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Abstract 
This paper models a biological brain—excluding motivation (e.g., emotions)—as a Finite Automa-
ton in Developmental Network (FA-in-DN), but such an FA emerges incrementally in DN. In artifi-
cial intelligence (AI), there are two major schools: symbolic and connectionist. Weng 2011 [1] 
proposed three major properties of the Developmental Network (DN) which bridged the two 
schools: 1) From any complex FA that demonstrates human knowledge through its sequence of the 
symbolic inputs-outputs, a Developmental Program (DP) incrementally develops an emergent FA 
inside DN through naturally emerging image patterns of the symbolic inputs-outputs of the FA. 
The DN learning from the FA is incremental, immediate and error-free; 2) After learning the FA, if 
the DN freezes its learning but runs, it generalizes optimally for infinitely many inputs and actions 
based on the neuron’s inner-product distance, state equivalence, and the principle of maximum 
likelihood; 3) After learning the FA, if the DN continues to learn and run, it “thinks” optimally in 
the sense of maximum likelihood conditioned on its limited computational resource and its li-
mited past experience. This paper gives an overview of the FA-in-DN brain theory and presents the 
three major theorems and their proofs. 
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1. Introduction 
Our computational theory [2] of brain and mind includes two major parts rooted in the rich literature about bio-
logical brains [3] [4]: (A) dynamically emerging, motivation-free circuits and functions; and (B) motivation 
based on such circuits and functions. 
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The computation in the former (A) is carried out by target-precise neuron-to-neuron signal transmissions. 
Weng & Luciw 2012 [5] and Weng et al. 2013 [6] presented a computational theory for such brain circuits to 
process information spatial and temporal, respectively, using their distributed, emergent, and non-symbolic re-
presentations. As reviewed in those two articles, such brain circuits are also fundamentally different from many 
existing neural networks cited therein—the brain circuits are not only locally recurrent as many neural networks, 
but also globally recurrent in the sense that they all use motor as input concepts. As explained in Weng & Luciw 
[7], the brain motors (or actions) correspond to all possible concepts that a human can learn and express from 
conception, through prenatal life, birth, childhood, infancy, and adulthood—such as location, type, scale, tem-
poral context, goal, subgoal, intent, purpose, price, ways to use, and so on. These concepts are used by the brain 
circuits as states, like states in a Finite Automaton (FA) [8], but such an FA is emergent and non-symbolic to be 
explained below. 

The computation in the latter (B) is based on target-imprecise diffusion of neural transmitters that diffuse 
across brain tissue. Weng et al. 2013 [9] proposed a model for how reinforcement learning is carried out in such 
emergent brain circuits through two types of transmitter systems—serotonin and dopamine. Wang et al. 2011 
[10] present a model about how individual neurons use two other types of transmitter systems—acetylcholine 
and norepinephrine—to automatically estimate uncertainty and novelty, so that each neuron can decide where it 
gets inputs from. These four types of neural transmitter systems—serotonin, dopamine, acetylcholine and nore-
pinephrine—along with other neural transmitters but seemingly relatively less important than these four types 
[11], amount to what we know as motivation. Various emotions are special cases of motivation [3] [4]. 

This paper will not further discuss the motivation part of a biological brain and will instead concentrate on the 
former—(A) the basic brain circuits and functions. In other words, the theory below models any emotion-free 
brain. DNs with emotion such as pain avoidance and pleasure seeking will be only briefly discussed in Section 9. 

This theory here does not claim that the FA-based brain model is indeed complete for an emotion-free brain, 
because there is no widely accepted and rigorous definition of a natural phenomenon such as a brain and there-
fore, there is always some limitation for any theory to explain a natural phenomenon. As such, as any theory can 
only approximate a natural phenomenon but can never exhaust such an approximation. The Newtonian physics 
is a good example because it is refined by the relativity theory. 

All computational networks fall into two categories: Symbolic Networks (SNs) and Emergent Networks. The 
former category uses symbolic representations and the latter uses emergent representations. See the review for 
symbolic models and emergent models in Weng 2012 [12] which tried to clarify some common misconceptions 
on representations. 

The class of SN [13] includes Finite Automata (FA), Markov Chains, Markov Models, Hidden Markov Mod-
els (HMM), Partially Observable Markov Decision Processes (POMDP), Belief Networks, Graphical Models, 
and all other networks that use at least some symbolic representations. The HMM and other probability-based 
models in the above list are symbolic because they add probability to the symbolic FA basis and therefore the 
basic nature of their representations is still symbolic—adding probability does not change the nature of symbolic 
representation. We will use FA as an example for SN because any SN includes FA as its basis. 

The class of Emergent Network includes all neural networks that use exclusively emergent representations, 
such as Feed-forward Networks, Hopfield Networks, Boltzmann Machines, Restricted Boltzmann Machines, 
Liquid State Machines, and Reservoir Computing, and the newer Developmental Networks (DNs) [14]. Howev-
er, traditional neural networks are not as powerful and complete as DN, because they do not have the logic of 
FA as explained first in [14] and we will be proved for DN in this paper. 

The major differences between a Symbolic Network (SN) and a Developmental Network (DN) are illustrated 
in Figure 1. 

Marvin Minsky 1991 [15] and others correctly argued that symbolic models were logical and clean, while 
connectionist models were analogical and scruffy. Neural networks are called emergent networks here because 
some networks were not emergent and partially symbolic. Michael Jodan 2014 [16] correctly raised fundamental 
questions that many researchers have not paid sufficient attention to. The logic capabilities of emergent net-
works are still unclear, categorically. This paper addresses some fundamental issues that Michael Jordan raised 
[16] recently. 

Computationally, feed-forward connections serve to feed sensory features [17] to motor area for generating 
behaviors. It has been reported that feed-backward connections can serve as class supervision [18], attention 
[19], and storage of time information. 
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Figure 1. Comparison between a symbolic FA (or SN) and an emergent DN. 
(a) Given a task, an FA (or SN), symbolic, handcrafted by the human pro- 
grammer using a static symbol set; (b) A DN, which incrementally learns the 
FA but takes sensory images directly and produces motor images directly. 
Without given any task, a human designs the general-purpose Developmental 
Program (DP) which resides in the DN as a functional equivalent of the 
“genome” that regulates the development—fully autonomous inside the DN. 

 
The work of Finite Automata (FA) played a major role in our theory about the brain. The work of Weng 2011 

[14] and 2013 [20] was not the first to relate a network with an FA. Some researchers used neural networks to 
batch-com- pile a special kind of FA. Frasconi et al. 1995 [21] used a feed-forward network to explicitly com-
pute the state transition function : Q Qδ ×Σ  of an FA. Their network requires: 1) a special canonical binary 
coding of the states so that the Hamming distance is 1 between any source state q and any target state q′ ; 2) an 
additional intermediate state is added if the source state q and target state q are the same; 3) the entire state tran-
sition function δ is known a priori so that their algorithm can directly compute all the weights as a batch (i.e., 
programmed, instead of learned incrementally). This compiled network uses a layer of logic-AND nodes fol-
lowed by a layer of logic-OR nodes. Frasconi et al. 1996 proposed a radial basis function as an alternative 
batch-compiled feed-forward network for the above logic network [22] since a finite number of samples are suf-
ficient for completely characterizing the FA due to its symbolic nature. Omlin & Giles 1996 [23] proposed a 
second-order network for computing the state transition function of a fully given FA. By second order, the neu-
ronal input contains the sum of weighted multiplications (hence the second order), between individual state 
nodes and individual input nodes. There does not seem to be known evidence that a biological neuron uses such 
a product. The network Omlin & Giles 1996 is also statically “programmed” by a human programmer based on 
a fully given FA. They positively contributed to neural network studies. 

The above studies aimed successfully compute the state transition function using a programmed network, but 
they do not generate emergent representations, do not learn from observations of FA operations, do not deal with 
natural input images (or patterns), and do not deal with natural motor images (or patterns), and not incrementally 
learn. 

