324¢ —1b,x , which is Turing subcritical
bifurcation. As shown in Figure 2(a), with fixed parameters a =20, &=0.05565,
b =16, the continuation of Turing bifurcation is carrying out with the conti-
nuous varying of parameter d, which illustrates the Turing bifurcation point at
d =1.1181 which is subcritical. As shown in Figure 2(b), the parameters are
fixed as a=20, £=0.05565, d =1, we vary parameter b continuously, the
continuation of supercritical Turing bifurcation at »=14.96776630 is simu-
lated. The simulation algorithms are as often familiar as the well known diffe-
rential quadrature algorithms, element free Galerkin method, and trigonometric
B-spline functions interpolation method, etc.

The temporal-spatial solutions near Turing points as shown in Figure 3 illu-
strate the direction of pitchfork bifurcation, which is in coincidence with the
sign of the coefficients A in normal form. For example, fixed parameter with
a=20, b=16, £=0.05565, as shown in Figure 3(a) and Figure 3(b), the
subcritical Turing bifurcation happens at d =1.1181. The constant steady state
is asymptotically stable at d =1.1190 and the non-homogeneous solution is
observed at d =1.1080. The supercritical Turing bifurcation manifests bifur-
cating non-constant solution at d =0.7804 as shown in Figure 3(c), however
the constant steady state is stable at d =0.7704 as shown in Figure 3(d). The
Turing solution and the Turing oscillation solution are observed at z=0.05,
d=0.78 and 7=0.07, d=1.112, as shown in Figure 3(e) and Figure 3(f),

respectively.

3 25

25 ol

[full lull 1.5

(vl il

1.5¢

46
1l

0.5¢
0.5r

0 ‘ ‘ ‘ ‘ ‘ 0 e
106 107 108 109 11 111 112 1495 15 15.05 15.1 1515 152 15.25 15.3 15.35 15.4
d b
(@) (b)

Figure 2. The continuation of turing bifurcation with a=20, £=0.05565. (a) Chosen with b=16, the sub-
critical turing bifurcation happens at 4 =1.1181; (b) Chosen with & =1, the supercritical turing bifurcation
happens at 5 =14.96776630.
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7 4.000001
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4 u
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2 3.9999995
1

3.999999

1

(c) (d)
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4.001
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u 4
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Figure 3. The supercritical turing bifurcation with a=20, =16, £=0.05565 and (a) d=1.1190, (b) d =1.1080; The sub-
critical turing bifurcation with (¢) & =0.7804;(d) d=0.7704;(e) 7=0.05, d=0.78 (f) r=0.07, d=1.112.
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Figure 4. The turing bifurcation and turing oscillation occurs via varying time delay, the parameters are fixed with a =20,
b=12, £=0.04565, d=0.89. (a) Nonhomogeneous solution occurs with z=0; (b) The turing oscillation solution with
7=0.04 ; (c) The turing oscillation solution with 7 =0.049 ; (d) The turing oscillation solution with 7 =0.0498; (e) The wave
pattern with 7 =0.049 ; (f) The wave pattern with 7 =0.0498.
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We also simulate the 2D tempo-spatial solutions and produce pictures via
stretching y-axis in accordance with x-axis direction, which show us the numer-
ical solutions of PDE in an easy way, as shown in Figures 4(a)-(d). With fixed
parameter a=20, b=12, £=0.04565, d =0.89, varying time delay, system
(1.1) manifests the nonhomogeneous solution at 7 =0, however, the occurrence
of the Turing oscillation are simulated at 7=0.04, 7=0.049 and 7=0.0498,
respectively. The periodical wave patterns are schemed by projection onto X-Y
plane hence is given in Figure 4(e) and Figure 4(f).

We further do simulation to verify the wave pattern formation in Gray-Scott
diffusion model with time delay effects. We choose 7=0.4, fixed parameters
with a=20, 5=9.6, the wave pattern formation is simulated which illustrates
the route of periodical oscillation to chaos, as shown in Figures 5(a)-(d), With
different value of ¢ and d, from its periodicity to irregularity, the wave patterns
underlying Turing oscillation are simulated, which manifests turing-turing bifur-

cation can bring complex dynamical behavior underlying time delay effects.

