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Abstract 
Image enhancement is an important pre-processing step for various image processing applica-
tions. In this paper, we proposed a physiologically-based adaptive three-Gaussian model for image 
enhancement. Comparing to the standard three-Gaussian model inspired by the spatial structure 
of the receptive field (RF) of the retinal ganglion cells, the proposed model can dynamically adjust 
its parameters according to the local image luminance and contrast based on the physiological 
findings. Experimental results on several images show that the proposed adaptive three-Gaussian 
model achieves better performance than the classical method of histogram equalization and the 
standard three-Gaussian model. 
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1. Introduction 
Images play an important role in transferring information. In order to obtain more information from collected 
images, image enhancement techniques are commonly required to improve image quality. Traditional image 
enhancement methods can be roughly divided into two categories: 1) spatial domain methods, such as gray-level 
transformation, piecewise-linear transformation, and histogram equalization, etc. 2) frequency domain methods, 
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which include high-pass filtering, high-frequency emphasizing filtering, and homomorphic filtering etc. How-
ever, these methods mentioned above are in general difficult to balance well among various requirements of 
image quality, such as contour enhancement, dynamic range, denoising and so on. In addition, the ability of tra-
ditional image enhancement methods is far behind the human visual system in almost all aspects. 

Early physiological studies have revealed that the retinal ganglion cells have a receptive field (RF) consisting 
of concentric regions, i.e., an approximately circular center and an annular surround [1] [2]. DOG model was 
proposed by Rodieck to describe the classical receptive field (CRF) of the ganglion cells [1]. Li et al. found that 
the cells at some distance from the contrast borders were less affected, while the border enhancement might be-
come quite stronger when the centre was close to the corner of a bright contour [2]. Ramachandran found that 
the luminance gradients of an area are essential for producing perception of three-dimensional visual scenes [3]. 
By analyzing the length-response functions of lateral geniculate neurons in the cat, Li et al. have demonstrated 
an extensive disinhibitory region (DIR, i.e., non-CRF) outside the classical inhibitory surround of the receptive 
field [4]. According to this finding, a three-Gaussian function model was proposed in [5]. By setting appreciate 
parameters of the three-Gaussian model, good fit could be obtained almost for all data that show disinhibitory 
phenomenon [5]. Functionally, the three-Gaussian model can not only enhance the edge information but also 
transmit brightness information with low spatial frequency [5] [6]. 

However, the three-Gaussian model cannot dynamically adjust its parameters according to the local stimulus. 
In fact, the adaptation to the stimulus features (e.g., the luminance contrast) of the receptive field in the visual 
system has been deeply studied [7]-[12]. Some experiments [7] showed that the responses of retinal ganglion 
cells first increased abruptly, and then decayed exponentially to a lower value following the abrupt increase in 
stimulus contrast. Based on extracellular recordings from 69 LGN cells in the anesthetized cat, Nolt et al. found 
that the spatial summation within their receptive fields was dependent on the contrast of the stimuli presented. 
They reported that the contrast-dependency in the retinal ganglion cells directly resulted from a reduction in the 
size of the center mechanism due to an increase in contrast [8]. By characterizing the adaptation of neurons in 
the cat lateral geniculate nucleus (LGN) to changes in stimulus contrast and correlations, Lesica et al. found that 
the space constant of the excitatory center increased with a decreasing in stimulus contrast [9]. In addition, it has 
been shown that spatial summation in the primary visual cortex of the cat and monkey is strongly dependent on 
stimulus contrast; the area (length and width) over which responses summate generally increases as the stimulus 
contrast decreases; fitting summation curves with a DOG model shows that this contrast-dependent spatial 
summation seems to derive from a change in the actual size of the receptive field [10]-[12]. 

To simulate the dynamic properties of the RF, in this work we present an adaptive three-Gaussian function 
model to automatically adjust its parameters according to the properties of local stimulus, i.e., local contrast and 
luminance, for image enhancement. 

2. Computational Model 
2.1. Three-Gaussian Function Model 
Figure 1 shows the model of three-Gaussian model, in which the center and surround denote respectively the 
excitatory region (Center) and inhibitory region (Surround) of CRF. The disinhibitory region usually covers a 
larger range of visual field. The response amplitude of cells with stimulus radius is shown in the top-right corner 
of Figure 1. The three-Gaussian function model is described as [5] 
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where 1A  and 1σ  are the strength and space constant of the excitatory center, 2A  and 2σ  are the strength 
and space constant of the inhibitory surround, and 3A  and 3σ  are the strength and space constant of the dis-
inhibitory outer-surround region.  