As far as we know, the DN in Weng 2011 [14] was the first general-purpose emergent FA that 
1) uses fully emergent representations,  
2) allows natural sensory firing patterns,  
3) allows the motor area to have subareas where each subarea represents either an abstract concept (location, 

type, scale, etc.) or natural muscle actions (e.g., driving a car or riding a bicycle),  
4) uses a general-purpose and unified area function that does not need interactive approximation and does not 

have local minima in its high dimensional and nonlinear but non-iterative approximation,  
5) learns incrementally—taking one-pair of sensory pattern and motor pattern at a time to update the network 

and discarding the pair immediately after—and,  
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6) uses an optimization scheme in which every update of the network realizes the maximum likelihood esti-
mate of the network, conditioned on the limited computational resources in the network and the limited learning 
experience in the network’s “life time”.  

Explained in Weng 2012 [2], the DN model is inspired by biological brains, especially brain anatomy (e.g., 
[24] [26]) and brain physiological experiments (e.g. [19] [26]). But we will use computational language in the 
following material, so that the material is understandable by an analytical reader. 

In the following, we analyze how the DN theory bridges the symbolic school and the connectionist school in 
artificial intelligence (AI). First, Section 2 presents the algorithm for the Developmental Program (DP) of the 
DN. Section 3 gives a temporal formulation of FA to facilitate understanding the brain theory. Then, Section 4 
proposes that the framework for FA is complete. All FAs in this paper are Deterministic FA. So, we call them 
simply FAs. How a DN learns incrementally from an FA is discussed in Section 5. The three theorems are pre-
sented and proved in Section 6 through Section 8. 

Theorem 1 states that for any FA that operates in real time, there is an emergent DN that learns the FA incre- 
mentally. It observes one state-and-input pair from the FA at a time, learns immediately and becomes error-free 
for all the FA transitions that it has learned, regardless how many times a transition has been observed—one is 
sufficient but more results in better optimality in the real world. The DN is equivalent to the part of FA that cor-
responds to all transitions that have demonstrated so far. 

Theorem 2 establishes that if the FA-learned DN is frozen—computing responses only but not updating its 
adaptive parts, the frozen DN is optimal in the sense of maximum likelihood when it takes inputs from infinitely 
many possible cases in the world. 

Theorem 3 asserts that the FA-learned DN, if it is allowed to continue to learn from infinitely many possible 
cases in the world, is optimal in the sense of maximum likelihood. 

Section 9 briefly discusses experiments of DN. Section 10 provides concluding remarks and discussion. 

2. Algorithm for Developmental Program 
The small DP algorithm self-programs logic of the world into a huge DN based on experiences in its physical 
activities. A DN has its area Y as a “bridge” for its two banks, X and Z, as illustrated in Figure 2(b). 

Biologically, a DP algorithm models the collective effects of some genome properties of the cells of the 
nervous system—neurons and other types of cells in the nervous system [3] [4] [27]. Thus, in nature, the DP is a 
result of evolution across many generations of a species. The DP seems to be a more systematic way to 
understand natural intelligence than studies the response of a child or adult brain. 

In artificial intelligence, a DP algorithm is the result of human understanding of the development of natural 
intelligence followed by a human DP design based such understanding. This approach, known as developmental 
approach [2] [28], short-cuts the long and expensive process of cross-generation evolution. 

Some parameters of DP (e.g., the number of cells in Y) could be experimentally selected by a genetic 
algorithm, but the DP as a whole seems to be extremely expensive for any artificial genetic algorithm to reach 
without handcrafting (e.g., see the handcrafted area function below). 

Human design of DP algorithm [28] seems to be a more practical way to reach human-like mental capabilities 
and human-level performance in robots and computers for two main reasons: 1) Fully automatic development of 
intelligence (i.e., task-nonspecific and fully automatic learning) is the approach that the natural intelligence takes 
and has demonstrated success; 2) The design of the DP algorithm is a clean task, in contrast to traditional AI— 
modeling intelligence itself—which is a muddy task [2] [29]. 

The quality in a human-designed DP, when the DP is widely used in the future, greatly affects all the 
capabilities in the developmental robots and computers that use the DP. 

In the DN, if Y is meant for modeling the entire brain, X consists of all receptors and Z consists of all 
effectors—muscle neurons and glands. Additionally, the Y area of the DP can also model any Brodmann area in 
the brain and if so, the X and Z correspond to respectively, the bottom-up areas and top-down areas of the 
Brodemann area. From the analysis below, we can also see that the Y area of the DN can model any closely 
related set of neurons—Brodmann area, a subset, or a superset. 

The most basic function of an area Y seems to be prediction—predict the signals in its two vast banks X and Z 
through space and time. 

Algorithm 1 (DP) Input areas: X and Z. Output areas: X and Z. The dimension and representation  
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Figure 2. Conceptual correspondence between an Finite Automaton (FA) with 
the corresponding DN. (a) An FA, handcrafted and static; (b) A corresponding 
DN that simulates the FA. It was taught to produce the same input-output rela- 
tions as the FA in (a). A symbol (e.g., 2z ) in (a) corresponds to an image (e.g., 

( ) ( )1 2 4, , , 0,1,0,0z z z = ) in (b). 

 
of X and Y areas are hand designed based on the sensors and effectors of the species (or from evolution in 
biology). Y is the skull-closed (inside the brain), not directly accessible by the outside. 

1) At time 0t = , for each area A in { }, ,X Y Z , initialize its adaptive part ( ),N V G=  and the response 
vector r , where V contains all the synaptic weight vectors and G  stores all the neuronal ages. For example, 
use the generative DN method discussed below.  

2) At time 1,2,t =  , for each A in { }, ,X Y Z  repeat: 
a) Every area A performs mitosis-equivalent if it is needed, using its bottom-up and top-down inputs b  and 

t , respectively.  
b) Every area A computes its area function f , described below,  

( ) ( ), , ,N f N′ ′ =r b t  

where ′r  is its response vector and N  and N ′  are the adaptive part of the area defined above, before and 
after the area update, respectively. Note that r  is not part of the domain of f  because f  is the model for 
any area A, not just for an individual neuron of A. Thus, f  does not use iterations, efficiently approximating 
lateral inhibitions and internal excitations.  

c) For every area A in { }, ,X Y Z , A replaces: N N ′←  and ′←r r .  
The DN must update at least twice for the effects of each new signal pattern in X and Z, respectively, to go 

through one update in Y and then one update in Z to appear in X and Z. 
In the remaining discussion, we assume that Y models the entire brain. If X is a sensory area, X∈x  is 

always supervised. The Z∈z  is supervised only when the teacher chooses to. Otherwise, z  gives (predicts) 
motor output. 

The area function f , which is based on the theory of Lobe Component Analysis (LCA) [30], is a model for 
self-organization by a neural area. Each area A has a weight vector ( ),b t=v v v . Its pre-response vector is:  

( ), , , b t
b t

b t

r = ⋅ + ⋅ = ⋅
v vb tv b v t v p
v b v t

                              (1) 
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which measures the degree of match between the directions of ( ),b b t t=v v v v v  and 
( ) ( ), ,= =p b t b b t t


 . 
To simulate lateral inhibitions (winner-take-all) within each area A, only top- k  winners are among the c  

competing neurons fire. Considering 1k = , the winner neuron j  is identified by:  

( )
1

arg max , , ,bi tii c
j r

≤ ≤
= v b v t                                    (2) 

The area dynamically scale top-k winners so that the top-k respond with values in (0,1] . For 1k = , only the 
single winner fires with response value 1jy =  and all other neurons in A do not fire. The response value jy  
approximates the probability for p  to fall into the Voronoi region of its jv  where the “nearness” is 
( ), , ,bj tjr v b v t . 
All the connections in a DN are learned incrementally based on Hebbian learning—cofiring of the pre- 

synaptic activity p  and the post-synaptic activity y  of the firing neuron. If the pre-synaptic end and the post- 
synaptic end fire together, the synaptic vector of the neuron has a synapse gain yp . Other non-firing neurons do 
not modify their memory. When a neuron j  fires, its firing age is incremented 1j jn n← +  and then its 
synapse vector is updated by a Hebbian-like mechanism:  

( ) ( )1 2j j j j jw n w n y← +v v p                                  (3) 

where ( )2 jw n  is the learning rate depending on the firing age (counts) jn  of the neuron j  and ( )1 jw n  is 
the retention rate with ( ) ( )1 2 1j jw n w n+ ≡ . Note that a component in the gain vector jy p  is zero if the 
corresponding component in p  is zero. 