(c) (d)

Figure 5. The wave pattern formation with a=20, »=9.6 and (a) £=0.02, d=0.4565, (b) £=0.018,
d=0.3565;(c) £=0.015, d=0.35;(d) £=0.01565, d=0.3.
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5. Discussion

We discuss the dynamics in Gray-Scott diffusion model produced via turing bi-
furcation, which usually emphasis on the significant turing condition. In an ob-
vious way, the turing-turing bifurcation can be either independent on time delay.
Underlying small time delay, the Gray-Scott diffusion model brings forth the
rich formation of wave patterns. By applying Lyapunov-Schimdt reduction me-
thod, the normal form of the turing bifurcation was computed. Correspondingly,
the pitchfork bifurcation direction is determined by the coefficients of the strong
equivalent form of germs in K. However, the turing oscillation was observed as
ascending time delay, which discovers that system of PDE may manifest codi-

mesion-2 singularity and the bifurcation mechanism need to be further studied.
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@ Integro-differential equations (IDEs) have attracted growing interest over the

years because of the mathematical application in real life problems. Mathemati-

cal modeling of real life problems usually resulted in fractional equations. Many
mathematical formulations of physical phenomena contain integro-differential
equations. These equations arise in many fields like Physics, Astronomy, Poten-
tial theory, Fluid dynamics, Biological models and Chemical kinetics. Integro-
differential equations contain both integral and differential operators. The de-
rivatives of the unknown functions may appear to any order (see [1] and [2]). [3]
obtained solution of an integro-differential equation arising in oscillating mag-

netic field using Homotopy perturbation method. Galerkin method is a powerful
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tool for solving many kinds of equations in various fields of science and engi-
neering. It is one of the most important weighted residual methods inverted by
Russians mathematicians Boris Grigoryevrich Galerkin. Recently, various Galer-
kin algoriyhm have been applied in numerical solution of integral and integro-
differential equations. The following methods that are based on the Galerkin
ideas, includes Galerkin Finite Element [4], iterative Galerkin with hybrid func-
tions [5], Crank-Nicolson least squares Galerkin [6], and Legendre Galerkin [7].
[8] published a note on three numerical procedures to solve Volterra integro-

differential equations on structural analysis.

2. Problem Considered

We consider the higher order linear integro-differential equation as follows:

> 2o+ 2] k() w(e)de = £ (x) (1)

Subject to the following conditions
y(k)(a):ak,k=l,2,~--,n )

where «, (k 2 O) are constant coefficients, g(x) and h(x) are lower and
upper limits of integration, A is a constant parameter and k(x,t) is a function
of two variables xand ¢called the kernel, f’ (x) is a known function and y(x)

is the unknown function to be determined.

3. Definitions

Integro-differential equation
An integro-differential equation is an equation involving both integral and

derivatives of a function. Example of such equation is stated below:
a,y"(x)+ay' (x)+a,y(x)+ AJ:H(x,t)y(t)dt = f(x) 3)

Galerkin method
Galerkin method is a method of determining coefficient a, in a power series

solution of the form:
y(x);J’o(x)+zakYk(x) (4)
k=0

of the ordinary differential equation L[ y(x)] =0 so that L[ y(x)] , the result
of applying the ordinary differential operator to y(x), is orthogonal to every
Vi (x) for k=1,2,---,n

Chebyshev Polynomial

The Chebyshev polynomials of the first kind are a set of orthogonal polyno-
mials defined as the solutions to the Chebyshev differential equation and de-
noted by 7, (x) The Chebyshev polynomial of the first kind denoted by T, (x)
is defined by the contour integral

2\l
Tn(x):L %dt

i (l—2[z+t2)
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Where the contour encloses the origin and is traversed in a counter clockwise
direction.

Orthogonal over a set

A set of function {g/ﬁr (x)} is said to be orthogonal over a set of points {xi}

with respect to the weight function W(x) , if
N
Zw(xl.)¢j (x,)¢(x,)=0, i=k
i=0

Orthogonal over an interval
A set of functions {¢r (x)} is said to orthogonal on an interval [a,b] with

respect to the weight function w(x) , if
[Pw(x)¢ (x)¢, (x)dx=0, i)

Approximate solution

Approximate solution is used for the expression obtained after the unknown
constants have been generated and substituting back into the assumed solution.
It is hereby call approximate solution since it is a reasonable approximation to

the exact solution.

