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Abstract 
In this paper, an attempt is made to prove that some similarity based fuzzy 
systems can be found to behave as function approximators. A typical similar-
ity based fuzzy system is proposed and its behaviour is shown to have the said 
property. It elucidates the connection between similarity relation and similar-
ity measure of fuzzy sets to fuzzy inference methodology. The concept of si-
milarity relation is used in fuzzification of crisp input values. Similarity index 
is used in measuring approximate equality of fuzzy sets over a given universe 
of discourse of a linguistic variable. The similarity between the observation(s) 
and the antecedent of a rule is used in selecting rule(s) for possible firing and 
also in modifying the relation between the antecedent and consequent of the 
rule based on the specific observation. Inference is drawn through the usual 
composition and subsequently by projecting the modified fuzzy restriction 
acting on the variables of interest on the universe of the linguistic variable in 
the consequent of the rule. A specificity based defuzzification scheme is pro-
posed for multiple-rule firing. It has been proved systematically that such a 
similarity based fuzzy system can uniformly approximate continuous func-
tions to any desired degree of accuracy on a closed and bounded interval. Si-
mulation results are presented for the well-known dc-motor problem. A 
comparative study is made to establish the validity and efficiency of the pro-
posed similarity based fuzzy system. 
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1. Introduction 

Traditional approaches to mathematical modelling require advanced mathemat-
ical skills. This is why many mathematical models are actually derived by ma-
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thematicians rather than actual observers, be it the ethologist studying animal 
behaviour or the sociologist studying human behaviour. However, even when 
the observer who studies the system cannot produce a mathematical model for it 
directly, (s)he might be able to describe the system and its behaviour linguisti-
cally. Thus, the question is how to transform linguistic observations into ma-
thematical entities. 

The application of fuzzy sets to the design of systems was not obvious at all, 
as traditionally systems were described by numerical equations. Zadeh tried 
several solutions to come up with a notion of fuzzy system. The idea of fuzzy 
system was initially viewed as a system whose state equations involve fuzzy va-
riables or parameters, giving birth to fuzzy class of systems. A second idea was 
that a system is fuzzy if either its input, output or states range over a family of 
fuzzy sets. Later, it was suggested that a fuzzy system could be a generalization 
of a non-deterministic system, which moves from a state to a fuzzy set of states. 
So, the transition function is a fuzzy mapping. The transition equation can be 
captured by means of fuzzy relations along with the usual sup-min combination 
of fuzzy sets and fuzzy relations. 

These early attempts were outlined before the emergence of the idea of fuzzy 
control. In 1973, it was suggested for the first time that fuzziness lies in the de-
scription of approximate rules to make the system work. This view was the result 
of a convergence between the idea of a system with one of the fuzzy algorithms 
introduced earlier and its increased focus of attention on the representation of 
natural language statements via linguistic variables. In this quest, systems of 
fuzzy if-then rules were first described, which paved the way to fuzzy controllers, 
built from human information, with the success of such a line of research in the 
early 1980s. 

However, most of the applications are based not on modeling real-world 
phenomena, but rather on transforming the knowledge of a human expert into a 
fuzzy system. Today, fuzzy rule-based systems are extracted from data and serve 
as models of systems more than as controllers. Here, the linguistic connection is 
often lost, and such fuzzy systems are rather standard precise systems using 
membership function for interpolation, than approaches to the handling of poor 
knowledge in system descriptions. 

For many years, fuzzy systems have been successfully applied to a wide variety 
of practical problems. Fuzzy rule-based systems have become popular because of 
their transparency and ease of tuning and modification. Rule-based fuzzy con-
trol introduced by Zadeh and Mamdani and also in the form later proposed by 
Takagi and Sugeno is a useful tool for systems where the exact model is either 
not known, or it is too complex to be tractable in real time. Notable applications 
of fuzzy systems include their use in control and decision making. It points out 
that fuzzy systems have an effective utility in the context of complex ill-defined 
problems, especially those which can be solved by a person without the know-
ledge of their underlying dynamics. 
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However, some people were reluctant to use fuzzy systems because their effec-
tiveness has not been mathematically proved. Some results attempted to prove 
that the main advantage of using fuzzy systems was the suitability for approxi-
mation with arbitrary accuracy in their universality [1] [2]. This prompted some 
researchers to prove that fuzzy systems are universal approximators, as a con-
vincing proof of effectiveness. By a universal approximator we mean something 
that can uniformly approximate continuous functions to any degree of accuracy 
on a closed and bounded interval. 

The first significant result in this sense was presented by Wang [3]. He proved 
that a certain type of fuzzy system (fuzzy rule based system with product infe-
rence, centroid defuzzification and Gaussian membership function) is a univer-
sal approximator. This result was important because it showed that the class of 
all fuzzy systems is a universal approximator. 

Other types of fuzzy systems as universal approximators were also studied [4] 
[5]. Kosko [6] proved that additive fuzzy rule based systems are universal ap-
proximators, while Buckley proved that an extension of Sugeno type fuzzy logic 
controllers are universal approximators [4]. Castro [7] shows some types of 
fuzzy controllers being universal approximators. 

All the types of fuzzy systems which have been showed as universal approx-
imators are fuzzy rule based systems. There are other types of fuzzy systems 
which are used in applications. The aim of this paper is to study whether simi-
larity based fuzzy systems are also universal approximators. Accordingly, we 
propose a similarity based fuzzy system designed on an appropriate fuzzy logical 
structure so that the task of the same is well-understood for a SISO model. In the 
sequel, it has been observed that similarity is inherent in approximate reasoning 
and cannot be avoided [8]. We try to compute the similarity between fuzzy sets 
and use it in the reasoning mechanism in such a way that change in input is al-
ways reflected in the output. Our method of inference is based on this similarity 
measure. We first generate a similarity relation from the fuzzy partition induced 
by the fuzzy sets representing the linguistic values of the variable present in the 
antecedent part of the rules. This similarity relation is used to fuzzify any crisp 
input value. Then, the similarity between the observation and a prototype of the 
same appearing in the conditional statement is computed to select a few rules 
from the rule-base. Each such rule, a conditional statement, is expressed as a 
fuzzy relation. This task can be performed in different ways [9]. We interpret the 
result as a conditional fuzzy relation. Then, the similarity value is used to modify 
the conditional relation [10]. Such a modification of relation may also be per-
formed in many ways. We interpret the modified relation as a fuzzy relation in-
duced by the specific observation. Next, we compose the observed fuzzy set with 
the modified fuzzy relation and project the resultant fuzzy relation on the do-
main of the linguistic variable defining the consequence of the rule. This is done 
for all the rules that match with the observation. Defuzzification, a basic opera-
tion, used in the development of fuzzy systems is extensively discussed in the 
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light of new similarity based approximate reasoning mechanism. A new scheme 
for defuzzification, suitable for similarity based approximate reasoning, is de-
fined [11]. This defuzzification method is used for a single crisp output from a 
number of output fuzzy sets resulting from rule-firing. The efficiency of such a 
similarity based fuzzy system has been proved mathematically. Simulation is 
performed with some real data. Results are tabulated along with their pictorial 
representations. 