The simplest version of ( )2 jw n  is ( )2 1j jw n n=  which corresponds to:  

( ) ( ) ( )11 11 ,     1, 2, , ,i i
j j i j

i t i n
i i

−−
= + =v v p                            (4) 

where it  is the firing time of the post-synaptic neuron j . The above is the recursive way of computing the 
batch average:  

( ) ( )
1

1 j
j

n
n
j i

ij

t
n =

= ∑v p                                       (5) 

The initial condition is as follows. The smallest jn  in Equation (3) is 1 since 0jn =  after initialization. 
When 1jn = , the initial value of jv  on the right side of Equation (3) is used for pre-response competition to 
find this winner j , but the initial value of jv  does not affect the first-time updated jv  on the left side since 

( )1 1 1 1 0w = − = . 
In other words, any initialization of weight vectors will only determine who win (i.e., which newly born 

neurons take the current role) but the initialization will not affect the distribution of weights at all. In this sense, 
all random initializations of synaptic weights will work equally well—all resulting in weight distributions that 
are computationally equivalent. Biologically, we do not care which neurons (in a small 3-D neighborhood) take 
the specific roles, as long as the distribution of the synaptic weights of these neurons lead to the same 
computational effect. This neuronal learning model leads to the following conjecture. 

Conjecture 1 In a small 3-D neighborhood (e.g., of a hundred nearby neurons), neural circuits are so different 
across different biological brains that mapping the detailed neuron wiring of brain is not informative at the level 
of individual neuron.  

The NIH Connectome program aims to “map the neural pathways ... about the structural and functional 
connectivity of the human brain. ... resulting in improved sensitivity, resolution, and utility, thereby accelerating 
progress in the emerging field of human connectomics”. The DN theory and the above conjecture predict that 
such an NIH program is not as scientifically useful as the NIH program hoped in terms of understanding how the 
brain works and future studies of abnormal brain circuits. For the brain, “more detailed connectomics data” 
seems to be not as productive as more complete and clear theories. 

3. FA as a Temporal Machine 
In this section, we present an FA as a temporal machine, although traditionally an FA is a logic machine, driven 
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by discrete event of input. 
As we need a slight deviation from the standard definition of FA, let us look at the standard definition first. 
Definition 1 (Language acceptor FA) A finite automaton (FA) M is a 5-tuple ( )0, , , ,M Q q Aδ= Σ , where Q 

is a finite set of states, consists of symbols. Σ is a finite alphabet of input symbols. 0q Q∈  is the initial state. 
A Q⊂  is the set of accepting states. : Q Qδ ×Σ  is the state transition function.  

This classical definition is for a language acceptor, which accepts all strings x from the alphabet Σ that 
belongs to a language L. It has been proved [8] that given any regular language L from alphabet Σ, there is an 
FA that accepts L, meaning that it accepts exactly all L∈x  but no other string not in L. Conversely, given any 
FA taking alphabet Σ, the language L that the FA accepts is a regular language. However, a language FA, just 
like any other automata, only deals syntax not semantics. The semantics is primary for understanding a language 
and the syntax is secondary. 

We need to extend the definition of FA for agents that run at discrete times as follows.  
Definition 2 (Agent FA) A finite automaton (FA) M for a finite symbolic world is a 4-tuple 

( )0, , ,M Q q δ= Σ , where Σ and 0q  are the same as above and Q  is a finite set of states, where each state 
q Q∈  is a symbol, corresponding to a set of concepts. The agent runs through discrete times 1, 2,t =  , 
starting from state ( ) 0q t q=  at 0t = . At each time 1t − , it reads input ( )1tσ − ∈Σ  and transits from state  
( )1q t −  to ( ) ( ) ( )( )1 , 1q t q t tδ σ= − − , and outputs ( )q t  at time t , illustrated as ( ) ( ) ( )11 tq t q tσ −− → .  

The inputs to an FA are symbolic. The input space is denoted as { }1 2, , , lσ σ σΣ =  , which can be a 
discretized version of a continuous space o input. In sentence recognition, the FA reads one word at a time. The 
number l is equal to the number of all possible words—the size of the vocabulary. For a computer game agent, l 
is equal to the total number of different percepts. 

The outputs (actions) from a language acceptor FA are also symbolic, { }1 2, , , nA a a a=   which can also be 
a discretized version of a continuous space of output. For a sentence detector represented by an FA, when the 
FA reaches the last state, its action reports that the sentence has been detected. 

An agent FA is an extension from the corresponding language FA, in the sense that it outputs the state, not 
only the acceptance property of the state. The meanings of each state, which are handcrafted by the human 
programmer but are not part of the formal FA definition, are only in the mind of the human programmer. Such 
meanings can indicate whether a state is an accepting state or not, along many other meanings associated with 
each state as our later example will show. However, such concepts are only in the mind of the human system 
designer, not something that the FA is “aware” of. This is a fundamental limitation of all symbolic models. The 
Developmental Network (DN) described below do not use any symbols, but instead (image) vectors from the 
real-world sensors and real-world effectors. As illustrated in Figure 2, a DN is grounded in the physical 
environment but an FA is not. 

Figure 3 gives an example of the agent FA. Each state is associated with a number of cognitive states and 
actions, shown as text in the lower part of Figure 3, reporting action for cognition plus a motor action. The 
example in Figure 3 shows that an agent FA can be very general, simulating an animal in a micro, symbolic 
world. The meanings of each state in the lower part of Figure 3 are handcrafted by, and only in the mind of, the 
human designer. These meanings are not a part of the FA definition and are not accessible by the machine that 
simulates the FA. 

Without loss of generality, we can consider that an agent FA simply outputs its current state at any time, since 
the state is uniquely linked to a pair of the cognition set and the action set, at least in the mind of human 
designer. 

4. Completeness of the FA-in-DN Framework 
The FA-in-DN framework is useful for understanding how a DN works. However, FA itself is handcrafted by a 
human teacher, or in other words, the behaviors of an autonomously developed human teacher. 

It has been proved [8] that an FA with n states partitions all the strings in Σ into n sets. Each set is called 
equivalence class, consisting of strings that are indistinguishable by the FA. Since these strings are 
indistinguishable, any string x in the same set can be used to denote the equivalent class, denoted as [ ]x . Let Λ 
denote an empty string. Considering Figure 3, the FA partitions all possible strings into 6 equivalent classes. 
[ ] [ ]"calculus′′Λ =  as the agent does not know about “calculus” although it is in Σ. All the strings in the 
equivalent class [Λ] end in 1z . All strings in the equivalent class [ ]"kitten "looks′′ ′′  end in 4z , etc. 
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Figure 3. An FA simulates an animal. Each circle indicates a 
context state. The system starts from state z1. Supposing the 
system is at state q and receives a symbol σ and the next state 
should be q', the diagram has an arrow denoted as q qσ ′→ . A 
label “other” means any symbol other than those marked from 
the out-going state. Each state corresponds to a set of actions, 
indicated below the FA. The “other” transitions from the lower 
part are omitted for brevity. 