4. Construction of Orthogonal Polynomials

In this section, we constructed orthogonal polynomials f; (x) , valid on the in-
terval [a,b] with the leading term '
Then, starting with

fi(x)=1, (5)
Thus, we find the linear polynomials f, (x) , with leading term x; is written as
f(x)=x+k,fy (%), (6)

where, k, is a constant to be determined. Since fo(x) and fl(x) are or-

thogonal, we have,
[Pw(x) £y () £ (x) e = 0= [Txw(x) £y (x) e + ko | () (£ (x)) e

using (5) and (6).

From the above, we have,

. {h xW(X)fo(x)z @
S ()6 ()
Hence, (6) gives,
fl(x):x— wa(x)fo(x) "

[ w(@) ()

Now, the polynomials f, (x) , of degree 2 and the leading term x* is written

as

f(x)= X +hy o fo (%) + Ky, £, (%) (7)
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where the constants k,, and k,, are determined by using orthogonality con-

ditions
()1, (), <x)dx={°2 e ®
‘ T J,w() 77 (x)dr. p=g
Since f,(x) isorthogonalto f,(x), we have
[Pw() £y (2)[ 2 + koo fo () + Ky £ () Jdx = 0 9)
Since,
Jw(x) £3 (x) £ (x)dx =0
The above equation gives
"w(x) £, (x " x?w(x)dx
”’:_ij»v(x)((jfo(x())zdx:_LJ:w(i)Zx "
Again, since f,(x) is orthogonalto f(x), we have
[Pw(x) £ () [ + ko fo () + Ky £ () Jdx =0
Thus, using (7), we obtain
:_bezw(x)fl(x)dx (11)

2.1

b 2
Jow()(4 ()
Since k,, and k,, are known, (7) determines f2<x) Proceeding in the

same way, the method is generalized and we have,
fj(x):xj+kj,0f0(x)+kj,1f1(x)+---+k/.qj71 (12)
where the constants k,, and so chosen that f; (x) is orthogonal to
CNACIRSN )
These conditions yield,

() ) @ (13)

ij b 2
[, ()£ (%))

Few terms of orthogonal polynomials valid in the interval [-1, 1] are given

below.
fo(x)=1
fl(x):x
21
fz(x)—x 3
f3(x)=x3—%x
4 6.3
f4(x)—x 7x +35
etc.
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5. Demonstration of Orthogonal Galerkin Method on
General Problem Considered

In this section, we considered (1) and (2).

Here we assumed an approximate solution of the form
N
u(x)=uy(x)=>af(x), —1<x<I (14)
i=0

where f, (x)(i P 0) are the orthogonal polynomial constructed and valid in the
interval [-1, 1].

Thus, differentiating (14)/with respect to x, n times, we have
() () )
" (x)zuy (x) =2 a.f;" (x) (15)
i=0
Substituting (14) and (15) into (1), we obtain

33 Ra s ()= £ (x)+ 220 k(xa) X, (1) (16)

k=0 i=0

We determined the unknown coefficients @, using the Galerkin idea by mul-
tiplying both sides of (16) by f; (x) and then integrating with respect to x from
-1to 1.

Thus, we obtain

33 Raf £ (), (1)

k=0 i=0 . ., (17)
=[s (x)f(x)dx+Azaij;jjlk(x,z)zﬁ(t)f/. (x)dedx, j=0,1,--,N

. . . v
This process generates a system of linear equations for the unknown {ai}izo

together with the conditions
N N
Zaifi(/)(a):aj’ j=12,n (18)
i=0

for the same number of equations in the linear system.
The unknown parameters are determined by solving the system (17) and (18).
The values of the constants obtained are then substituted back into (14) to get

the required approximate solution for the appropriate order.

6. Numerical Experiments

In this section, we consider four selected problems for experimenting and com-
pare our results with existing results.

Numerical example 1

We consider the Volterra integro-differential equations of the second kind of

the form:
y’(x):l—szinx+IJy(t)dt (19)

together with the condition given as
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¥(0)=0 (20)
The exact solution is given as

y(x)zxcosx

Here we solved example 1 for case N =4.

