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ABSTRACT 

This paper mainly focuses on the issues about generic multi-scale object perception for detection or recognition. A novel 
computational model in visually-feature space is presented for scene & object representation to purse the underlying 
textural manifold statistically in nonparametric manner. The associative method approximately makes perceptual hie- 
rarchy in human-vision biologically coherency in specific quad-tree-pyramid structure, and the appropriate scale-value 
of different objects can automatically be selected by evaluating from well-defined scale function without any priori 
knowledge. The sufficient experiments truly demonstrate the effectiveness of scale determination in textural manifold 
with object localization rapidly. 
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1. Introduction 

Scene perception has been drawn more attentions for 
global scene understanding in recent years. There have 
been several considerable topics about rapid acquisition 
of scene gist; scene recognition; spatial layout and spatial 
scale [1]; distance perception in scenes [2]; updating of 
scene views over time; visual search for meaningful ob- 
jects in scenes [3]; scene context effects on object per- 
ception [4]; scene representation in memory [5]; the allo- 
cation of attention including eye fixations during scene 
viewing; and the neural implementation of these repre- 
sentations and processes in the brain, that all of them stand 
for focusing research direction in computer vision. Gene- 
rally, scale problem of object in scenes is the basis of 
highly-complex scene perception, that is, how to compu- 
tationally approximate the object size close to the ground- 
truth, and additionally, it is magnificent to filter some 
trivial noise for more object-level cue concentrations in 
further specific vision tasks like object recognition, ob- 
ject localization or visual attention. 

In absence of a priori, like spatial configuration or scale 
information, about unseen scene, it is usually confused in 
perception by seemingly invalid interpretation in similar 
settings as Biederman’s violations [6]. Recently, charac-
teristics of local scene have been studied to encourage 
more frequently appearance on reusable structured-ele- 
ment combinations owing to part-based models for spe- 
cific-class categorization [7]. However, consistency of 
local appearance varies dramatically in reality and should 

be maintained in different-size scale from individual 
pixels to one entire image in human visual system. The 
scale space description in Lazebnik and Schmid [8] pre-
fers to hierarchical structure for computational conven-
ience and more nature evidences come from results in 
biological [9] and cognitive view [10]. The spatial pyra-
mid framework can offers insight into the successful rep-
resentation performance with more popularities as Tor-
ralba’s “gist” [11] and Lowe’s SIFT [12] descriptors 
currently. From mostly empirical segmentation [13], 
finer-scale splitting leads to more accurate details and 
vice visa. Therefore, local appearance and structure in 
scale-space retain not only additional assumptions but 
also soft constraints to eliminate large-scale impossible 
configurations for improvement in scene understanding.  

The versatile appearance, location, scale, depth and other 
perceptible properties enforcing consistency in local scene 
tend to be requirement of object-level understanding. N. 
Bianchi, etc. studied the mechanisms related to color 
perception in clutter settings and encapsulated the wrapped 
color categories using labeling [14]. Kang, Yousun, etc. 
discussed a method for depth perception from a 2D na- 
tural scene using scale variation of patterns. As the sur-
face from a 2D scene farther away from observers, the 
texture appearances from eyes might tune to be finer and 
smoother [2]. A. H. Assadi verified the advantages of Ge-
stalt theory in natural surfaces as a concrete computa-
tional approach to simulate or recreate images whose 
geometric invariance and quantities might be perceived 
and estimated by an observer [15].  
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Although overall methods provide an approximate es- 
timation of above properties, it contains relatively so- 
phisticated and complicated algorithms with loss of gen-
erality to some extents and the metric distance in Eucli- 
dean space lead to feature fragments. Zhu etc. applies en- 
tropy statistics to study a perceptual scale space by con- 
structing a so-called sketch pyramid which augments the 
common-used Gaussian and Laplacian pyramid in image 
scale space theory [1]. The complete manifold pursues to 
ensemble these scattered pieces to overcome the density 
estimation inconsistency in original feature space [16] 
and project the high-dimensional data point onto para- 
metric surface to keep intra-class similarity and between- 
class distinctness in both explicit and implicit case, with 
flexible transformation with each other [17]. 