The paper consists of seven sections. After a brief introductory section we 
present some basic concepts necessary for the development of a similarity based 
fuzzy system and describe the way of connecting fuzzy set and their semantic 
background. A knowledge of this enables the user to estimate the possibilities of 
applying a typical similarity based fuzzy system in practice. Section 3 presents a 
discussion on the similarity measure of two fuzzy sets, similarity relation and 
fuzzification and its use in developing a theory of similarity based approximate 
reasoning methodology. Specificity measure and its incorporation into similarity 
based fuzzy system defuzzification is also discussed. The proposed fuzzy system 
can be shown to be a universal approximator to any continuous function on a 
compact set if normal, bounded, continuous and convex fuzzy sets with Ruspini 
partition on the input space are used in the IF-part of the fuzzy rules with the 
proposed fuzzifier, the relation modification procedure and specificity based 
defuzzifier. A case study on dc-motor is presented in Section 5. The paper is 
briefly concluded in section 6 followed by a list of references in the last section. 

2. Similarity Based Fuzzy System (SBFS) 

Definition 1. Let U be a non-empty set. ( )F U  is the fuzzy power set of U, i.e., 
( ) [ ]{ }| : 0,1F U A A U= → . A is said to be normal if there exists u U∈  s.t. 
( ) 1A u = . A is said to be convex if U is a linear space and  

[ ] ( )( ) ( ) ( ){ }  0,1 and , , 1 min , .u v U A u v A u A vλ λ λ∀ ∈ ∈ + − ≥  

The support of A is denoted by ( )Supp A  and is defined as  

( ) ( ){ }  | 0 .Supp A u A u= >  

The height of A is denoted by ( )Hgt A  and is defined as  

( ) ( ){ } sup | .Hgt A A u u U= ∈  

A is bounded if ( )Supp A  is a bounded set. ( )U  is to denote the space of 
fuzzy sets which are bounded, normal, convex and continuous. Clearly, 

( ) ( )U F U⊆ . Let P be an arbitrary collection of fuzzy subsets over U, i.e.,  

{ } ( )1
  each .n

k kk
P A A U

=
= ⊆   

P is said to form a fuzzy partition on U if  

( )1
  .n

kk
U Supp A

=
⊆


 

It is also called a complete partition. P is said to be consistent if ( ) 1kA u =  
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then ( ) 0jA u =  for any j k≠ . 
Definition 2. Let [ ],a b  be the given range of values on which n linguistic 

terms are defined. These are considered as the primary terms which the linguis-
tic variable can have. All other linguistic values of the variable concerned  

are generated by using a few linguistic hedges. Let us set and; 1b ah m n
n
−

= = − .  

We mark 0 1, , , mA A A  as the n fuzzy sets defined over [ ],a b  as a fuzzy parti-
tion of [ ],a b  where each iA  is normal at , 0,1, ,iu i m=  . Clearly, 0u a= ; 

1 , 0,1, , 2i iu u h i m+ = + = −     and mu b=  is a classical partition of [ ],a b ; 
( ) [ )0 0 1,Supp A u u= ; ( ) ( )1 1,i i iSupp A u u− += , 1,2, , 1i m= − ;  
( ) ( ]1,m m mSupp A u u−= . The membership of elements in the fuzzy sets 

0 1, , , mA A A  is defined as in the following: 

( ) ( ) 11
0

1 0 1

; m
m

m m

u uu uA u A u
u u u u

−

−

−−
= =

− −
                  (1) 

and 

( )

1
1

1

1
1

1

,

, , 1, 2, , 1.

i
i i

i i
i

i
i i

i i

u u u u u
u u

A u
u u u u u i m
u u

−
−

−

+
+

+

− ≤ ≤ −=  − ≤ ≤ = −
 −



           (2) 

Example 1. Let the domain set be { }0.0,0.5,1.0, ,10.0U =  . Let 

1 2 6, , ,A A A  be the fuzzy sets corresponding to the points Null/0.0, Zero/2.0, 
Small/4.0, Medium/6.0, Large/8.0, VeryLarge/10.0, i.e., the set of fuzzy sets 

( ){ } | iA U i N∈ ∈ , from the Equation (1) and Equation (2), covers the domain 
U. A typical Ruspini fuzzy partition is as shown in Figure 1. 

Many fuzzy systems are based on Zadeh’s compositional rule of inference. 
Despite their success in various systems, researchers have indicated certain limi-
tations [12] in the technique. This motivates the introduction of similarity based 
reasoning techniques as proposed in [12] [13] [14]. A brief review work on si-
milarity based approximate reasoning, in general, can be found in [10] [15]. A 
detailed description of similarity related reasoning can also be found in [12]. 

Different approaches to similarity based reasoning are found in the literature. 
In [8] [16], the authors showed how a crisp set induces a fuzzy set with respect 
to a fuzzy equivalence relation. Thus, assuming the indistinguishability modeled 
by a fuzzy equivalence relation as a basic concept, fuzzy sets were viewed as in-
duced concepts [17], i.e., membership degrees of elements can be obtained from 
the indistinguishability. These works are mainly concerned with the connection 
between fuzzy sets and indistinguishability. They defined the degree to which 
two elements of the universe U cannot be distinguished by a collection of fuzzy 
sets. In the reasoning procedure, the observation (a crisp value) is first translated 
into a fuzzy set induced by the indistinguishability measure. The interpretation 
of the rules in a particular logic provides a semantic background for the compo-
sition of the specific observation with the relation and subsequent derivation of a 
fuzzy set as output of the fuzzy system. 
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Figure 1. A typical Ruspini fuzzy partition. 