 
From the above discussion, we can see that the key power of an FA is to lump very complex equivalent 

( ),q σ  contexts into equivalent classes.  
A Turing Machine (TM) [8] [31] is a 5-tuple T = ( )0, , , ,Q q δΣ Γ , where Q is the set of states, Σ  and Γ  

are the input and tape alphabets, respectively, with Σ ⊆ Γ , q0 is the initial state, and δ  is the transition 
function: 

{ }( ) { }( ) { }( ) { }: , ,Q Q h R L Sδ × Γ∪ ∆ → ∪ × Γ∪ ∆ ×  

where ∆  is the blank symbol not in Γ , h denotes the halt state, and R, L, S denote the head motion, right, left, 
and stationary, respectively. Consider the following two definitions: 

1) Define Q′  to include also the tape write action w and the head move action m: 

{ }( ) { }( ) { }, ,Q Q h R L S′ = ∪ × Γ∪ ∆ ×  

Each state in Q′  is a three tuple (q, w, m) where w and m can be empty. 
2) Let { }′Σ = Γ∪ ∆ . 
The above transition function δ  for TM becomes the transition function δ ′  of an FA: Q Qδ ′ ′ ′ ′= ×Σ → . 
Therefore, the controller of any TM is an FA. A grounded DN can learn the FA perfectly. It takes input 

σ ′∈Σ  from the real word and its action can include head write and head motion. A TM is not grounded, but 
the DN is grounded: A TM senses from, and acts on, a tape but a DN senses from, and acts on, its real-world 
physical environment. 

The completeness of agent FA-in-DA can be described as follows. Given a vocabulary Σ' representing the 
elements of a symbolic world, a natural language L is defined in terms of Σ' where the meanings of all sentences 
(or events) in L are defined by the set of equivalent classes, determined by Q' of FA-in-DN. When the number of 
states is sufficiently large, a properly learned FA-in-DN can sufficiently characterize the cognition and 
behaviors of an agent living in the real physical world with vocabulary Σ'. 

This argument is based on the following observation: as long as the context state ( )1q t −  is properly learned 
so that it contains all the information that is necessary and sufficient for generating the following states, then 
( )1q t −  with sensory input ( )1tσ −  correctly selected from a cluttered scene should be sufficient to  

generate the next state: ( ) ( ) ( )11 tq t q tσ −− → . 

As a simple example, an FA-in-DN can accept the context-free language { }0n nL a b n= ≥ , the set of all  
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strings that consist of n a’s followed by the same number of b’s, by simulating how a TM works on a tape to accept 
the language L. 

The Chomsky hierarchy [31] after the work of Norm Chomsky in particular and the automana and languages 
theory in classical computer science [8] [31] regard only Turing Machines as general-purpose programming 
machine because they mainly consider only the syntax of a computer language, not the rich semantics that a 
symbol can represent. However, a symbolic state q and an input symbol σ can practically represent any set of 
meanings. Yet, the meanings of general purpose with Turing Machines and FA-in-DN are different: with a TM, 
it means what kind of sequence of computations the TM program can represent. With the latter FA-in-DN, it 
means the richness of meaning any symbol (q and σ) can represent so that the FA-in-DN can represent any 
emergent state-based agent that has a finite memory. 

In particular, it is important to note that a state can remember very early event [2] [6]: e.g. an event needed by 
( )q t  can be contained in ( )1q t − , ( )2q t − , etc. 
But FA-in-DN goes beyond the symbolic AI, because it automatically develop internal representations— 

emergent. 

5. DN Incrementally Learns FA 
Next, let us consider how a DN learns from any FA. First we consider the mapping from symbolic sets Σ and Q 
to vector spaces X and Z. 

Definition 3 (Symbol-to-vector mapping) A symbol-to-vector mapping m is a one-to-one mapping 
:m XΣ . We say that σ ∈Σ  and X∈x  are equivalent, denoted as σ ≡ x  if ( )m σ=x .  
A binary vector of dimension d is such that all its components are either 0 or 1. It simulates that each neuron, 

among d neurons, either fires with a spike ( )( )1s t =  or without ( )( )0s t =  at each sampled discrete time 
it t= . From discrete spikes ( ) { }0,1s t ∈ , the real valued firing rate at time t can be estimated by 

( ) ( )
i

i
t T t t

s t
v t

T− < ≤
= ∑ , where T is the temporal size for averaging. A biological neuron can fire at a maximum  

rate around 120v =  spikes per second, producible only under a laboratory environment. If the brain is sampled 
at frequency 1000 Hzf = , we consider the unit time length to be 1 1 1000f =  second. The timing of each 
spike is precise up to 1 f  second at the sampling rate f, not just an estimated firing rate v, which depends on 
the temporal size T (e.g., 0.5T = s). Therefore, a firing-rate neuronal model is less temporally precise than a 
spiking neuronal model. The latter, which DN adopts, is more precise for fast sensorimotor changes. 

Let d
pB  denote the d-dimensional vector space which contains all the binary vectors each of which has at 

most p components to be 1. Let d d
p pE B⊂  contains all the binary vectors each of which has exactly p com- 

ponents to be 1. 
Definition 4 (Binary-p mapping) Let { }1,2, ,iQ q i n= =  . A symbol-to-vector mapping : d

pm Q B  is a 
binary-p mapping if m is one to one, that is, if ( )i im q≡z  then i jq q≠  implies i j≠z z .  

The larger the p, the more symbols the space of Z can represent. However, through a binary-p mapping, each 
symbol iq  always has a unique vector Z∈z . Note that different q’s are mapped to different directions of unit 
z’s. 

Suppose that a DN is taught by supervising binary-p codes at its exposed areas, X and Z. When the motor area 
Z is free, the DN performs, but the output from Z is not always exact due to (a) the DN outputs in real numbers 
instead of discrete symbols and (b) there are errors in any computer or biological system. The following binary 
conditioning can prevent error accumulation by suppressing noise and normalizing the spikes as 1, which the 
brain seems to use through spikes. 

Definition 5 (Binary conditioning) For any vector from ( )1 2, , , dz z z=z  , the binary conditioning of z 
forces every real-valued component iz  to be 1 if the pre-response of iz  is larger than the machine zero—a 
small positive bound estimating computer round-off noise.  

The binary conditioning must be used during autonomous performance as long as the Z representations use 
spikes, instead of firing rates. Machines zeros are noises from computer finite precision in representing a 
number. The binary conditioning suppresses the accumulation of such computer generated round-off errors. 
Because the Z representation is binary by definition, the binary conditioning forces the real numbers to become 
0 or 1 only. However, the actual value of machine zero is computer dependent, depending on the length to 
represent a real number. In particular, the case of a constant Z vector of all ones will not appear incorrectly 
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because all noises components that are meant to be 0 are set back to 0. 
The output layer Z that uses binary-p mapping must use the binary conditioning, instead of top-k competition 

with a fixed k, as the number of firing neurons ranges from 1 to p. 
Algorithm 2 (DP for GDN) A GDN is a DN that gives the following specific way of initialization. It starts 

from pre-specified dimensions for the X and Z areas, respectively. X represents receptors and is totally 
determined by the current input. But it incrementally generates neurons in Y from an empty Y (computer 
programming may use dynamic memory allocation). Each neuron in Z is initialized by a synaptic vector v of 
dimension 0, age 0. Suppose ( ){ }, , , 1, 2, ,i i iV X Z i c= = ∈ ∈ =v x z x z   is the current synaptic vectors in Y. 
Whenever the network takes an input ( ),=p x z , compute the pre-resppnses in Y. If the top-1 winner in Y has a 
pre-response lower than 2 (i.e., V∈/p ), simulate mitosis-equivalent by doing the following:  

1) Increment the number of neurons 1c c← + ,  
2) Add a new Y neuron. Set the weight vector =v p , its age to be 0, and its pre-response to be 2 since it is 

the perfect match based on Equation (1). There is no need to recompute the pre-responses.  
The response value of each Z neuron is determined by the starting state (e.g., background class). As soon as 

the first Y neuron is generated, every Z neuron will add the first dimension in its synaptic vector in the following 
DN update. This way, the dimension of its weight vector continuously increases together with the number c of Y 
neurons.  

6. Theorem 1: DN Learns FA Perfectly 
In this section, we establish the most basic theorem of the three, Theorem 1. First, we give an overview. Next, 
we establish a lemma to facilitate the proof of Theorem 1. Then, we present Theorem 1. Finally, we discuss 
grounded DN. 

6.1. Overview 
We first give an overview to facilitate the understanding of the proofs. Figure 4 is our graphic guide of this 
section. It has two parts, Figure 4(a) having a four-state and two-input FA as a small example of SN, and 
Figure 4(b) being a general purpose DN that can implement the FA in Figure 4(a) as only a special case but a 
DN can learn any FA autonomously from physically emerging patterns. 