The current object scale perception mostly has a bio- 
logical psychology research foundation, and how to achieve 
an effective computational model appears well-promising. 
This paper aims at local scene perception, puts forward a 
non-parametric estimation method in texture feature space. 
The salient image patch in a pyramid space is introduced 
with informative statistics. Perception rate as evaluation 
function is used to calculate the best object scale in na- 
tural scene by the different generative masks. 

2. Object Representations in Texture  
Feature Space 

Based on the histogram of original gray information, en- 
tropy as one dimension feature can rapidly effectively 
describe image patch texture information, but it also to 
be confronted the inefficient multi-categories recognition 
task. To achieve the low dimension smooth texture de- 
scription, frequency-domain analysis can give proper dis- 
tribution statistic information. Gist Feature is promote by 
a group of Gabor filters, extracting frequency respon- 
sibility of different direction and scale edge, to obtain bet- 
ter texture recognition accuracy by its mean value of par- 
titioned organization. 

The texture appearance instinctively preserves the re-
petitive local structure with some particular frequencies 
as regular homogeneity in intermediate scale which is not 
dependent on color or brightness but contrast and finer 
scale will lead to disappearance of this phenomenon. The 
advanced important characteristics as roughness, open- 
ness, perspective induced by some multiple combinations 
with basic elements as orientation, magnitude or frequency 
in statistical manner over hierarchical layers. Moreover, 
it is beneficial to capture multiple scale, translation, 
viewpoint and illumination invariance, especially the 
common modality of category among most-varying ap- 
pearances. 

Spatial-frequency transformation is the widely-applied 
technique in image texture analysis. After this, in finite  

2D-planar texture, periodic and symmetry features will 
be easily expressed as convolution with several selective 
filter banks originally from fruits in biological vision. 
Therefore, each image can be decomposed as a set of 
textons in multiple frequencies and directions that will be 
valuable for our further scale discussion. 

Gist features [18,19] use multi-dimensional, multi- 
scale Gabor filters to represent the diverse responses in 
scene. As the convolution with Gabor filter can be thought 
as a wavelet transformation, therefore, for images f(x, y), 
with original coordinate (x, y) in pixels, the two-dimen- 
sional output is as follows. 

   , ,ml mlI f x y x p x y q y dxdy         (1) 

where  ,  x y   is one particular spatial sampling in- 
terval, in special case ,x y 1   . Let p, q denote the 
position of image pixels and m, l respectively define the 
M direction and L scale mother wavelets, indexed by m = 
0, …, M – 1 and l = 0, …, L – 1. Corresponding response 

 ,ml x y  can be generated by template convolution with 
expression as two-dimensional separable Gaussian dis- 
tribution omitting suffix, 
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here, the value x , y  can be associated with direc- 
tion and scale indexes m, l, W defines the frequency 
bandwidth in filter. In light of materials the neural and 
neuron system, set W = 0.5 with equal contribution from 
two directions. 

In this paper, the Gabor-like filter sets with 4-orienta- 
tion and 8-direction, are selected to achieve 32 responses 
in image totally. In each filter channel, the normalization 
is performed by image block mean value. Therefore, any 
image can be represented as one 32-dimensional texture 
vector in row-or-column first order. 

Texture decision function is design for different sample 
image patches, and its complexity is determined by cate- 
gories variation and model parameter selected. Histogram 
information sampled from one image or few image, can 
leave out some representative object. So, for providing a 
precise category center and similarity threshold, to define 
its covering surface in feature data surface, a large con- 
tent training sample must be included for effective test 
sample recognition. 

From above representation, each image might be pro- 
jected into subspace with fixed dimension as one point, 
in non-parametric manner, the samples from same cate- 
gory ensemble a texture hyper-sphere for density estima- 
tion. 
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    
, ,

, ,o m l m l
f u u u                 (3) 

where  is feature domain, o u  is feature mean 
value.   is feature standard deviation. 

In order to satisfy the statistical sufficient condition, 
the lower boundary of number of samples should be de- 
termined (usually take 50) to formulate effective texture 
domain o  for smoothness, conversely, less number of 
the texture membership cause large variance inducing 
many sharp peaks as original normal distributions with 
perturbed noises, so in this case, we could resort to esti- 
mator of , that is . 



o o
This paper proposes one effective representation about 

object texture in data distribution and non-parametric 
density estimation can capture the embedding structure. 
However, one challenge perception as scale heavily blocks 
the object saliency, so we sequentially present one method 
for automatic scale approximation in hierarchical quad- 
pyramid. 