Thus, Equation (14) becomes
)’4(x)zzaifi (x) (21)
Substituting the values of f; (x),() <i<4, we obtain
A (x) =a, + (2x—1)a1 +((2x - 1)2 —%)az +((2x —1)3 —%(Zx - 1)}13
6 3
+((2x—1)4 —7(2x—1)2 +§ja4

(22)

and,

A (x) =2a, +(8x—4)012 +(6(2x—1)2 —g]% +(8(2x—1)3 —gx+%)a4 (23)

Substituting (23) into (19) for case N = 4, we obtain

24, +(8x~4)a, +[6(2x—1)2 _9% +(8(2x—1)3 _g)ﬁ%}%

—I:{ao +(2-1)e, +((2t—1)2 —%)az S CRETE) Y

6

4 2 3 .
+(2t-1) —=(2t-1) +—|a, pdt =1-2xsinx
(-0 -2+ S
Thus, evaluating the integral in (24) and simplifying, we obtain

1 4
—-xa, +(2+x—x2)a1 +(—5x+2x2 -——x +4ja2
2 3

+ 6(2x—1)2 -1-2)5—2)54+4x3—2x2 _§ a, (25)
3 5 5

+ 8(2)6—1)3—&36—Exs+8x4 —ﬁx3+gxz+ﬁ a, =1-2xsinx
35 5 7 7 35

The unknown coefficients ai(i < 4) are determined using the Galerkin idea
by multiplying both sides of (25) by fj(Zx—l) and then integrating the re-
sulted equation between x= -1 to x= 1.

For case j= 1, we multiplied both sides of (25) by (2x — 1) and then integrat-
ing the resulted equation between x= -1 to x= 1, to obtain

4 2 460 6032
—an —2611 —gaz —Ta3 +?a4 =-0.7953 (26)

For case j = 2, we multiplied both sides of (25) by (2x —1)2 —% and then in-

tegrating the resulted equation between x= -1 to x = 1, to obtain
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8, 148, .20 183272 128032 .., 27)
3 9 1575 315

For case j = 3, we multiplied both sides of (25) by (2x—1)3 —%(2x—l) and

then integrating the resulted equation between x= -1 to x = 1, to obtain

32 92 1544 20776 11053408
——a,——a, — a, — a; +
525 75 11025

= =0.18 28
5“7 “ @9
For case j = 4, we multiplied both sides of (25) by (Zx—l)4 —g(2x—1)2 +%

and then integrating the resulted equation between x= -1 to x = 1, to obtain
1664 432 416 2518688 124288a

—ay+——a, +——a, + a,
105 35 105 3675 49

, =23 (29)
Now, using the condition given in (22), we obtain
2
ao—a1+§a2 —§a3+ga4:0 (30)

Hence, (26)-(30) are then solved to obtain the unknown constants
a; (i =0, 1,2,3,4) which are then substituted to the approximate Equation (22).
Again, we solved (1) and (2) for case N = 6 by re-writing (21) as:

Vs (x)=Zal.fi (x) (31)
Hence, (31) becomes

Vo(x)=ay + (25-1)a, +((2x—1)2 —éjaz

+[(2x—1)4 —g(zx—l)2 +%} a, (32)
+[(2x—1)5—%(2 _1)3+%(2x_1)ja5

6 15 4 5 2 5
+[(2x—1) Blaey e _Ejaﬁ

And,
ye(x)=2a,+(8x—4)a, +(6(2x_1)2 _g}az

+(8(2x—1)3 —§x+%}z4

4 10(2x—1)4 _MJrE a (33)
3 21)°
120(2x 1Y’
+[12(2x—1)5—M+ﬂ—§]a6
11 11 11

Thus substituting (32) and (33) into (19), we obtain
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20+ 55~ 4)a+ (6261 - o+ (3251 - 2,

20(2x -1y’ 120(2x—1)°
+[10(2x—1)4—M+£]a5+[12(2x_1)5_LJFQ
3 21 11 11

‘ﬁj“ﬁ _ Lf{“o (2-1)a +((2t—1)2 —%Jaz +((2t—1)3 —%(2t—1)ja3 (34

+ 20(26-1)" 10

+((21—1)4 _g(zt—l)Z +%ja4 +{10(2t—1) _TJFE}ZS

120(2¢ -1)°
+[12(2t—1)5 —M+ﬂ—2—?}lé}dt —1-2xsinx

Thus, evaluating the integral in (34) and simplifying, we obtain
15 4
—xa, + (2 +x —xz)a1 +(—x +2x° ——x’ + 4ja2
2 3

+(6(2x—1)2 +§x—2x4 +4x° —%xz —gj%

+ 8(2x—1)3 —&x—ﬁx5 +8x* —ﬁf +Ex2 +ﬁ
35 5 7

a,
20 1200 280 320 (35)
+ 10(2x—1)4 __(ZX—1)3 +——x=32x + 2 - 1 60X as
3 147 3 3
+(12(2x—1)5 —%(2x—1)3 +’17_Tx_ lifox(, 1 1925° — 2400x4

L1280 5 320 ,

as =1-2xsinx
11 11

The unknown coefficients g, (i < 4) are determined using the Galerkin idea
by multiplying both sides of (35) by fj(Zx—l) and then integrating the re-
sulted equation between x= -1 to x= 1.