 
In this section, we would like to develop a typical SBFS as in the following and 

measure its performance. 
Definition 3. A SBFS is defined as  

, , , , ,f s M d= Σ   

where  
  is a fuzzy if-then rule-base defined on the fuzzy partitions { }iA , { }jB  

of the universe of discourses U and V for two linguistic variables X and Y re-
spectively; 

( ):  f U U→   is a fuzzification function which maps U to some fuzzy subset 
of U; 

( ) ( ) [ ]: 0,1s U U× →   is a similarity matching function which maps pair 
of fuzzy subsets of U to some number in [ ]0,1 ; 

[ ] [ ] [ ]: 0,1 0,1  0,1M × →  is a modification function which takes into consider-
ation the similarity matching degree s and modifies the membership degree of a 
pair of element from U V×  in the fuzzy relation ( ),R u v  obtained from the 
translation of the rule  

( )( ) ( )( )if  is   then  is  X A U Y B V⊆ ⊆   

according to  

( ) ( )( ), , , ; and ;R u v M s R u v u U v V′ = ∀ ∈ ∀ ∈  

( ){ } ( ):   
i

U UΣ →   is an aggregation function which is used in case of mul-
tiple rule firing  

1  and;i
jjB B

=
′ = ∑  

( ):  d V V→  is a defuzzification function which converts a given fuzzy subset 
of V to an element of V.  

2.1. Similarity Relation—Fuzzification 

Assigning similarity modeled by a fuzzy equivalence relation as the basis, fuzzy 
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sets were viewed as an induced concept. Here we consider a fuzzy equivalence 
relation to describe the similarity between elements of a given set. 

Definition 4. An equivalence relation (with respect to the operation *) on the 
set U is a mapping [ ]: 0,1E U U× →  satisfying axioms: 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 , 1, reflexivity ,
2 , , , symmetry and;
3 , , , , , transitivity .

E E u u
E E u v E v u
E E u v E v w E u w u v w U

=
=
∗ ≤ ∀ ∈

 

In [8] the authors showed that the notion of membership is a gradual property 
of fuzzy sets. They have considered a fuzzy equivalence relation to describe the 
indistinguishability or similarity between elements of a fuzzy set. Similarity is an 
important concept for which, a crisp model is often found inadequate. There, 
they showed how a crisp set induces a fuzzy set as its extensional hull with re-
spect to a fuzzy equivalence relation. Two elements cannot be distinguished by a 
fuzzy set if they are both either elements of the same set or its complement. They 
have shown how membership functions of fuzzy sets can be calculated from the 
fuzzy equivalence relation. 

Let ( ) ( )1 U U⊆   be a collection of fuzzy sets. Then 

( )
( )

( ) ( )( )
1

,
A U

E u v A u A v
∈

= ↔∧


                 (3) 

is the coarsest fuzzy equivalence relation on U such that all fuzzy sets in ( )1 U  
are extensional with respect to E. The fuzzy equivalence relation defined by Eq-
uation (3) can be interpreted in the following way—two elements “cannot be 
distinguished by a (fuzzy) set” if they are both elements of the same set or its 
complement, but not one in the set and the other one in its complement. Thus, 
( ) ( )A u A v↔  represents the degree to which the elements u and v cannot be 

distinguished by the fuzzy set A. Therefore, ( ),E u v  is the degree to which u 
and v cannot be distinguished by the set ( )1 U  of fuzzy sets. 

Klawonn in [8] specify bi-implication operators with respect to a fixed impli-
cation operator, fixed conjunction and fixed negation operator. This is shown in 
Table 1. 

Definition 5. A fuzzy set ( )1A U∈  is called extensional with respect to the 
fuzzy equivalence relation E on U if and only if  

 
Table 1. Interpretation of the logical operations under different fuzzy logics. 

α β∗  { }max 1,0α β+ −  { }min ,α β  α β⋅  

α β→  { }min 1 ,1α β− +  
1 if

otherwise
α β

β
≤




 
1 if

otherwise

α β
β
α

≤




 

α β↔  1 α β− −  { }
1 if
min , otherwise

α β
α β

=



 { }
{ }

1 if
min ,

otherwise
max ,

α β
α β
α β

=





 

α¬  1 α−  
1 if 0
0 otherwise

α =



 
1 if 0
0 otherwise

α =


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( ) ( ) ( ), holds , .A u E u v A v u v U∗ ≤ ∀ ∈  

Definition 6. Let E be a fuzzy equivalence relation on U and let ( )A U∈ . 
The fuzzy set  

{ }ˆ | and is extensional with respect toA B A B B E= ≤  

is called the extensional hull of A with respect to E.  
Theorem 1 ( ) ( ) ( ){ }ˆ sup ,

v U
A u A v E u v

∈
= ∗ . 

Here, we apply the indistinguishability operator in order to model fuzzy equiva-
lence relation on a domain of universe U, which is generated by a family of fuzzy 
subsets of U. Accordingly, a fuzzy relation ( ),E u v  can be defined as in the fol-
lowing: 

( ) ( ) ( )( ), 1
A

E u v A u A v
∈

= − −∧


                 (4) 

The corresponding pictorial diagram is as shown in Figure 2. From this equi-
valence relation ( ),E u v  we can fuzzify any point on the domain U by 

( ) ( ), , when
0, otherwise.

F
a

E u a a u a
A u

δ δ − ≤ ≤ += 


             (5) 

Here δ  is to be chosen appropriately in such a way as to cover the ( )Supp A′ , 
(accordingly h is a reasonable value). Therefore, ( )aA u  is an extensional hull of 
a crisp point a . 

Definition 7. A fuzzy binary relation S on U is said to be a similarity relation 
on U if it is reflexive, symmetric and transitive, i.e., 

( )
( ) ( )
( ) ( ) ( )

, 1,

, , and;

, , , , , , ;

S u u

S u v S v u

S u v S v w S u w u v w U

=

=

∗ ≤ ∀ ∈

 

where * stands for the Lukasiewicz conjunction (a t-norm) defined by  
{ }max 1,0α β α β∗ = + − . Then ( ),E u v  is a similarity relation. It is easy to see 

that the equivalence relation defined in Equation (4) is a similarity relation. 
Algorithm: Fuzzification 
Step 1. 1 2, , , nA A A  are the fuzzy sets over the domain U. These triangular 

fuzzy sets are obtained by the Equation (1) and Equation (2). 
Step 2. Construct the fuzzy equivalence relation ( ),E u v  from 1 2, , , nA A A  

with the help of Equation (4). 
Step 3. Construct a fuzzy set with respect to a point a with the help of this 

fuzzy equivalence relation ( ),E u v  as given by the following Equation (6) 

( ) ( ), , when
0, otherwise.a

E u a a u a
A u

δ δ − ≤ ≤ += 


              (6) 

The extensional hulls of the crisp values 4.0 and 7.0 with respect to this fuzzy 
equivalence relation are the fuzzy sets  

( ) ( ) ( )4.0 4.0, 4.0 if 4.0 2 4.0 2, otherwise 0A u E u u A u= − ≤ ≤ + =  
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Figure 2. An example equivalence relation induced by the fuzzy partition of Example 1. 

 
and  

( ) ( ) ( )7.0 7.0,7.0 if 7.0 2 7.0 2, otherwise 0A u E u u A u= − ≤ ≤ + =  

that is  

( )4.0 0.0 2.0 0.25 2.5 0.50 3.0 0.75 3.5 1.00 4.0
0.75 4.5 0.50 5.0 0.25 5.5 0.0 6.0;

A u = + + + +

+ + + +
 

( )7.0 0.0 5.0 0.50 5.5 0.50 6.0 0.75 6.5 1.00 7.0
0.75 7.5 0.50 8.0 0.50 8.5 0.0 9.0.