Although an FA is a temporal machine, the classic way to run an FA at discrete events that correspond to the 
time when the FA receives a symbolic input [8]. In order to explain how a continuously running DN learns an 
FA we run both FA and DN through discrete time indices. 

An FA, such as the one in Figure 4(a) is handcrafted by a human programmer for a specific given task. 
However, a DN in Figure 4(b) can learn any FA, including the one in Figure 4(a). The DN observes one pair of 
symbol ( ),q σ  at a time from the FA but the DN only uses the physically consistent pattern ( ),z x  
corresponding to ( ),q σ , instead of ( ),q σ  itself. By physically consistent, we mean, e.g., z is a muscle neuron 
firing pattern and x is an image in the eyes. Therefore, we say that ( ),z x  is emergent (i.e., directly emerge 
from the physical world) but ( ),q σ  is not (i.e., handcrafted by the human programmer in the design document). 

Because all three areas X, Y, Z in the DN all compute in parallel in Algorithm 1, we have two parallel 
computation flows in Figure 4(b):  

1) The first flow corresponds to ( ),z x  in the first column, y in the second column, and ( ),z x  in the third 
column.  

2) The second flow has y in the first column, ( ),z x  in the second, and y in the third.  
Both flows satisfy the real-world events, but for the FA logic here we let the second flow simply repeat (retain) 

the first flow. Therefore, due to these two flows, the DN must update at least twice for each pair ( ),q σ  for the 
effect of a new ( ),z x  to reach the next ( ),z x , once for the new y computation and once for the new ( ),z x  
computation. In the real world, DN should be updated as fast as the computational resources allow so as to 
respond to the real world as fast as it can. 

The X area is always supervised by x as the binary pattern of σ. 
The number of Z firing neurons depends on the number of different physical patterns required for Z, but we 

assume that the Z area uses binary representations. Each firing Z neuron, supervised by the current q from the 
FA as vector z, accumulates the firing frequency of the current single firing Y neuron as the corresponding Y 
-to-Z synaptic weights of the Z neuron. The incremental average in the Hebbian learning of Equation (4) is ex-  
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Figure 4. Symbolic Network (SN) and model the brain mapping, DN. In general, the brain 
performs external mapping ( ) ( ) ( ) ( ) ( ): 1 1b t X t Z t X t Z t− × − ×  on the fly. (a) An SN 

samples the vector space Z using symbolic set Q, and X using Σ, to compute symbolic 
mapping ( ) ( ) ( )1 1Q t t Q t− ×Σ −  . This example has four states { }1 2 3 4, , ,Q q q q q= , with 

two input symbols { }1 2,σ σΣ = . Two conditions ( ),q σ  (e.g., 2q q=  and 2σ σ= ) iden- 

tify the active outgoing arrow (e.g., red). ( )3 2 2,q qδ σ=  is the target state pointed to by the 
(red) arrow. (b) The grounded DN generates the internal brain area Y as a bridge, its bi- 
directional connections with its two banks X and Z, the inner products distance, and 
adaptation, to realize the external brain mapping. It performs at least two network updates 
during each unit time. To show how the DN learns a SN, the colors between (a) and (b) match. 
The sign ≡  means “image code for”. In (b), the two red paths from ( )1q t −  and ( )1tσ −  

show the condition ( ) ( )( ) ( ) ( )( )1 , 1 1 , 1t t q t tσ− − ≡ − −z x . At 0.5t − , they link to 

( )0.5t −y  as internal representation, corresponding to the identification of the outgoing 
arrow (red) in (a) but an SN does not have any internal representation. At time t, 
( ) ( ) ( ) ( )( )1 , 1t q t q t tδ σ≡ = − −z  predicts the action. But the DN uses internal ( )0.5t −y  

to predict both state ( )tz  and input ( )tx . The same color between two neighboring hori- 

zontal boxes in (b) shows the retention of ( ),q σ  image in (a) within each unit time, but the 
retention should be replaced by temporal sampling in general. The black arrows in (b) are for 
predicting X. Each arrow link in (b) represents many connections. When it is shown by a 
non-black color, the color indicates the corresponding transition in (a). Each arrow link 
represents excitatory connections. Each bar link is inhibitory, representing top-k competition 
among Y neurons. 

 
actly what is needed to compute this firing frequency. This firing frequency is equal to the discrete probability 
required for the optimality in the later Theorems 2 and 3. 

The Y area of the GDN is empty to start with. Whenever there is a new input ( ),z x , the DN automatically 
assigns a new Y neuron that memorizes ( ),z x  as its weight vector ( ),t bv v . Later, this Y neuron will not win 
in the top-1 competition unless when the same input ( ),z x  appears again. The incremental average in the 
Hebbian learning of Equation (4) implies that every Y neuron never changes its weight vector after it is 
initialized using the input—average over the same vectors. Therefore, the number of Y neurons needed by the 
DN to learn an FA is equal to the number of different FA transitions. 

With this overview, we are ready for Lemma 1. 
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6.2. Lemma 1 
This subsection is a little long because of the detailed and complete proof, but I use the top-level Case 1 (new Y 
input) and Case 2 (old Y input) in the proof to organize the material. Each Case first considers Y and then Z. When 
we consider Z, we have Case ( ),i a  and Case ( ),i b  for the case where the Z neuron under consideration 
should fire and not fire, respectively, where i corresponds to 1 or 2 in the above Cases 1 or 2. 

Lemma 1 (Properties of a GDN) Suppose a GDN simulates any given FA using top-1 competition for Y, 
binary-p mapping, and binary conditioning for Z, and update at least twice in each unit time. Each input 
( )1t −x  is retained during all DN updates in ( ]1,t t− . Such a GDN has the following properties for 1, 2,t =  :  
1) The winner Y neuron matches perfectly with input ( ) ( ) ( )( )1 1 , 1t q t tσ− ≡ − −p  with =v p  and fires, 

illustrated in Figure 4(a) as a single transition edge (red). 
2) All the synaptic vectors in Y are unit and they never change once initialized, for all times up to t. They only 

advance their firing ages. The number of Y neurons c is exactly the number of learned state transitions up to time 
t. 

3) Suppose that the weight vector v of each Z neuron is ( )( )1 2, , , c Yp p p=v  , and Z area uses the learning 

rate straight recursive average ( )2 1j jw n n= . Then the weight jp  from the j -th Y neuron to each Z neuron is  

( )Prob -th  neuron fires the  neuron firesj jp j Y Z f n= =                        (6) 

( )1,2, ,j c Y=  , where jf  is the number of times the j -th Y neuron has fired conditioned on that the Z 
neuron fires, and n  is the total number of times the Z neuron has fired. 

4) Suppose that the FA makes transition ( ) ( ) ( )11 tq t q tσ −− → , as illustrated in Figure 4(a). After the second 
DN update, Z outputs ( ) ( )t q t≡z , as long as Z of DN is supervised for the second DN update when the transition 
is received by Z the first time. Z then retains the values automatically till the end of the first DN update after t.  

Proof. The proof below is a constructive proof, instead of an existence one. To facilitate understanding, the 
main ideas are illustrated in Figure 4. Let the X of the DN take the equivalent inputs from Σ using a 
symbol-to-vector mapping. Let Z be supervised as the equivalent states in Q, using a binary-p mapping. The 
number of firing neurons Z depends on the binary-p mapping. The DN lives in the simulated sensori-motor 
world X × Z determined by the sensory symbol-to-vector mapping: :xm XΣ  and the binary-p symbol-to- 
vector mapping :zm Q Z . 