For case j= 1, we multiplied both sides of (35) by (2x — 1) and then integrat-
ing the resulted equation between x= -1 to x= 1, to obtain

2 460 6032 97264 360160
——a,—2a,——a,———a, + a, — as +
3 5 9 35 189 231

a, =—0.7953 (36)

For case j = 2, we multiplied both sides of (35) by (2x—1)’ —% and then in-

tegrating the resulted equation between x= -1 to x = 1, to obtain

8 148 20 183272 128032 238816a _ 1507904

—ay+——a, +—a, + a, — a, +
3% 457" 9 % 1575 7 315 Y 189 ° 385

a, =0.363 (37)

For case j = 3, we multiplied both sides of (35) by (2x—1)3 —%(2x—l) and

then integrating the resulted equation between x= -1 to x = 1, to obtain
32 92 1544 . 20776 11053408 1007648 ;

——a,——a a, + a
5% 15" 5257 75 7 11025 ¢ 315
, 2330560

231

(38)
a,=0.18
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For case j = 4, we multiplied both sides of (35) by (2x— 1)4 —g(Zx— 1)2 +%

and then integrating the resulted equation between x= -1 to x= 1, to obtain

1664 432 416 2518688 124288 360321152
—ay+——a,+——a, + a, — a, + as
105 35 105 3675 49 47659

(39)
63937952
————q,=-23
24255
For case j= 5, we multiplied both sides of (25) by

(2x—1)5 —%(Zx—l)3 +%(2x—1) and then integrating the resulted equation

between x= -1 to x= 1, to obtain

2528 4976 2720 550112 1396705664 85672064
- a, — a, + a, — a, + a, — as
63 180 7 315 218295 3969
48377661184 3152 2002592 144
— — cos(l) +T

(40)

ag =
693693 63
For case j= 6, we multiplied both sides of (35) by

(2x-1)° —i—i(h -1y’ +%(2x ~1)° —% and then integrating the resulted eq-
uation between x = -1 to x= 1, to obtain

2528 4976 2720 550112 1396705664 85672064
- a, — a, + a, — a, + a, — as
63 180 7 315 218295 3969

41
48377661184 1376 230568512 1290272 . (41)
ag =— - cos(l)+—sm(1)
693693 11 231 6
Now, using the condition given in (22), we obtain
8 8 16
a,—a,+—a,——a,+—a, ——as; +—a, =0 42
¢T3 57 a5t 63 231 ¢ (42)

Hence, (36)-(42) are then solved to obtain the unknown constants
a; (i =0,1, 2,3,4,5,5,6) which are then substituted to the approximate equation
(32). More values of N are computed follow the same procedure and the results
obtained are tabulated below.

Example 2:
" ! X b 1
y'(x)+xy'(x)-xy(x)=e" —2sinx+ Ly(t)dt
With the conditions

y(O) =1 and y'(O) =1, The exact solution is y(x) =e".
Example 3: Consider the Fredholm integro-differential equation (See [2])
y" (x) =1 +j;e’xy2 (t)dt, 0<x<l
Together with the conditions y(O) = y'(O) =1; y(l) =e; y'(l) =¢. The ex-
act solution is y(x)=¢".
¢ Denotes the results are not available for comparison

e Denotes Results are not available for comparison

Example 4: Consider the Fredholm integro-differential equation (See [2])

y'///(x)=x+(x+3)e"" +y(x)—f§y(t)dl, 0<x<l
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With the following conditions

y(O) =1; y(l) =l+e; y”(O) =2; y"(l) =3e . The exact solution is
y(x)=1+xe".
o Denotes Results are not available for comparison
e Denotes Results are not available for comparison

7. Discussion of Results

The approximate solution obtained by means of Galerkin method is a finite
power series which can be in turn expressed in closed form of exact solution as
the degree of the approximant increases. The finite series solution is obtained for
each problem considered by increasing the value of N, which in turn converges
to closed form of exact solution, the absolute errors obtained tend to zero and
ensures stability of our method (See Tables 1-8). Also, from the results obtained
by [2], our method proved superior to [2]. As Nincreases, the results obtained in
some cases converged. It proves a very efficient method for the problems at-

tempted, for which the form of the solution is known.