3. Hierarchical Perceptions in Scale Space 
Prepare  

3.1. Quad-Tree Partition 

Traditional object detection task is mainly focus on object 
existence judgment by image scanning of object template. 
Known from detection, this paper research is the para- 
metric estimation procedure with a special evaluation 
criterion. Intercrossed with the object detection, scale 
perception is to verify the scale information to give out a 
proper size description in human vision. 

More and more evidences have been shown that the 
entire workflows about human visual perception exhibit 
coarse-to-fine hierarchical characteristics [20]. Being 
slightly different from hierarchy defined in [21], we sim- 
ply apply quad-tree structure with fixed partition points 
shown in Figure 1, due to the efficiency requirements 
when determining size of sliding-window in object de- 
tection [22] and image can be defined as a sequence in  

depth   1
K

k k
I I   with subscript matrix R. K denotes  

perception scale as depth detail parameter for human 
attention and plays a central role in our method, then 
images are sequentially further partitioned into several  

planar sets in each scale, that is . Similarly,   
12

1

k
k

k i
i

I I





k
iI  is expressed as sub-image content with subscript 

region  from image I as in Equation (4). k
iR

  , , ,k
i x y i kI I x y R              (4) 

In more details,  is the regional subscript set of 
the i-th patch of the k-th layer in quad-tree, (X, Y) is the 
size of image. 

k
iR

 

Figure 1. Quad-tree pyramid structure in scale space. 

 
Each patch in quad-tree pyramid has exclusive index, 

and it is easy for search and location. Quad-tree pyramid 
confused the pyramid and grid partition strategy can em- 
body not only image detail from coarse to fine, but also 
image layout distribution. Another characteristic of quad- 
tree pyramid is image division not cover, patches analy- 
sis in same layer without redundancy, and it is easy to 
compress coarse to fine information in one image like 
human vision. 

As above definition, scale-space has been naturally 
discretized into different-size patches and searching 
complexity reduces from O(m, n) as traditional one to 

   2
2log min ,O m n  at the cost of fixed-grid size as- 

sumption. We could not mentioned its limitation just for 
the situation that we purely want to achieve approxima- 
tion of object size rather than the refined accurate loca- 
tion, so in many instances, the objects in scene should 
not be entirely maintained in any one partition, but it 
does not lead to severe deterioration in our algorithm. 

On the basis of scale representation, the first consi- 
derable issue is to separate object as foreground from 
clutter scene with texture appearance in scale-space. De- 
note o  as foreground regions and as background 
ones, and in multiple scale-space, we can further split 

no

o  into ,o k  as:  

  , ,k k
o k i i oI h I                 (5) 

where  k
ih I  is the image patch k

iI  histogram of dif-
ferent feature descriptor and  is the category sub-
space. Instinctively, binary segmentation commonly 
treats them as one mask generations Mk, that is “1” as 
object and “0” as non-object in Equation (6). 
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Formula (7) ,
k
x yM  can be derived in scale-space that 
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Actually, these perceptual masks can be directly ob-
tained in each layer of quad-tree that is tightly related to 
the scale perception, so the approximation about object 
size should be converted into evaluation of binary mask 
Mk for largest response with particular depth k, often 
called as object perception scale. We can easily make 
estimation from precision ratio and recall rate as follows 
respectively in Equation (8) and Equation (9): 

   
   0,1k

k
o

M
precision M




 


          (8) 

   
   0,1k

k
k

M
recall M

M




             (9) 

Both values from above fall into regions between 0 
and 1, where  is the number of detected pixels 
with object truth, is amount of total pixels with 
object labeling and  aggregates the pixel mem-
bers in current scale space, triple of them can also be 
extended by Equation (10)-(12), considering the binary 
mask, 
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 
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 
,

k
x y

kM M                  (12) 

where L shows the ground- truth mask, kM L  de-
notes the intersection set between Mk and L. 