A u = + + + +

+ + + +
 

Figure 3 illustrate the fuzzification of the crisp values 4.0 and 7.0.  

2.2. Similarity Measure—Inference 

The similarity between two objects suggest the degree to which properties of one 
may be inferred from those of the other. There could be several such measures, 
one such simple measure can be given as in the following: 

Definition 8. Let  

( ) ( ) and  
u U u U

A A u u A A u u
∈ ∈

′ ′= =∑ ∑  

be two fuzzy sets defined over the same universe of discourse U. Let 
( ) [ ], 0,1s S A A′= ∈  be the similarity index of the pair { },A A′  and is defined by 

( ) ( ) ( )( ), max min , .
u U

S A A A u A u
∈

′ ′=                  (7) 

Clearly, 
1) ( ), 1S A A = ; ( ), 1S A A′ =  if A A′ = ; 
2) ( ) ( ), ,S A A S A A′ ′=  and; 
3) ( )0 , 1S A A′≤ ≤ . 
Let us now propose a different strategy for inference in fuzzy system based on 

the concept of similarity. The concept of similarity between fuzzy sets is used in 
selecting rules from the rule-base, to be fired for the particular input specifica-
tion and then in deriving the typical action. 

The knowledge base of a fuzzy system consists of a data base and a rule-base. 
The basic function of the data base is to provide necessary information for 
proper functioning of the fuzzification module, the rule-base and the defuzzifi-
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cation module. Whereas, function of the rule-base is to represent, in a structured 
way, the policy of an experienced system engineer given in the form of a set of 
rules as described in the following:  

: If   is  then  is ;  1, 2, , .i i iR X A Y B i n=   

Let X and Y be two linguistic variables denoting respectively the input and 
output of a SISO fuzzy system. Here each ; 1, 2, ,iA i n=   is a fuzzy subset over 
U and each ; 1, 2, ,iB i n=   is a fuzzy subset over V. Let U, V be respectively 
the Universe of discourse of the linguistic variables X and Y. Let  

( ) ( )    and    .i i i i
u U v V

A A u u B B v v
∈ ∈

= =∑ ∑  

Let us consider a pattern for approximate reasoning with imprecise know-
ledge, as presented in the Table 2. 

For a given input X is A our similarity based reasoning scheme measure the 
compatibility/similarity ( ), ; 1, 2, ,iS A A i n=  . We choose those rules for which 

( ),iS A A ≥  , a given threshold value set for a particular system. Let there be p 
such rules for that system and we call them 1 2, , nR R R  (with possible rear-
rangement). Let  

( ), ; 1, 2, , .i is S A A i n= =   

Translate each rule iR  to fuzzy relation iR  on U V×  according to the re-
lation  
 

 
Figure 3. Fuzzification of the point 4.0 and 7.0. 

 
Table 2. Approximate reasoning  

Ri : if X is Ai then Y is Bi 

Q :  X is A'   

Conclusion ←    Y is B' 
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( ) ( ) ( )( ), , ;  and i i iR u v I A x B y u U v V= ∈ ∈  

where I is an implication function. 
Modification function M:  
Let R: X is A → Y is B be a fuzzy rule and X is A’ be a specific observation. 

The fuzzy rule is modelled by a fuzzy conditional relation given by  

( ) ( ) ( )( ), ,R u v I A u B v=  

where,  

( ) ( )   ;      and is an implication function.
u U v V

A A u u B B v v I
∈ ∈

= =∑ ∑  

First of all, let the fuzzy conditional relation be translated to  

( ) ( ) ( )( )
( ) ( )( )

, ,

min 1,1 ; using the Lukasiewicz -norm as a model for .

R u v I A u B v

A u B v t I

=

= − +
 

Next, with the similarity matching index ( ),s S A A′=  computed for the ex-
pected value and the observed value of the linguistic variable X, the conditional 
relation is modified as in the following: 

( ) ( )( ) ( )( ), , , 1 1 , .R u v M s R u v s R u v′ = = − ⋅ −             (8) 

Thus, [ ] [ ] [ ]: 0,1 0,1 0,1s R RM ′× →  is explicitly given by the Equation (8). Any 
transformation/modification of the kind given above can be understood as 

( ) ( )( ) ( )( ), , , , ,R u v M s R u v I s R u v′ = =               (9) 

where I is an implication function (hence satisfying ( ),0 1I u u= − , ( )0, 1I u = , 
( )1,I u u= , is decreasing continuously in the first variable and is continuously 

increasing in the second variable) fulfils the postulates 
1) If 1s = , then ( ) ( ), ,R u v R u v′ = ; 
2) If 0s = , then ( ), 1R u v′ = ; 
3) As s increase from 0 to 1, ( ),R u v′  decrease uniformly from 1 to ( ),R u v . 
In particular, taking I as the strong product implication  

( ), 1I u v u uv= − +  

we can obtain our scheme for modification as given in Equation (8) on substitu-
tion in Equation (9). 

Then, the composition of the observed value and the modified relation gene-
rates as a conclusion ( )B v′  which serves as the output of if X is A then Y is B 
and X is A’ and is explicitly given by 

( ) ( ) ( ){ }, .sup
u U

B v A u R u v
∈

′ ′ ′= ∗                 (10) 

Next, with is  we modify iR  to compute the modified relation iR′  on 
U V×  as in the following:  

( ) ( ) ( ), , 1 1 ; 1, 2, ,i i i i i i iR M s R I s R R s i n′ = = = − − ⋅ =  . 

Now, we compute B′  according to 
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( ) ( ) ( ){ }, ; 1, 2, , .supi i
u U

B v A u R u v i n
∈

′ ′ ′= ∗ =                (11) 

We compute the specificity of iB′ ; 1,2, ,i n=  . Choose the one with max 
specificity. Break tie, if there be any, according to maximum height Defuzzifica-
tion. 