We prove it using induction on integer t. 
Basis: When 0t = , set the output ( ) ( ) 00 0q q≡ =z  for the DN. Y has no neuron. Z neurons have no 

synaptic weights. All the neuronal ages are zeros. The properties 1, 2, 3 and 4 are trivially true for 0t = . 
Hypothesis: We hypothesize that the above four properties are true up to integer time t. In the following, we 

prove that the above properties are true for t + 1. 
Induction step: During t to t + 1, suppose that the FA makes transition ( ) ( ) ( )1tq t q tσ→ + . The DN must 

do the equivalent, as shown below. 
At the next DN update, there are two cases for Y: Case 1: the transition is observed by the DN as the first time; 

Case 2: the DN has observed the transition. 
Case 1: new Y input. First consider Y. As the input ( ) ( ) ( )( ),t t t=p x z  to Y is the first time, V∈/p . Y 

initializes a new neuron whose weight vector is initialized as ( )j t=v p  and age 0jn = . The number of Y 
neurons c is incremented by 1 as this is a newly observed state transition. From the hypothesis, all previous Y 
neurons in V are still their originally initialized unit vectors. Thus, the newly initialized v j  is the only Y neuron 
that matches ( )tp  exactly. With 1k = , this new Y neuron is the unique winner and it fires with = 1jy . Its 
Hebbian learning gives age advance 1 0 1 1j jn n← + = + =  and Equation (3) leads to  

( ) ( ) ( ) ( )( )1 2 1 21 1j j j j jw n w n w n w n← + ⋅ ⋅ = + = ⋅ =v p p p p p                           (7) 

As DN updates at least twice in the unit time, Y area is updated again for the second DN update. But X and Z 
retain their values within each unit time, per simulation rule. Thus, the Y winner is still the same new neuron and 
its vector still does not change as the above expression is still true. Thus, properties 1 and 2 are true for the first 
two DN updates within ( ], 1t t + . 

Next consider Z. Z retains its values in the first DN update, per hypothesis. For the second DN update, the 
response of Z is regarded the DN’s Z output for this unit time, which uses the above Y response as illustrated in 
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Figure 4. In Case 1, Z must be supervised for this second DN update within the unit time. According to the 
binary-p mapping from the supervised ( )1q t + , Equation (3) is performed for up to p firing Z neurons:  

( ) ( )1 2 1 .j j j jw n w n← + ⋅ ⋅v v p                                  (8) 

We can see that Equations (7) and (8) are the same Hebbian learning, but the former is for Y and the latter is 
for Z. Note that Z has only bottom input =p y  and the normalized vector p  is binary. That is, only one 
component (the new one) in p  is 1 and all other components are zeros. All Z neurons do not link with this new 
Y neuron before the second DN update. Consider two subcases, subcase (1.a) the Z neuron should fire at the end 
of this unit time, and subcase (1.b) the Z neuron should not fire. 

Subcase (1.a): the Z neuron should fire. All Z neurons that should fire, up to p of them, are supervised to fire 
for the second DN update by the Z area function. Suppose that a supervised-to-fire Z neuron has a synapse 
vector ( )1 2, , , cp p p=v   with the new cp  just initialized to be 0 since the new Y neuron j c=  now fires. 
From the hypothesis, i ip f n= , 1, 2, , 1i c= − . But, according to the Z initialization in GDN, 0cp =  for the 
new dimension initialization. Then from 0 c cp f n= = , we have 0cf =  which is correct for cf . From 
Equation (3), the c-th component of v is  

11 11 1
1 1 1 1

c c
c

f fnv
n n n n n

+
← ⋅ + ⋅ ⋅ = =

+ + + +
                              (9) 

which is the correct count for the new cv , and the other components of v are  

01 1 0
1 1 1 1

i i i
i

f f fnv
n n n n n

+
← ⋅ + ⋅ ⋅ = =

+ + + +
                               (10) 

for all 1, 2, , 1i c= − , which is also the correct count for other components of the v synaptic vector. Every 
firing Z neuron advances its age by 1 and correctly counts the firing of the new c-th Y neuron. As Y response 
does not change for more DN updates within ( ], 1t t +  and the firing Y neuron meets a positive 1 jn  weight to 
the firing Z neuron with age jn , the Z area does not need to be supervised after the second DN update within 
( ], 1t t + . 

Subcase (1.b): the Z neuron should not fire. All Z neurons that should not fire must be supervised to be zero 
(not firing). All such Z neurons could not be linked with the new Y neuron because the new Y neuron was not 
present until now. However, in computer programming or hardware circuits, each non-firing Z neuron must add 
a zero-weight link from this new Y neuron. Otherwise, the Z neuron never “sees” the new Y neuron and can 
never link from it when the Z neuron fires in the future. All these non-firing neurons keep their counts and ages 
unchanged. As Y response does not change for more DN updates within ( ], 1t t + , the Z area does not need to be 
supervised after the second DN update within ( ], 1t t + , since the only firing Y neuron meets a 0 weight to the Z 
neuron. 

The binary conditioning for Z makes sure that all the Z neurons that have a positive pre-response to fire fully. 
That is, the properties 3 and 4 are true from the first two DN updates within ( ], 1t t + . 

Case 2: old Y input. First consider Y. To Y, ( ) ( ) ( )( ),t t t=p x z  has been an input before. From the 
hypothesis, the winner Y neuron j exactly matches ( )tp , with ( )j t=v p . Equation (7) still holds using the 
inductive hypothesis, as the winner Y neuron fires only for a single p  vector. Thus, properties 1 and 2 are true 
from the firstD N update within ( ], 1t t + . 

Next consider Z. Z retains its previous vector values in the first DN update, per hypothesis. In the second DN 
update, the transition is not new, we show that Z does not need to be supervised during the unit time ( ], 1t t +  to 
fire perfectly. From Equation (1), the Z pre-response is computed by  

( ), b b
b

b b

r = ⋅ = ⋅
v vb yv b
v b v y

                                 (11) 

where y  is binary with only a single positive component and t is absent as Z does not have a top-down input. 
Suppose that Y neuron j  fired in the first DN update. From the hypothesis, every Z neuron has a synaptic 

vector ( )1 2, , , cp p p=v  , where j jp f n=  counting up to time t, where jf  is the observed frequency 
(occurrences) of Y neuron j  firing, 1, 2, ,j c=  , and n  is the total number of times the Z neuron has fired. 
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Consider two sub-cases: (2.a) the Z neuron should fire according to the transition, and (2.b) the Z neuron should 
not. 

For sub-case (2.a) where the Z neuron should fire, we have  

( ) ( ), , 1 0j j j j
b

p p f n f
r r

n
= = ⋅ = ⋅ = = = >v b v y v y

v v v v
   

because the Z neuron has been supervised at least the first time for this transition and thus 1jf ≥ . We conclude 
that the Z neuron guarantees to fire at 1 after its binary conditioning. From Equation (3), the j -th component of 
v is:  

11 1 1
1 1 1

j j
j

f fnv
n n n n

+
← ⋅ + ⋅ ⋅ =

+ + +
                                (12) 

which is the correct count for the j -th component, and the other components of v are:  

01 1 0
1 1 1 1

i i i
i

f f fnv
n n n n n

+
← ⋅ + ⋅ ⋅ = =

+ + + +
                              (13) 

for all i j≠ , which is also the correct count for all other components in v. The Z neuron does not need to be 
supervised after the second DN update within ( ], 1t t +  but still keeps firing. This is what we want to prove for 
property 3 for every firing Z neuron. 

Next consider sub-case (2.b) where the Z neuron should not fire. Similarly we have 
( ) ( ) ( ), , 0b jr r f n= = =v b v y v , from the hypothesis that this Z neuron fires correctly up to time t and thus 

we must have 0jf = . Thus, they do not fire, change their weights, or advance their ages. The Z neuron does 
not need to be supervised after the second DN update within ( ], 1t t +  but keeps not firing. This is exactly what 
we want to prove for property 3 for every non-firing Z neuron. 

Combining the sub-cases (2.a) and (2.b), all the Z neurons act perfectly and the properties 3 and 4 are true for 
the first two DN updates. We have proved for Case 2, old Y input. 

Therefore, the properties 1, 2, 3, 4 are true for first two DN updates. If DN has time to continue to update 
before time 1t + , we see that we have always Case 2 for Y and Z within the unit time and Y and Z re- tain their 
responses since the input x  retains its vector value. Thus, the properties 1, 2, 3, 4 are true for all DN updates 
within ( ], 1t t + . 

According to the principle of induction, we have proved that the properties 1, 2, 3 and 4 are all true for all t.     