This three-Gaussian model assumes that the sensitivity profiles of the three regions (i.e., center, surround and 
outer-surround) are distributed as Gaussians, which are circularly concentric with their peaks overlapped at the 
center point of the RF center region. This model also assumes that the three parts summate linearly from all 
parts of the receptive field. Functionally, the combination of the first two Gaussians (i.e., the DOG model) 
serves to detect and enhance the edges, and the third Gaussian serves for the brightness information transmission 
by compensating the loss of the low frequency components resulted from the almost balanced center and sur-
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round mechanisms in the DOG model of most cells [5]. 

2.2. Adaptive Mechanism 
Based on the experimental findings about the stimulus-dependant RF properties, we specifically introduce two 
dynamic RF features: 1) the excitatory strength of the center ( 1A ) increases nonlinearly with the increasing of 
the local contrast; 2) the inhibitory space constant ( 2σ ) of the RF surround is decreased with the increasing of 
the local luminance. 

In this paper, we define the feature of local luminance contrast as the standard deviation within a small image 
patch around each pixel in the image. We denote local luminance contrast as Con . In addition, we use a mod-
ified sigmoid function to simulate the nonlinear transformation of neural information. The relationship between 

1A  and Con  is experimentally defined as 

( )1 10 0.5

16
1 e Con

A
− × −

= +
+

                                   (2) 

Figure 2 shows the relationship of center excitation ( 1A ) along with the local contrast ( Con ). 
On the other hand, in order to improve the contrast of shading regions of the image, another parameter ( 2σ ) is 

adjusted with local luminance. In our adaptive three-Gaussian function model, we can reduce inhibitory space 
constant ( 2σ ) to weaken the surround inhibition when the luminance value of the pixel to be processed is high. 

 

 
Figure 1. The spatial strucutre of the receptive 
field of the ganglion cells and LGN cells. 

 

 
Figure 2. The relatinship of center excitatory (A1) 
along with local contrast (Con). 
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We use L  to denote local luminance value of each pixel in the image. Similar to Equation (2), we also em-
ploy a modified sigmoid function to represent the relationship between the inhibitory space constant ( 2σ ) and 
the local luminance feature. The relationship between 2σ  and L  is experimentally defined as

 
( )2 10 0.45

0.11.25
1 e L

σ
× −

= +
+

                                  (3) 

Figure 3 shows the relationship between 2σ  and L . Note that a simple smoothing filtering is applied on the 
map of Con  and L  to removing noises. 

As described in Equations (2) and (3), the kernel idea of our adaptive three-Gaussian model is that two im-
portant parameters (i.e., 1A  and 2σ  in Equation (1)) are adaptively adjusted based on the features of local 
contrast and local luminance, respectively.  

It should be pointed out that the curves in Figure 2 and Figure 3 are sigmoid shaped, because sufficient ex-
perimental evidence indicates that the change of receptive field properties (e.g., the sensitivity and spatial size) 
with the stimulus features (e.g., the luminance contrast) seems nonlinear [7]-[12]. Note that the constants in Eq-
uations (2) and (3) determining the shapes of the sigmoid curves (e.g., the slope) were experimentally obtained 
and we have found that these settings are suitable for most of the real-world images, as indicated by several 
examples shown in the next section. 

3. Results 
In this experiment, we compared our adaptive three-Gaussian method with the popular method of histogram 
equalization and the standard (non-adaptive) three-Gaussian model. Experimental results on several images are 
shown in Figure 4, Figure 5, Figure 6, and Figure 7. Note that the zoomed in view of each test image is also 
listed in Figures 4-7, respectively. From the figures, the results of the standard three-Gaussian model usually in-
clude more details than original images, but some regions are over-enhanced (especially in the high contrast 
place); in addition, the contrast of high-light and shading regions are not enhanced enough. Histogram equaliza-
tion is efficient in adjusting global dynamic range of images, but it is difficult to obtain good local contrast. In 
addition, three-Gaussian model usually obtains better performance than histogram equalization. 

Our adaptive three-Gaussian function model performs better in both enhancing the local contrast and adjust-
ing global dynamic range. Meanwhile, the proposed method is capable of overcoming the phenomenon of over- 
enhancement. In addition, the performance of our new approach in edge enhancement is much better than the 
other two methods mentioned above, which can be clearly seen from Figures 4-7, especially from the zoomed in 
view of each test image.  