As for precision rate precision(Mk), the larger value 
indicates that the object can be detected in higher pro- 
bability to drop out many uninformative regions. Consi- 
dering the recall rate recall(Mk), the larger one often lead 
to the higher probability that the object occupies the full 
instance set. Generally, these two criterions can be hardly 
consistent encountering under- and over-perception. The 
former case usually causes higher recall but lower preci- 
sion value and contrary phenomenon appears in latter 
case, so the trade-off between precision and accuracy 
should be well considered by designing proper estimator 
defined in Equation (13) 

    
   

**2 precision recall M

precision recall
k

k
k k

M
f M

M M



k



M

     (13) 

The numerator in fraction coincides with correct-la- 
beling pixels in Equation (8) and Equation (9) and the 
denominator compromises two cases with normalization 

for convergence guarantee in  with the value 
between 0 and 1. At this point, scale perception problem 
can be formulated as the optimization over scale pa-
rameter k in evaluation function 

 kf M

arg max k
k

k f              (14) 

3.2. Single-Object Scale Perception 

For labeling images, the scale perception computation-
ally degenerates to the some qualitative measure over a 
set of marked pixels from given image blocks and there-
fore we separate particular marked masks into different 
non-intersect subsets in scale space  
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1 1
,
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K k

k k ik i
L L L L 
             (15) 

It can be viewed as to be perceptible in particular im- 
age block , where the number of marked pixels ex- 
ceeds to a certain threshold and the ratio of the truth- 
marker over all pixels is defined to measure quantities of 
labeling in image. 
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According to the Equation (7), mask can be trans-
formed into binary codes in term of particular measure-
ment above, 
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         (17) 

Similarly as in Equation (14), marking scale can be 
obtained corresponding to the largest value of evaluation 
function  ,k of L E , 

  ˆ arg  max arg  max ,k k
k k

k f M f L  oE     (18) 

In training image set, each one image with one scalar 
parameter, scale vector of multiple masks can be denoted  

as  
1

ˆ N
i i

K k


  and priori as , the covariance 

of these two vectors can be limited to guarantee the scale 
consistency. The parameter estimation can be iteratively 
performed in different 50 training sets to take 

  1
N

i i
K k 

0.25oE   

according to the formula (19) empirically. 

 arg  min cov ,
o

o
E

E  K K          (19) 

A single marked-object image with labeling L can be 
decomposed into many blocks with fixed-size 16-by-16 
and 256-gray-level value in 4-layer pyramid structure. 
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In Table 1: SV means Scale variables, ETD means Es-
timation texture domain, STD means Statistical 

Texture domain. 
Figure 2(a)-(d) show the perception results when the 

scale variable is set to 1, 2, 3, 4 respectively in texture 
feature space o , where the distinct perceptible regions 
can be highlighted in bright style and shading ones can 
be automatically regard as clutter background. As quanti- 
ties measurement of perception rate in Equation (13) 
achieve well-behavior for trade-off between over- and 
under-perception, this can serve as criterion for scale 
parameter in single object. Table 1 shows the specific 
real value of scale estimation and statistical computation 
for each detecting mask in Figure 2. The scale in second 
row is taken for its largest value 0.55 in perception rate 
in statistical way. 

Ω

Large-scale samples for texture computation in statis-
tical view can capture a better representation in object 
manifold, comparing to estimated texture scale based on 
single marked image. Therefore, the local scene percep- 
tion problem is transformed into the constrained evalua- 
tion preventing from improper perception in object de- 
tected patches, so as to achieve an object scale perception 
procedure closest to the effects in human visual brain. 

 
Table 1. Scale perception evaluation in single-object contain- 
ing image. 

Precision Recall F 
SV 

ETD STD ETD STD ETD STD 

k1 0 0.90 0 0.13 -- 0.23 

k2 0.99 0.74 0.25 0.47 0.36 0.55 

k3 0.50 0.16 0.16 0.11 0.35 0.21 

k4 0.57 0.19 0.18 0.29 0.23 0.19 

 

          
(a)                            (b) 

          
(c)                            (d) 

Figure 2. Scale perception of single object image in different 
values from coarse-to-fine hierarchies as left-to-right shown. 