6.3. Theorem 1 
Using the above lemma, we are ready to prove: 

Theorem 1 (Simulate any FA as scaffolding) The general-purpose DP incrementally grows a GDN to 
simulate any given FA ( )0, , , ,M Q q Aδ= Σ , error-free and on the fly, if the Z area of the DN is supervised 
when the DN observes each new state transition from the FA. The learning for each state transition completes 
within two network updates. There is no need for a second supervision for the same state transition to reach 
error-free future performance. The number of Y neurons in the DN is the number of state transitions in the FA.  

Proof. Run the given FA and the GDN at discrete time t, 1, 2,t =  . Using the lemma above, each state 
transition q qσ ′→  is observed by the DN via the mappings xm  and zm . Update the DN at least twice in 
each unit time. In DN, if ( ),=p z x  is a new vector to Y, Y adds a new neuron. Further, from the proof of the 
above lemma, we can see that as soon as each transition in FA has been taught, the DN has only Case 2 for the 
same transition in the future, which means that no need for second supervision for any transition. Also from the 
proof of the lemma, the number of Y neurons corresponds to the number of state transitions in the FA.        

If the training data set is finite and consistent (the same ( ),q σ  must go to the unique next state q′ ), re- 
substitution test (using the training set) corresponds to simulating an FA using pattern codes. Theorem 1 states 
that for the GDN any re-substitution test for consistent training data is always immediate and error-free. Con-
ventionally, this will mean that the system over-fits data as its generalization will be poor. However, the GDN 
does not over-fit data as the following Theorem 2 states, since the nature of its parameters is optimal and the 
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size of the parameter set is dynamic. In other words, it is optimal for disjoint tests. 

6.4. Grounded DN 
Definition 6 (Grounded DN) Suppose that the symbol-to-vector mapping for the DN is consistent with the real 
sensor of the a real-world agent (robot or animal), namely, each symbol σ  for FA is mapped to an sub-image x 
from the real sensor, excluding the parts of the irrelevant background in the scene. Then the DN that has been 
trained for the FA is called grounded.  

For a grounded DN, the SN is a human knowledge abstraction of the real world. After training, a grounded 
DN can run in the real physical world, at least in principle. However, as we discussed above, the complexity of 
symbolic representation for Σ and Q is exponential in the number of concepts. Therefore, it is intractable for any 
SN to sufficiently sample the real world since the number of symbols required is too many for a realistic 
problem. The fact that there are enough symbols to model the real world causes the symbolic system to be brittle. 
All the probability variants of FA can only adjust the boundaries between any two nearby symbols, but the 
added probability cannot resolve the fundamental problem of the lack of sufficient number of symbols. 

7. Theorem 2: Frozen DN Generalizes Optimally 
The next theorem states how the frozen GDN generalizes for infinitely many sensory inputs. 

Theorem 2 (DN generalization while frozen) Suppose that after having experienced all the transitions of the 
FA from time 0t t= , the GDN turns into a DN that  

1) freezes: It does not generate new Y neurons and does not update its adaptive part.  
2) generalizes: It continues to generate responses by taking sensory inputs not restricted to the finite ones for 

the FA.  
Then the DN generates the Maximum Likelihood (ML) action ( )n tz , recursively, for all integer 0t t> :  

( ) ( ) ( ) ( )( )arg max 1 , 1
i

iZ
n t h t t t

∈
= − −

z
p z z                               (14) 

where the probability density ( ) ( ) ( )( )1 , 1ih t t t− −p z z  is the probability density of the new last observation  

( )1t −p , with the parameter vector iz , conditioned on the last executed action ( )1t −z , based on its experience 
gained from learning the FA.  

Proof. Reuse the proof of the lemma. Case 1 does not apply since the DN does not generate new neurons. 
Only Case 2 applies. 

First consider Y. Define c  Voronoi regions in X Z×  based on now frozen ( )1 2, , , cV = v v v , where 
each jR  consisting of p  vectors that are closer to jv  than to other iv :  

{ }1
arg max ,      1, 2, ,j ii c

R j j c
≤ ≤

= = ⋅ =p v p 
  

Given observation ( )1t −p , V has two sets of parameters, the X synaptic vectors and the Z synaptic vectors. 
They are frozen. 

According to the dependence of parameters in DN, first consider c events for area Y: ( )1t −p  falls into iR , 
1, 2, ,i c=   partitioned by the c Y vectors in V. The conditional probability density 
( ) ( )( )1 , 1ig t t− −p v z   is zero if ( )1t −p  falls out of the Voronoi region of iv :  

( ) ( )( ) ( ) ( )( ) ( )1 , 1 , if  1 ;
1 , 1

0, otherwise
i i i

i

g t t p t R
g t t

 − − − ∈− − = 


p v z
p v z



                    (15) 

where ( ) ( )( )1 , 1i ig t t− −p v z  is the probability density within iR . Note that the distribution of 
( ) ( )( )1 , 1i ig t t− −p v z  within iR  is irrelevant as long as it integrates to 1. 

Note that ( ) ( ) ( )( )1 1 , 1t t t− = − −p x z . Given ( )1t −p , the ML estimator for the binary vector 1
c

j E∈y  

needs to maximize ( ) ( )( )1 , 1ig t t− −p v z , which is equivalent to finding  

( ) ( )( ) ( )
1 1

arg max 1 , 1 arg max 1i ii c i c
j g t t t

≤ ≤ ≤ ≤
= − − = ⋅ −p v z v p                          (16) 
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since finding the ML estimator j  for Equation (15) is equivalent to finding the Voronoi region to which 
( )1t −p  belongs to. This is exactly what the Y area does, supposing 1k =  for top- k  competition. 
Next, consider Z. The set of all possible binary-1 Y vectors and the set of producible binary-p Z vectors have a 

one-to-one correspondence: jy  corresponds to nz  if and only if the single firing neuron in jy  has non-zero 
connections to all the firing neurons in the binary-p nz  but not to the non-firing neurons in nz . Namely, given 
the winner Y neuron j , the corresponding Z∈z  vector is deterministic. Furthermore, for each Y neuron, there 
is only unique z because of the definition of FA. Based on the definition of probability density, we have:  

( ) ( )( ) ( ) ( ) ( )( )1 , 1 1 , 1i ng t t h t t t− − = − −p v z p z z   

for every jv  corresponding to ( )n tz . Thus, when the DN generates ( )0.5t −y  in Equation (16) for ML 
estimate, its Z area generates ML estimate ( )n tz  that maximizes Equation (14).                         

8. Theorem 3: DN Thinks Optimally 
There seems no more proper terms to describe the nature of the DN operation other than “think”. The thinking 
process by the current basic version of DN seems similar to, but not exactly the same as, that of the brain. At 
least, the richness of the mechanisms in DN that has demonstrated experimentally to be close to that of the brain. 

Theorem 3 (DN generalization while updating) Suppose that after having experienced all the transitions of 
the FA from time 0t t= , the GDN turns into a DN that  

1) fixes its size: It does not generate new Y neurons.  
2) adapts: It updates its adaptive part ( ),N V A= .  
3) generalizes: It continues to generate responses by taking sensory inputs not restricted to the finite ones for 

the FA.  
Then the DN “thinks” (i.e., learns and generalizes) recursively and optimally: for all integer 0t t> , the DN 

recursively generates the Maximum Likelihood (ML) response ( ) 10.5 c
j t E− ∈y : with  

( ) ( ) ( )( )
1

arg max 1 1 , 1ii c
j g t t t

≤ ≤
= − − −p v z                                (17) 

where ( ) ( ) ( )( )1 1 , 1ig t t t− − −p v z   is the probability density, conditioned on ( )1i t −v , ( )1t −z . And the 
Z  has the pre-response vector ( ) ( )( )1 2, , , c Zt r r r=z  , where nr , ( )1,2, ,n c Z=  , is the conditional 
probability for the n -th Z neuron to fire:  

( ) ( )Prob -th  neuron fires at time 0.5 -th  neuron fires at time n njr p t j Y t n Z t= = −           (18) 

The firing of each Z neuron has a freedom to choose a binary conditioning method to map the above the 
pre-response vector ( )c ZR∈z  to the corresponding binary vector ( )c ZB∈z .  