For quantitative comparison, we employed EME (a measure of enhancement) [13] and SNR (Signal to Noise 
Ratio) [14] for performance evaluation of image enhancement. SNR is usually defined as the mean target signal 
to the standard deviation of the noise [13]. In this paper, we define E as the mean value of the all pixels in the  
 

 
Figure 3. The relatinship of surround space 
constant (σ2) along with local lumiance (L). 
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Figure 4. Results on the Lenna image. (a) Original image; (b) 
Results of histogram equalization; (c) Results of three-Gaussian 
function model; (d) Results of the proposed method (adaptive 
three-Gaussian function model). The zoomed in view of the 
patch in the red rectangle is also shown for each image. 

 

 
Figure 5. Results on the Goldhill image. (a) Original image; 
(b) Results of histogram equalization; (c) Results of three- 
Gaussian function model; (d) Results of the proposed method 
(adaptive three-Gaussian function model). 

 

 
Figure 6. Results on the Sailboat image. (a) Original image; 
(b) Results of histogram equalization; (c) Results of three- 
Gaussian function model; (d) Results of the proposed method 
(adaptive three-Gaussian function model). 
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Figure 7. Results on the Zelda image. (a) Original image; (b) 
Results of histogram equalization; (c) Results of three-Gaussian 
function model; (d) Results of the proposed method (adaptive 
three-Gaussian function model). 

 
image and σ  as the standard deviation of the all pixels in the image. Therefore, SNR is computed as 
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E
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σ
=                                       (4) 

EME is computed as [14] 
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where Vmin,k,l and Vmax,k,l are respectively the minimum and maximum inside a certain block w(k,l) when the 
whole image is split into k1k2 blocks w(k,l) of equal sizes. c is a small constant that equals to 0.0001 to avoid di-
viding by zero. In general, a higher EME indicates a better enhancement in image details. 

EME and SNR of four considered images shown in Figures 4-7 are listed in Table 1 and Table 2. Note that 
the EME and SNR were calculated from the whole images. From Table 1, the evaluation of EME shows that our 
adaptive three-Gaussian function model obtains the best performance on edge enhancement. From Table 2, we 
can see that our new approach achieves competitive performance compared with the standard three-Gaussian 
function model and histogram equalization in suppressing image noise. This indicates that our adaptive model 
can well balance the requirements of enhancing edges and inhibiting image noises. 

4. Discussion 
It is generally accepted that the computational image processing methods are far behind the human visual sys-
tem. They met difficulties to balance well among various requirements of image quality, e.g., contour enhance-
ment and denoising which often cannot be well achieved at the same time. By seeking inspiration from the phy-
siological findings, this paper proposes a physiologically based adaptive three-Gaussian model, which dynami-
cally adjusts the parameters of the three-Gaussian model. The results on several real-world images show that the 
performance of our new model is better than the standard three-Gaussian function model, especially in over-
coming over-enhancement and raising the contrast of highlight and shading regions. Our approach can keep the 
SNR of an image in an acceptable level; meanwhile, it can effectively enhance the edge profiles and local details 
of the image. Specifically, in the regions of low luminance, we increase the excitatory strength ( 1A ) in the re-
gions with high local contrast, which helps enhance the edges with high contrast. Differently, we increase the 
inhibitory space constant ( 2σ ) in the regions of low brightness, which helps improve the contrast of shading re-
gions. 

Our physiologically-based adaptive three-Gaussian function model only simulates the change of inhibitory 
space constant ( 2σ ) and excitatory strength ( 1A ) based on the local contrast and local brightness, and don’t in-
volve inhibitory strength ( 2A ) and excitatory space constant, ( 1σ ) which should be improved in the future work. 
In addition, how to effectively suppress image noise is also an important future direction for us. 



Z. L. Xu et al. 
 

 
78 

Table 1. EME for the testing images. 

Index 
Test 
image 

EME 

Original image Histogram equalization Three-Gaussian Adaptive three-Gaussian 

Lenna 22.9578 55.8410 74.2137 91.6041 

Goldhill 16.2290 40.3469 67.6001 130.0269 

Sailboat 23.2728 40.4264 81.2151 135.1900 

Zelda 17.1172 55.7354 67.2700 94.1577 

 
Table 2. SNR for the testing images. 

Index 
Test 
image 

SNR 

Original image Histogram equalization Three-Gaussian Adaptive three-Gaussian 

Lenna 64.6106 62.6490 61.8363 61.9148 

Goldhill 64.9061 62.4141 61.8287 61.5272 

Sailboat 62.8929 60.6578 61.8346 60.4178 

Zelda 65.6947 61.8349 63.3216 62.8684 
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