3.3. Multiple-Instance Scale Perception 

In this section, we will extend our method to deal with 
more complex cases that to automatically approximate 
the multiple object location with estimated scale parameter. 
The workflow of our scale perception algorithm is listed 
as follows: 

Step 1. Select training set in each category (sample form 
50 region-labeled images), calculate texture features sta- 
tistically in space o  for object verification using Equa- 
tion (3); 

Step 2. Construct test image scale pyramid I    1
K

k k
I   

based on the quad-tree on test image I; 

Step 3. Estimate objects perception mask   1
K

k k
M   

with given object in each scale according to Equation (7); 
Step 4. Compute recall and precision of the image 

mask for evaluations as in Equation (8) and Equation (9); 

Step 5. Infer the perception rates    1

K
k k

f M


 in 

various scales defined in Equation (13); 
Step 6. Determine the best perception scale with Equa-

tion (14).  
Experiment 1: In Caltech 256 [23] image dataset, three 

categories of different organizational structures as coffee 
mug in 41-th, computer-monitor in 46-th and people in 
159-th are selected for multi-instance verification respect- 
tively. We analysis perception rate of different scale and 
feature, compare 1-dimension entropy value to 32-di- 
mension texture vector. 

Figure 3 shows the accuracy rate of image object scale 
perception based on the perception evaluation, and res- 
pectively discussed performance efficiency in different 
feature spaces between the entropy domain [1] and tex- 
ture domain. As ground-truth manual annotation with 
bounding box labeling object in each test image, we 
make a considerable comparison of our estimated scale 
to subjective scale with the parameter Eo = 0.25 in Equa- 
tion (19). The accuracy rate of the scale perception in 
Figure 3. can reach to 81% accuracy for face category 
when scale is 1, and along with the detail segmentation, 
the accuracy decrease in small resolution. But our method 
can still achieve the suboptimal solution as 63% in case 
that scale is 4. Figure 3 verifies the scale perception 
method based on the texture domain feature space and 
spatial pyramid strategy, and has an extensive applicability 
to the multi-instance case. 

Experiment 2: As scale perception is similar to object 
detection, different scale average accuracy can manifest 
the importance of object feature selection. The Pascal 
VOC [24] image dataset is also concentrated for its 
location prediction with bounding box and labeling of 
each object from twenty categories in each test image. 
The image sets are preprocessed by a random sampling 
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in the object feature space, employing non-parametric 
estimation methods to determine the object scale percep- 
tion and its computational model via texture domain. The 
texture-like feature computation and extraction is an ef- 
fective way for representation of object surface percep- 
tion; and perception rate can provide a reasonable evalua- 
tion based on strategy in the quad-tree spatial segmenta- 
tion. But, in multi-class case, additional supervision clas- 
sification methods should be required for further estima- 
tion of probability density to accomplish recognition and 

image patches assembling the entire training set to learn 
the density distribution in statistical way as the parameters 
of mean and variance. Meanwhile, estimation process is 
independently executed in the quad-tree of test image 
itself. 

Figure 4 shows the average scale accuracy in twenty 
categories, such as bicycle, bird, boat, bottle, bus, car, cat, 
chair, cow, dining table, dog, horse, motorbike, person, 
potted plant, sheep, sofa, train, TV/monitor. The average 
scale accuracy is about 52% at entropy domain and 56% 
at texture domain. There 13 categories can obtain proper 
scale estimation in texture domain, while 11 categories in 
entropy domain. The top three categories are aero-plane 
person and train with 83.8% 82.5% 76.2% in texture 
domain and 83.3% 78.3% 74.4% in entropy domain. Due 
to the complexity of object detection, a non-parametric 
method for the object scale perception in the quad-tree 
structure is comparably brief and effective. 

 

 

The proposed method has some contribution to scale 
perception as follows. Firstly, Gist as a group of Gabor 
filters can give a simple effective texture descriptor, and 
its feature dimension can fit the model complexity. Se- 
condly, quad-tree pyramid is easy to search and location 
like human vision and the scale perception mask can pro- 
vide foreground analysis information. 

4. Conclusion 
Figure 3. Accuracy rate with different scale of three selected 
categories in Caltech 256. This papers start from capturing the probability density  

 

 

Figure 4. Accuracy rate of different categories in Pascal VOC. 
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detection tasks. Meanwhile, hierarchical quad-tree struc- 
ture has a strong dependence on the position and orienta- 
tion. Our method can confirm the best scale evaluations 
mainly for salience application rather accurate object 
localization. Therefore, a better alternative strategy of 
scale-space description should be further developed by 
introducing probabilistic inference to optimize patch 
perception problem among various layers with consider- 
able efficiency. 
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