Proof. Again, reuse the proof of the lemma with the synaptic vectors of Y to be ( ) ( )1 21 , , , cV t − = v v v  
now adapting. 

First consider Y. Equation (16) is still true as this is what DN does but V is now adapting. The probability 
density in Equation (15) is the currently estimated version based on past experience but V is now adapting. Then, 
when 1k =  for top-k Y area competition, the Y response vector ( ) 10.5 c

j t E− ∈y  with j determined by 
Equation (16) gives Equation (17). In other words, the response vector from Y  area is again the Maximum 
Likelihood (ML) estimate from the incrementally estimated probability density. The major difference between 
Equation (16) and Equation (17) is that in the latter, the adaptive part of the DN updates. 

Next, consider Z. From the proof of the Lemma 1, the synaptic weight between the j-th Y neuron and the n-th Z 
neuron is  

( )Prob -th  neuron fires in the last DN update -th  neuron fires in the next DN updatenjp j Y n Z=      (19) 

The total pre-response for the n-th neuron is  

( ), 1n n n nj j nj njr r p y p p= = ⋅ = = =v y v y   

since the j-th neuron is the only firing Y neuron at this time. The above two expressions give Equation (18).    
The last sentence in the theorem gives the freedom for Z to choose a binary conditioning method but a binary 

conditioning method is required in order to determine which Z neurons fire and all other Z neurons do not. In the 



J. Y. Weng 
 

 
128 

brain, neural modulation (e.g., expected punishment, reward, or novelty) discourages or encourages the recalled 
components of z to fire. 

The adaptive mode after learning the FA is autonomous inside the DN. A major novelty of this theory of 
thinking is that the structure inside the DN is fully emergent, regulated by the DP (i.e., nature) and indirectly 
shaped (i.e., nurture) by the external environment. 

The neuronal resource of Y gradually re-distribute according to the new observations in Z X× . It adds new 
context-sensory experience and gradually weights down prior experience. Over the entire life span, more often 
observed experience and less often observed experience are proportionally represented as the synaptic weights. 

However, an adaptive DN does not simply repeat the function of the FA it has learned. Its new thinking expe-
rience includes those that are not applicable to the FA. The following cases are all allowed in principle: 

1) Thinking with a “closed eye”: A closed eye sets =x u  where u has 0.5 for all its components (all gray 
image). The DN runs where Y responses mainly to z as x has little “preference” in matching. 

2) Thinking with an “open eye”: In the sensory input x is different from any prior input. 
3) Inconsistent experience: from the same ( ) ( ), ,q σ≡z x , the next q′ ′≡z  may be different at different 

times. FA does not allow any such inconsistency. However, the inconsistencies allow occasional mistakes, up-
date of knowledge structures, and possible discovery of new knowledge. 

The neuronal resources of Y gradually re-distribute according to the new context-motor experience in Y Z× . 
The learning rate ( )2 1j jw n n=  amounts to equally weighted average for past experience by each neuron. 
Weng & Luciw 2009 [30] investigated amnesic average to give more weight to recent experience. 

In the developmental process of a DN, there is no need for a rigid switch between FA and the real-world 
learning. The mitosis-equivalent of Y neurons is gradually realized by gradual mitosis and cell death, neuronal 
migration and connection, neuronal spine growth and death, and other neuronal adaptation. DN can also switch 
between neuronal initialization and adaptation smoothly. The rigid switches between neuronal initialization and 
neuronal adaptation and between FA learning and the real-world learning above are meant to facilitate our un-
derstanding and analysis only. 

The binary conditioning is suited only when Z is supervised according to the FA to be simulated. As the 
“thinking” of the DN is not necessarily correct, it is not desirable to use the binary conditioning for Z neurons. 
For example, a dynamic threshold can be used for nv  to pass in order for the n -th neuron to fire at value 1. 
This threshold can be related to the punishment and reward from the environment. In general, the threshold is 
related to the neural modulatory system. 

The thinking process by the current basic version of DN seems similar to, but not exactly the same as, that of 
the brain. At least, the richness of the mechanisms in an experimental DN is not yet close to that of an adult 
brain. For example, the DN here does not use neuromodulators so it does not prefer any signals from receptors 
(e.g., sweet vs bitter). 

9. Experimental Results 
Due to the focused theoretical subject here and the space limitation, detailed experimental results of DN are not 
included here. The DN has had several versions of experimental embodiments, called Where-What Networks 
(WWNs), from WWN-1 [32] to WWN-7 [33]. Each WWN has multiple areas in the Z areas, representing the 
location concept (Location Motor, LM), type concept (Type Motor, TM), or scale concept (Scale Motor, SM), 
and so on. 

A learned WWN can simultaneously detect and recognize learned 3-D objects from new unobserved cluttered 
natural scenes [5] [34]. 

The function of this space-time machine DN differs depending on the context information in its Z area [7]. If 
there is no Z signal at all, the WWN is in an (emergent) free-viewing mode and it detects any learned object 
from the cluttered scene and tells its location from LM, type from TM, and scale from SM. If the LM area fires 
representing a location (intent or context), the WWN recognizes the object near that intended location from the 
cluttered scene and tells its type from TM and scale from SM. If the TM area fires representing an object type 
(intent or context) the WWN finds (i.e., detects) an intended object type from the cluttered scene and tells its lo-
cation from LM and scale from SM. 

A WWN can also perform autonomous attention. If the DN suppresses the firing neuron that represents an 
object type in TM, the WWN switches attention from one object type to another object type that barely lost in 
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the previous Y competition—feature-based autonomous attention. If the DN suppresses the firing neuron in LM, 
the WWN switches attention from one object location to another object location that barely lost in the previous 
Y competition—location-based autonomous attention. 

The WWN has also performed language acquisition for a subset of natural language and also generalized and 
predicted [35]. For example, predict from one person Joe to his hierarchical properties such as male and human, 
and predict from Penguin to its hierarchical properties such as non-flying and bird. 

The WWNs have versions that are motivated, such as pain avoidance and pleasure seeking, so that its learning 
does not need to be supervised [9]. The learned tasks include object recognition under reinforcement learning 
and autonomous foraging (wandering around) in the presence of a friend and an enemy. 

However, the experimental results from such DN experiments are difficult to understand and to train without 
a clear theoretical framework here that links DNs with the well-known automata theory and the mathematical 
properties presented as the three theorems that have been proved here. 

10. Conclusions and Discussion 
Proposed first in Weng 2011 [14], the DN framework seems to be, as far as I know, the first brain-scale compu-
tational and developmental theory for the brain and mind. By developing, we mean that the model regards brain 
areas should automatically emerge from activities, instead of fully specified rigidly by the genome. This view is 
supported by a great deal of cross-modal plasticity found in mammalian brains, from eye deprivation by Torsten 
N. Wiesel and David H. Hubel [36], to the auditory cortex that processes visual information by Mriganka Sur et 
al. [37], to the reassignment of modality—visual cortex is reassigned to audition and touch in the born blind as 
reviewed by Patrice Voss [38]. 

Therefore, it appears that a valid brain model at least should not assume a static existence of—genome rigidly 
specified—Brodmann areas. This static existence has been prevailing in almost all existing biologically inspired 
models for sensorimotor systems. Instead, a brain model should explain the emergence and known plasticity of 
brain areas. DP enables areas to emerge in DN and adapt. The genome provides the power of cells to move and 
connect. The genome also plays a major role in early and coarse connections of a brain. However, fine connec-
tions in the brain seem to be primarily determined by the statistics of activities from the conception of the life all 
the way up to the current life time. 

In conclusion, this paper provides an overarching theory of the brain and mind, although the complexity of the 
mind is left to the richness of the environment and the activities of DN—task nonspecific [28]. The paper also 
provides the proofs of the three basic theorems in an archival form. At this early time of the computational brain 
theory, we predict that the landscape of AI and understanding of natural intelligence would both fundamentally 
change in the future. 
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