Algorithm SAR (Similarity based approximate reasoning) 
Step 1. Compute ( ), iS A A′  for 1,2, ,i n=   using Equation (7). 
Step 2. Set   and then find rules for which ( ), iS A A ε′ ≥ . 
Step 3. Translate premise p and compute ( ),iR u v  for those rules coming 

out of Step 2 using any suitable translating rule possibly, a T-norm operator. 
Step 4. Modify ( ),R u v  with ( ), iS A A′  to obtain the modified conditional 

relation ( ),R u v′  as on Equation (8). 
Step 5. Take a composition “*” of A′  and R′ , preferably, a T-norm and use 

sup-projection operation on iA R′ ′∗  to obtain iB′  as given in Equation (10). 
Step 6. Compute the output using maximum specificity measure. Break tie, if 

there be any, according to maximum height defuzzification.  

2.3. Specificity Measure—Defuzzification 

The result of rule firing is a class of clipped fuzzy sets defined over the same un-
iverse of discourse. We are required to determine a single real value from those 
fuzzy outputs. Earlier [11], we discussed several methods of defuzzification like 
Center-of-gravity, Center-of-sums, height, etc. For this schema, the basic idea is 
as follows: If the membership grade of a particular element, in the output fuzzy 
set, is high then this contributes more to the defuzzified output. 

Such concepts cannot be used in the present case of similarity based reasoning 
paradigm. Here, the lower the similarity value between the rule-antecedent and 
the observation, the closer the output to the least specific case (i.e., unknown) 
with the membership grade of elements in the output fuzzy set close to 1. In such 
cases, a natural choice would be to use specificity information of the output 
fuzzy sets in defuzzification. In our scheme, the basic idea will be: the element 
with high membership value should come from the most specific output fuzzy 
set. Our first defuzzification scheme is based on this concept. The most specific 
among the output fuzzy sets has the maximum impact on the resultant choice. 
For that we compute specificity value of each output fuzzy set separately. 

The result of rule firing, for a typical observation is a fuzzy set. This is inter-
preted at the semantic level as the desired output. Often, we need to determine a 
precise action as output. The purpose of defuzzification is to obtain a scalar val-
ue u U∈ , from the said output fuzzy set, as the action. Then, if necessary, 
de-normalisation is performed on the output so as to obtain the corresponding 
action on its physical domain. 

Specificity measure of fuzzy set estimates how precise is an information when 
represented by the fuzzy set rather than an estimate of its fuzziness which is 
measured by the entropy of the fuzzy set. In order to provide a definition for any 
specificity index, a number of observations must be considered. A fuzzy set with 
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maximum specificity value corresponds to a precise assessment of the values of a 
variable. In trying to capture the form of the specificity index, a number of 
properties are required or desirable. 

According to Dubois and Prade, a specificity measure ( )Sp A  [18] should sa-
tisfy the following properties. Let X be a linguistic variable defined on a universe 
of discourse U. A and B are normalised fuzzy subsets of U.  

A1.   A U∀ ⊆ , ( ) [ ] 0,1Sp A ∈ .  
A2. ( ) 1Sp A =  if and only if A is a singleton of S.  
A3. If A B⊆  then ( ) ( )Sp A Sp B≥ .  
Yager [19] introduced one such measure of specificity that satisfies the above 

properties. When U is finite, Yager proposed an expression for defining the spe-
cificity. Let us assume that A be a fuzzy set defined over the universal set U and 
Aα  be the α-level set of A. The specificity associated with A is denoted as Sp(A) 

and is defined as 

( ) max

0

1 dSp A
CardA

α

α

α= ∫                    (12) 

Let us now list some properties [19] associated with the above definition.  
P1. For all A, ( )Sp A  assumes its maximum value 1, when { }1A u=  for 

some particular u U∈ .  
P2. For all A, ( ) [ ]0,1Sp A ∈  and it assumes its minimum value 0, when 

A = Φ .  
P3. If ( )A u k=  for all u U∈  then ( ) kSp A

n
=  where n is the cardinality 

of the ordinary set U.  
Defuzzification is a procedure applied to reduce the anxiety in a decision. 

Specificity estimates how precise is the information on the values of a linguistic 
variable restricted by a fuzzy set. As suggested by the axioms and further proper-
ties of specificity a crisp set can be less specific than a fuzzy set for restricting the 
possible values of a variable. Accordingly, we propose a new technique for de-
fuzzification based on measure of precision. Let there be m-clipped fuzzy sets 

( ){ }; 1, 2, ,kA k m=   and let ( )
( ){ }, ; 1, 2, ,k

ks p k m=   be the specificity asso-
ciated with ( )kA  as well as the peak point of the consequent fuzzy set of the 
kth-rule. Let ( )kp  be the peak value of ( )kA  and ( )kh  be the corresponding 
height of the clipped version of ( )kA . Then using height method the defuzzified 
value will be given by 

( ) ( )

( )

1

1

.

m
k k

k
m

k

k

p h
u

h

∗ =

=

⋅
=
∑

∑
                     (13) 

Whereas, the specificity based defuzzified value u∗  will be given by 

( )
( )

( )

1

1

m
k

k
k

m

k
k

p s
u

s

∗ =

=

⋅
=
∑

∑
.                     (14) 
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Algorithm SBFS (Similarity based fuzzy system) 
Step 1. Let ( )1 2, , ,t t t t

px x x x=   be the system state vector at time t. 
Step 2. Fuzzify each t

ix , the real value for the system state variable, using tri-
angular membership function forming a Ruspini type fuzzy partition. 

Step 3. Compute similarity relation ( ),t t
i jE x x  with the help of state vector 

tx . 
Step 4. Use the similarity relation to fuzzify the input data by fuzzification 

algorithm viz., ( ) ( ),aA x E a x= , where , ta x x∈ . 
Step 5. For each rule kR , compute similarity index between the input fuzzy 

set and the antecedent fuzzy set, for all variables. Obtain k , the minimum of all 
the similarity indices. Take this as a matching grade of the rule. 

Step 6. Perform similarity based approximate reasoning, taking one/more 
rule(s) at a time for which ; 0 1k α α≥ ≤ ≤ . 

Step 7. Defuzzify the fuzzy sets, as obtained in Step 6, by using the specificity 
based defuzzification scheme. 

Step 8. Use the defuzzified result, as found in Step 7, as the system input for 
the next time interval. Set 1t t← + . Go to Step 4.  

3. Universal Approximation 

During the past several years, fuzzy logic control (FLC) has been successfully 
applied to a wide variety of practical problems. Notable applications of that FLC 
systems include the control of warm water, robot, heat exchange, traffic junction, 
cement kiln, automobile speed, automotive engineering, model car parking and 
turning, power system and nuclear reactor, etc. It points out that fuzzy control 
has been effectively used in the context of complex ill-defined processes, espe-
cially those which can be controlled by a skilled human operator without the 
knowledge of their underlying dynamics. In this sense, neural and adaptive fuzzy 
systems have been compared to classical control methods by B. Kosko. There, it 
is observed that they are model-free estimators, i.e., they estimate a function 
without requiring a mathematical description of how the output functionally 
depends on the input; they learn from samples. 