Table 1. Numerical results and absolute errors of example 1 for case N=4.

X Exact solution Approximate solution Approximate solution
0 0 0 0

0.1 0.09999984769 0.1007787777 7.7893 x 10™*
0.2 0.19999871500 0.20007989915 8.0021 x 10™*
0.3 0.29999588772 0.30082048742 8.2460 x 10™*
0.4 0.39990252364 0.40085698231 9.5446 x 10™*
0.5 0.49998096153 0.50093900554 9.5813 x 10™*
0.6 0.59996710167 0.60128870164 1.2920 x 107?
0.7 0.69994775882 0.70214095881 2.1932x 10?
0.8 0.79992201922 0.80415158192 4.2296 x 107
0.9 0.89988896922 0.90630266921 6.4113 x 10°?
1.0 0.99984769523 1.00008011995 2.3242 x 10™*

Table 2. Numerical results and absolute errors of example 1 for case N=6.

X Exact solution Approximate solution Approximate solution
0 0 0 0

0.1 0.09999984769 0.1000123167 1.2409 x 107

0.2 0.19999871500 0.2000261375 2.7350 x 10°7°

0.3 0.29999588772 0.3000306197 3.4732x 107

0.4 0.39990252364 0.4000469833 5.6731 x 107

0.5 0.49998096153 0.5000608685 7.9907 x 107

0.6 0.59996710167 0.6000487216 8.1620 x 10~°

0.7 0.69994775882 0.7000377598 9.0001 x 10~°

0.8 0.79992201922 0.8003215592 3.9951 x 107

0.9 0.89988896922 0.9002501792 3.6121 x 107

1.0 0.99984769523 1.0003425534 5.5778 x 107
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Table 3. Numerical results and absolute errors of example 2 for case N=4.

X
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1.0

Exact solution

0.36787944
0.44932896
0.54881164
0.67032005
0.81873075
1.00000000
1.22140283
1.47182472
1.82211881
2.22551000
2.71828182

0.37418684
0.45641056
0.55712374
0.68009815
0.82014445
1.00180376
1.24357182
1.49774274
1.85630581
2.26616893
2.78212785

Approximate solution Approximate solution

6.3074 x 10
7.0816 x 107*
8.3121 x 107*
9.7781 x 107
1.4137 x 1072
1.8937 x 107>
2.2169 x 107
2.5918 x 102
3.4187 x 1072
4.0928 x 1072
6.3846 x 107

Table 4. Numerical results and absolute errors of example 2 for case N=4.

X
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1.0

Exact solution
0.36787944
0.44932896
0.54881164
0.67032005
0.81873075
1.00000000
1.22140283
1.47182472
1.82211881
2.22551000
2.71828182

0.367966169
0.449409094
0.548889417
0.676389371
0.818758949
1.000966532
1.222229894
1.472514031
1.822781972
2.226029824
2.718738011

Approximate solution Approximate solution

8.6729 x 10~°
8.0134 x 10~°
7.7837 x 107°
6.9321 x 10~°
7.8199 x 10~°
7.6653 x 107
8.9614 x 10~
6.8933 x 10~
5.9397 x 10~
4.8892 x 107
4.5621 x 107

Table 5. Numerical results and absolute errors of example 3 for case N=4.

X

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0 2.71828183

Exact

1.0000000
1.105171
1.2214027
1.349859
1.4918246
1.648721
1.8221188
2.013753
2.2255409
2.459603

of [2]
1.0000000

1.2214

1.4918

1.8221

*

2.2255

*

2.7183

Method
1.00000000
1.105173451
1.221409351
1.349868872
1.491856800
1.648800850
1.822700800
2.014370200
2.228210900
2.465275000
2.725281830

(2]
0

*

1.0270 x 107*

*

1.1246 x 10°?