However, some people criticize fuzzy control because its effectiveness has not 
been proved viz., the very fundamental theoretical question “Why does a fuzzy 
rule-based system have such good performance for a wide variety of practical 
problems?”, remains unanswered. There exist some qualitative explanations, e.g., 
fuzzy rules utilize linguistic information, fuzzy inference simulates human 
thinking procedure, fuzzy rule systems capture the approximate and inexact na-
ture of the real world, etc., but mathematical proofs have not been obtained. 

In this section, we prove that the proposed SBFS can serve as a universal ap-
proximator [20] to any continuous function on a closed and bounded interval on 
real line. 

Theorem 2: For any continuous function [ ]: ,f a b R→  and 0> , there is 
a SBFS such that [ ] ( ) ( ),supx a b f x g x∈ − <  , where [ ]: ,g a b R→  is a function 
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which assigns the crisp input x to the crisp output y of the fuzzy system. 
Proof: Here, f is continuous on [ ],a b . Since [ ],a b  is compact, f is uniform-

ly continuous on [ ],a b , i.e.,  

( ) ( ) 0, 0 such that x x f x f xδ δ′ ′∀ > ∃ > − < ⇒ − <  . 

Let us first proceed to choose the normal points. Let ( )1 b an
δ
− − =   

 and 

1
b a

n
δ

−
= , then obviously 1δ δ< . We now introduce ( )1n −  points in be-

tween a and b as in the following.  
Set 0 1 0 1 2 1 1 1 1, , , , , ,i i nx a x x x x x x x bδ δ δ−= = + = + = + =   and thereby we 

generate n number of subintervals  

[ ] ( )1 1 1, , 1, 2,3, , of length , i.e., 1, , .i i i ix x i n x x i nδ δ δ− −= < − < ∀ =   

These xis are the normal points in the input space and ( )i iy f x=  are the 
normal points in the output space. 

We now try to construct ( )1n +  fuzzy subsets , 0,1, 2, ,iA i n=   over the 
input space such that each iA  is 

1) centered and normal at ix ; 
2) continuous and convex; 
3) ( ) [ )0 1,Supp A a x= , ( ) ( ],n nSupp A x b=  and ( ) ( )1 1,i i iSupp A x x− +=  for  
1, , 1i n= − ; 

4) { } 1

n
i i

A
=

 forms a Ruspini partition as given in Figure 4. 
Similarly, we construct fuzzy subsets 0 1 2, , , , nB B B B  of the output space, 

where each iB  is 
1) centered and normal at iy ; 
2) continuous and convex; 
3) ( ) ( ),i i iSupp B y y= − +   for 0,1,2, ,i n=  ; 
4) { } 0

n
i i

B
=

 forms a fuzzy partition as given in Figure 5. 
Here, we note that for any [ ]( ) [ ], ,y f a b x a b∈ ∃ ∈ , more precisely [ ]1,k kx x x +∈  

for some { }0,1,2, ,k n∈  . As we have 1k kx x δ+− <  therefore, kx x δ− <  and 
this implies ky y− <  . This, in turn, means that { } 0

n
i i

B
=

 forms a complete 
fuzzy partition on the output space as we claimed it to be. 

As we are unaware of the order of Bis in the output space we therefore, take 
five arbitrary Bis, viz., , , , ,i j k l mB B B B B  which is shown in the fuzzy partition of 
the output space in Figure 5. 

Next, we construct the rule base with 1n +  rules as in the following.  
If x is Ai then y is Bi for 0,1, ,i n=  . Here, Bi is chosen in such a way that for 

the normal point yi of Bi, there is a pre-image ix  such that ( )i if x y=  and 
( ) 1i iA x = . 
Let us now consider a crisp value [ ],x a b′∈  as the given input. Note that if 

ix x′ =  for 0,1, ,i n=   then choose the input fuzzy set iA  and obtain iB  as 
the fuzzy output firing the ith rule and so the crisp output is ( )iy g x′= . Here 
( ) ( ) ( )i ig x y f x f x′ ′= = =  and the theorem is proved. 
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Figure 4. Fuzzy partition of the input space. 

 

 
Figure 5. Fuzzy partition of the output space. 

 
Assume that ix x′ ≠  for any 0,1, ,i n=   then [ ]1,m mx x x +′∈  for some 

0,1,2, ,m n=  . In this case we choose  

{ }2 1  min ,m mx x x xδ +′ ′= − −  

and apply Fuzzification algorithm i.e., 
1) construct a fuzzy equivalence relation ( ),E x y  from 0 1, , , nA A A  using  
( ) ( ) ( )( )

0
, 1 ) and;

n

i i
i

E x y A x A y
=

= − −∧  
2) set 2 0δ ≥  and define a fuzzy set A′  about x′  from the fuzzy equiva-

lence relation ( ),E x y  by  

( ) ( ) [ ]2 2, for ,
0 otherwise.
E x x x x x

A x
δ δ′ ′ ′ ∈ − +′ = 


              (15) 

Here A′  is defined to look like Figure 6, so that A′  intersects at most mA  
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and 1mA + . 
Now we compute the similarity measure ( ), m mS A A s′ =  and ( )1 1, m mS A A s+ +′ =  

using Definition 8. 
Case (1) If one of ms  and 1ms +  is greater than our desired threshold 0τ . 

Say, 0 ms τ>  and fire the mth rule and obtain the modified consequence of the 
rule mB′  using SAR algorithm, which, in this case, is going to be the fuzzy out-
put B′ , given by the equation  

( )
[ ]

( ) ( )( ){ }
,

, ,sup m
x a b

B y T A x R x y
∈

′ ′ ′=  

where T is a continuous t-norm and ( ),m m mR M s R′ = . 
Here we take Lukaswiecz conjunction as T and Lukaswiecz implication as R. 

We now consider the following subcases: 
Subcase (a) For ( ) ( ){ }: m mx A x B y< ,  

( ), 1mR x y =  
( ), 1mR x y′⇒ =  

( ) ( )sup .m
x

B y A x′ ′⇒ =
 

Subcase (b) For ( ) ( ){ }: m mx A x B y≥
,  

( ) ( ) ( ), 1m m mR x y A x B y= − +  

( ) ( ) ( ), 1m m m m mR x y s A x s B y′⇒ = − +  

( ) ( ) ( ) ( )( )( )sup max ,0 .m m m m m
x

B y A x s A x s B y′ ′⇒ = − +  

Note that ( ) 1m mB y′ =  i.e., ( )mKer B′  is nonempty and ( ) m my Ker B′∈ .  
Further, observe that for { }: my y y− ≥  ,  

( ) ( ), 1 ,m mR x y A x y= −  

( ) ( ), 1 ,m m mR x y s A x y′⇒ = −  

( ) ( ) ( )( )sup 1.m m m
x

B y A x s A x′ ′⇒ = − <  

As, mB  is convex, continuous and symmetric so is mB′ . 
This prompts us to draw mB′  as in Figure 7. Now, it becomes obvious that in 

this case the defuzzified output is my , i.e., ( ) ( ) m mg x y f x′ = = . 
As [ ]1,m mx x x +′∈  and 1m mx x δ+− <  therefore, mx x δ′ − < . This will 

imply  

( ) ( )mf x f x′ − <   

( ) mf x y′⇒ − <   

( ) ( ) .f x g x′ ′⇒ − <   

Again, as [ ],x a b′∈  is arbitrary,  

[ ]
( ) ( )

,
.sup

x a b
f x g x

∈
− <   
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Figure 6. A typical fuzzy input. 

 

 
Figure 7. Modification of Bm. 

 
Case (2) If both ms  and 1 0ms τ+ ≥  then fire both mth and ( )1 thm +  rule and 

obtain mB′  and 1mB +′  using SAR algorithm. 
It may be noted that in this case we may obtain at most a 0τ  similar output 

to the consequent as the input is 0τ  similar to the antecedent. Now, we com-
pute ( ),m mS B B′  and ( )1,m mS B B +′  and choose the maximum and we call it ms′ . 
Likewise, we compute ( )1,m mS B B+′  and ( )1 1,m mS B B+ +′  and choose the maxi-
mum and call it 1ms +′ . 

Subcase (a) If one of ms′  and 1ms +′  is greater than our desired threshold val-
ue ( )1 0τ τ≤ , then we take the corresponding iB′  for , 1i m m= +  as the final 
output B′ . Suppose 1ms τ′ > , then the final fuzzy output would be mB B′=  and 
we proceed similarly as in Case(1) to prove the theorem. 
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Subcase (b) If both ms′ , 1 1ms τ+′ > , then 1m mB B B +′ ′ ′=   which looks like 
Figure 8 and we defuzzify B′  using specificity based defuzzification as sug-
gested in [10]. Crisp output  

( ) ( ) ( )
( ) ( )

1 1

1

m m m m

m m

y Sp B y Sp B
y g x

Sp B Sp B
+ +

+

′ ′× + ×
′ ′= =

′ ′+
 

where ( )Sp B′  is the specificity index of B′ . Thus, [ ]1,m my y y +′∈  or 
[ ]1,m my y+  depending on 1m my y +<  or 1m my y +> . Without loss of generality, 
let us assume [ ]1,m my y y +′∈ . 

We have ( )m mf x y=  and ( )1 1m mf x y+ +=  then by the intermediate value 
property of [ ] [ ]1 1: , ,m m m mf x x R u x x+ +→ ∃ ∈  such that ( )f u y′= . Again, 

[ ]1, ,m mu x x x +′∈  and 1m mx x u xδ δ+ ′− < ⇒ − < . 
This will imply  

( ) ( )f x f u′ − <   

( )f x y′ ′⇒ − <   

( ) ( ) .f x g x′ ′⇒ − <                       (16) 

Since, [ ],x a b′∈  is arbitrary, 
[ ]

( ) ( )
,

sup
x a b

f x g x
∈

− <  . 
Hence, in either case, 

[ ]
( ) ( )

,
sup

x a b
f x g x

∈
− <  . 

4. A Case Study on dc-Motor 

In this section, let us consider the dc-motor as in [9]. The human expert ob-
served the behaviour of the dc-motor and described the relation between current 
and speed in the form of fuzzy conditional statements as in the following. We 
present a diagram of the dc-motor in Figure 9 [21]. 

Let the domain of the antecedent part be { }0.0,0.5,1.0, ,9.5,10.0U =  . Let  

( ) { }current Null, Zero, Small, Medium, Large and HugeI =  

be a typical fuzzy cover on U, corresponding to the points 0.0, 2.0, 4.0, 6.0, 8.0, 
10.0, i.e., the set of the antecedent fuzzy sets defined through Equation (1) and 
Equation (2). Moreover, let the domain of the consequent part be  

{ }400,500, ,1800,2000V =   and  

( ) { }speed Zero, Small, Medium, Large and HugeN =  

be a fuzzy cover of V, corresponding to the points 400, 800, 1200, 1600 and 2000. 
Now, the authors in [22] define the behaviour of the dc-motor (the specific rela-
tion between current and speed) through fuzzy rules and data as in Table 3 and 
Table 4. The membership values of fuzzy sets for ( )current I  and ( )speed N  
are as given in Table 5 and Table 6 respectively. Figure 10 and Figure 11 illu-
strated respectively the primary fuzzy sets considered in this paper for linguistic 
variables ( )current I  and ( )speed N  of the dc-motor. Figure 12 and Figure 
13 represent the static data of the dc-motor for the two cases presented as Ex-
ample 1 and Example 2. 

Here, we illustrated the behaviour of dc-motor through the comparison be-
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tween real input-output and that obtained by the application of the proposed 
methodology. The Figure 14, Figure 15 and Figure 16, Figure 17 illustrated 
respectively the output of simulation and a comparison of the same with the real 
values for the two cases. 
 
Table 3. Data for Example-1 and corresponding fuzzy model. 

Data      Rules     

I N I N I N      

0.0 2000 3.5 600 7.0 1600      

0.5 1800 4.0 400 7.5 1800 r1: If I = Null then N = Huge also 

1.0 1600 4.5 600 8.0 2000 r2: If I = Zero then N = Medium also 

1.5 1400 5.0 800 8.5 1800 r3: If I = Small then N = Zero also 

2.0 1200 5.5 1000 9.0 1600 r4: If I = Medium then N = Medium also 

2.5 1000 6.0 1200 9.5 1400 r5: If I = Large then N = Huge also 

3.0 800 6.5 1400 10.0 1200 r6: If I = Huge then N = Medium  

 
Table 4. Data for Example-2 and corresponding fuzzy model. 

Data      Rules     

I N I N I N      

0.0 2000 3.5 1700 7.0 1400      

0.5 2000 4.0 1600 7.5 1300 r1: If I = Null then N = Huge also 

1.0 2000 4.5 1600 8.0 12000 r2: If I = Zero then N = Medium also 

1.5 2000 5.0 1600 8.5 1000 r3: If I = Small then N = Zero also 

2.0 2000 5.5 1600 9.0 800 r4: If I = Medium then N = Medium also 

2.5 1900 6.0 1600 9.5 600 r5: If I = Large then N = Huge also 

3.0 1800 6.5 1500 10.0 400 r6: If I = Huge then N = Medium  

 
Table 5. Primary fuzzy sets for current, the linguistic variable I. 