*

6.1188 x 107°

*

2.0241 x 1072

*

5.1282 x 1072

Approximate Approx. of Our Absolute errors of Absolute errors of

Our Method
0
2.451 x 10°°
6.651 x 10°°
9.872 x 10°°
3.220 x 10°°
7.985 x 107°
5.820 x 107
6.172 x 10™*
2.670 x 107
5.672 x 107
7.000 x 102

*Denotes the results are not available for comparison.
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Table 6. Numerical results and absolute errors of example 3 for case N= 10.

Approximate Approx. of Absolute Absolute errors
X Exact of [2] Our Method errors of [2]  of Our Method
0.0  1.0000000 1.0000 1.00000000000 0 0
0.1 1.105171 * 1.10517109874 * 9.874 x 1078
0.2 1.2214027 1.2214 1.22140278125  2.700 x 107¢ 8.125x 10°®
0.3 1.349859 * 1.34985906846 * 6.845 x 1078
0.4 1.4918246 1.4918 1.49182466533  2.460 x 107° 5.329 x 1078
0.5 1.648721 * 1.64872104101 * 4.101 x 10°®
0.6 1.8221188 1.8221 1.82211884674 1.880 x 10°° 4.674 x 1078
0.7  2.013753 * 2.01375304115 * 4.115%x 1078
0.8 2.2255409 2.2255 2.22554093985  4.090 x 10°° 3.985x 10°®
0.9 2.459603 * 2.45960302679 * 2.679 x 10°7®
1.0 2.71828183 2.7183 2.71828184068 1.820 x 10°° 1.068 x 10°7®

*Denotes the results are not available for comparison.

Table 7. Numerical results and absolute errors of example 4 for case N=4.

X Exact  Approx. of [2] Approx. of Absolute Absolute errors
Our Method errors of [2]  of Our Method
0.0 1.0000000 1.0000 1.0000000000 0 0
0.1 1.110517 * 1.1105179874 * 9.874 x 10”7
0.2 1.2442805 1.244 1.2442922210  2.8055 x 10™* 1.172 x 10°°
0.3 1.404958 * 1.4049590990 * 1.099 x 10°°
0.4 1.5967298 1.592 1.4967570200  2.7299 x 10™* 9.722 x 10°
0.5 1.824361 * 1.8244327200 * 7.172 x 107°
0.6 2.0932712 2.068 2.0933164710  2.5270 x 10> 4.527 x 107°
0.7 2.409627 * 2.4096387200 * 1.172 x 107°
0.8  2.7804327 2.696 2.7805028800  8.4430 x 1072 9.018 x 10™*
0.9 3.213943 * 3.2140147700 * 7.177 x 107
1.0 3.71828183 3.5 2.7183814900  2.1820 x 107" 6.966 x 107

*Denotes the results are not available for comparison.

Table 8. Numerical results and absolute errors of example 4 for case N= 10.

X

0.0

Exact

1.0000000

0.1
0.2
0.3
0.4
0.5
0.6
0.7

1.110517
1.2442805
1.404958
1.5967298
1.824361
2.0932712
2.409627
0.8 2.7804327
0.9 3.213643
1.0 3.71828183

Approx. of [2]

1.0000

*

1.2443

*

1.5967

*

2.0933

*

2.7804

*

3.7184

Approx. of
Our Method
1.000000000000
1.1105170009231
1.2442805007638
1.4049580006618
1.5967298002963
1.8243610001316
2.0932712009316
2.4096270492700
2.7804327297800
3.2136430198200
2.7182827690000

Absolute
errors of [2]
0

*

1.950 x 107°

*

3.000 x 107'°

*

1.772 x 1078

*

3.214x 1077

*

1.820 x 107°

Absolute errors
of Our Method
0
9.231 x 1071
7.638 x 10710
6.618 x 10710
2.963 x 10710
1.316 x 1071
9.316 x 10~°
4.927 x 1078
2.978 x 1078
1.982 x 1078
9.390 x 107”7

*Denotes the results are not available for comparison.
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8. Conclusion

In this work, we have proposed the Galerkin method for solving both the boun-
dary and initial value problems for a class of higher order linear and nonlinear
Volterra and Fredholm integro-differential based on the constructed orthogonal
polynomials as basis function. Illustrative examples are included to demonstrate
the validity and applicability of the technique and the tables of results presented
reveal that the absolute error decreases when the degree of approximation in-
creases. Furthermore, since basis functions constructed are polynomials, the
values of the integrals for the nonlinear integro differential equations are calcu-

lated as approximately close to the exact solutions.
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