U Null Zero Small Medium Large Huge 

0.00 1.00 0.00 0.00 0.00 0.00 0.00 

0.50 0.75 0.25 0.00 0.00 0.00 0.00 

1.00 0.50 0.50 0.00 0.00 0.00 0.00 

1.50 0.25 0.75 0.00 0.00 0.00 0.00 

2.00 0.00 1.00 0.00 0.00 0.00 0.00 

2.50 0.00 0.75 0.25 0.00 0.00 0.00 

3.00 0.00 0.50 0.50 0.00 0.00 0.00 
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Continued 

3.50 0.00 0.25 0.75 0.00 0.00 0.00 

4.00 0.00 0.00 1.00 0.00 0.00 0.00 

4.50 0.00 0.00 0.75 0.25 0.00 0.00 

5.00 0.00 0.00 0.50 0.50 0.00 0.00 

5.50 0.00 0.00 0.25 0.75 0.00 0.00 

6.00 0.00 0.00 0.00 1.00 0.00 0.00 

6.50 0.00 0.00 0.00 0.75 0.25 0.00 

7.00 0.00 0.00 0.00 0.50 0.50 0.00 

7.50 0.00 0.00 0.00 0.25 0.75 0.00 

8.00 0.00 0.00 0.00 0.00 1.00 0.00 

8.50 0.00 0.00 0.00 0.00 0.75 0.25 

9.00 0.00 0.00 0.00 0.00 0.50 0.50 

9.50 0.00 0.00 0.00 0.00 0.25 0.75 

10.00 0.00 0.00 0.00 0.00 0.00 1.00 

 
Table 6. Primary fuzzy sets for speed, the linguistic variable N. 

V Zero Small Medium Large Huge 

400 1.00 0.00 0.00 0.00 0.00 

500 0.75 0.25 0.00 0.00 0.00 

600 0.50 0.50 0.00 0.00 0.00 

700 0.25 0.75 0.00 0.00 0.00 

800 0.00 1.00 0.00 0.00 0.00 

900 0.00 0.75 0.25 0.00 0.00 

1000 0.00 0.50 0.50 0.00 0.00 

1100 0.00 0.25 0.75 0.00 0.00 

1200 0.00 0.00 1.00 0.00 0.00 

1300 0.00 0.00 0.75 0.25 0.00 

1400 0.00 0.00 0.50 0.50 0.00 

1500 0.00 0.00 0.25 0.75 0.00 

1600 0.00 0.00 0.00 1.00 0.0 

1700 0.00 0.00 0.00 0.75 0.25 

1800 0.00 0.00 0.00 0.50 0.50 

1900 0.00 0.00 0.00 0.25 0.75 

2000 0.00 0.00 0.00 0.00 1.00 
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Figure 8. Output fuzzy set. 

 

 
Figure 9. Block diagram of a dc-motor. 

 

 
Figure 10. Fuzzy sets for I. 
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Figure 11. Fuzzy sets for N. 

 

 
Figure 12. The real static behaviour of the dc-motor for Example-1. 

 

 
Figure 13. The real static behaviour of the dc-motor for Example-2. 
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Figure 14. The behaviour of the proposed SBFS for Example-1. 

 

 
Figure 15. A comparative study with real behaviour of dc-motor for Example-1. 

 

 
Figure 16. The behaviour of the proposed SBFS for Example-2. 
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Figure 17. A comparative study with real behaviour for Example-2. 

5. Conclusions 

The significance of function approximation becomes obvious in the wide spec-
trum of computational activities for modelling and analysis ranging from ap-
plied mathematics to soft computing. Function approximation is a method of 
generalization in such a way that it specifies a function in an aim to develop a 
representative function being approximate to the target function. We have seen 
that conventional fuzzy systems characterized by a fixed fuzzy inference, a typi-
cal fuzzy relation along with a defuzzification procedure do act as universal 
function approximators with a large number of fuzzy rules, thereby increasing 
the complexity of the system further. In this research, we attempted to show that 
any real continuous function on a closed and bounded real interval can also be 
approximated by an appropriate SBFS to any degree of accuracy with fewer rules 
if similarity is considered in reasoning. From the simulation of dc-motor system, 
it is demonstrated that the proposed scheme approximates with good accuracy a 
non-linear system with manipulation of fewer fuzzy rules than the ordinary 
fuzzy system and its control performance is comparable to that of any model 
non-linear controller. Here, we have considered the design of the system with 
only six rules. It has been observed that an induction of a few more rules in the 
rule base for the system will make the system performance highly satisfactory. 

In doing so, we have discussed similarity based approximate reasoning me-
thodology which provides solutions to difficult problems in the construction of 
intelligent systems in which, the available information is supplied by human ex-
perts which, at times are found to be incomplete, imprecise or even uncertain in 
nature and therefore, inherently ambiguous. Human beings perform qualitative 
reasoning relying heavily on analogy and similarity in situations where there is 
no direct knowledge to come up with a plausible conclusion from the available 
information. We have seen that similarity relations provide an interesting frame-
work to understand the concepts in the design of a fuzzy system. A fuzzification 
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technique has been employed based on similarity relation which is found to be 
inherent in approximate reasoning. In the process, we have developed a me-
chanism to compute the matching degree of two fuzzy sets—representation of 
imprecise concepts (e.g., low speed and very low speed of a dc-motor). This 
concept of similarity measure is used at different stages of reasoning—in rule se-
lection and in relation modification. 

Proposed similarity based approximate reasoning technique is a combination 
of Zadeh’s Compositional Rule of Inference and Turksen’s similarity based rea-
soning. It is shown that this method is a more general characterization of simi-
larity based approximate reasoning and Turksen’s method is a special case of the 
proposed method. Interesting results have been presented from a typical case 
study. 

We have suggested relevant issues involved in the design of fuzzy sys-
tems—introduced similarity in reasoning, similarity relation in fuzzification and 
the concept of specificity measure in defuzzification. It is hoped that the intro-
duction of the specificity based defuzzification technique will prove to be a po-
werful one in qualitative control of fuzzy systems. This actually broadens the 
universal acceptability of fuzzy models. 

As it is based on fuzzy logic, the flexibility provided by fuzzy logics allow 
choices in the selection of a fuzzy partition, the interpretation of different opera-
tions—conjunction, disjunction, implication, the fuzzification, the modification 
and the defuzzification techniques for a particular fuzzy system.  
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