
International Journal of Geosciences, 2018, 9, 513-527 
http://www.scirp.org/journal/ijg 

ISSN Online: 2156-8367 
ISSN Print: 2156-8359 

 

DOI: 10.4236/ijg.2018.99030  Sep. 13, 2018 513 International Journal of Geosciences 
 

 
 
 

Hydrothermal Alteration of Basaltic Rocks at 
Eruptive Vents on Mount Cameroon Volcano, 
West Africa 

Akumbom Vishiti1*, Taboko Armstrong2, Elisha Mutum Shemang3,  
Jacques Etame1,4, Cheo Emmanuel Suh2,5 

1Department of Civil Engineering, The University Institute of Technology (IUT), University of Douala,  
Douala, Cameroon 
2Economic Geology Unit, Department of Geology, University of Buea, Buea, Cameroon 
3Department of Earth and Environmental Science, Botswana International University of Science and Technology,  
Palapye, Botswana 
4Laboratory of Geosciences Natural Resources and Environment, Department of Earth Science, University of Douala,  
Douala, Cameroon 
5Department of Geology, Mining and Environmental Science, The University of Bamenda, Bambili, Cameroon 

 
 
 

Abstract 
The study of changes in rocks due to interaction with hydrothermal fluids at 
active volcanoes provides insights into wall rock alteration associated with ore 
deposits formed in the geological past. Therefore, the nature of mineral alte-
ration and chemical changes experienced by wall rocks can be investigated at 
eruptive sites on active volcanoes and the results used to better constrain 
ore-forming processes. In this study, we investigated the alteration at eruptive 
sites at Mount Cameroon volcano. These eruptive vents lie along 
NE-SW-trending fissures that define the Mount Cameroon rift. The vents are 
surrounded by cones composed largely of pyroclastic materials and to a lesser 
extent lava. Fumaroles (volcanic gases) rising through the vents during and 
after the 1999 eruption have resulted in the alteration of the pyroclastic rob-
ble along the fissures and the inner walls of the cones. Consequently, altered 
basaltic materials are covered with thin films of reddish, yellowish to whitish 
secondary minerals. These coatings result from an interaction between the 
surfaces of the basaltic glass with volcanically-derived acidic fluids. Petro-
graphic investigations and XRD analysis of the basalts have identified prima-
ry mineral phases, such as olivine, pyroxene (mainly augite) and feldspars. 
Alteration products revealed include ubiquitous silica as well as gypsum, 
magnetite, feldspar, alunite and jarosite. Jarosite occurrence indicates that 
SO2 is the primary volcanically-derived acid source involved in coating for-
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mation. High contents of sulfur identified in the basalts indicate that melts at 
Mount Cameroon can be sulfur saturated as backed by previous melt inclu-
sion data. Whole rock geochemical analysis shows a gain in silica in the al-
tered samples and this ties with the mass balance calculations although minor 
gains of Al2O3, T

2 3Fe O , MgO, MnO, CaO and K2O are shown by some sam-
ples. 
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1. Introduction 

Mount Cameroon is an active volcano with an intraplate setting on the African 
continent. It last erupted in 2000 and although the eruption behavior, petroche-
mistry of eruption products [1]-[8], associated risk and community perceptions 
[9]-[14] have been studied; the fumarolic activity and attendant wall rock altera-
tion at the eruptive sites have witnessed less profound scientific investigation. 
Such investigations are important considering that hydrothermal activities at ac-
tive volcanoes provide proxies for a better understanding of such processes in 
the geological past and how they led to the formation of ore deposits. Hydro-
thermal systems have been reported in a wide variety of settings: mid-ocean 
ridges (black smokers), subduction zones and continental settings. Hydrother-
mal processes result in changes in the affected rocks that can be recognized as 
textural, color, mineralogical and chemical mass loss or gain for various ele-
ments [15] [16] [17] [18]. Fumaroles are known to be sites for passage of fluids 
and degassing leading to wall rock alteration [19]. Studying recent volcanoes to 
compare and contrast modern and ancient systems is not only important in the 
field of volcanology, but also in ore mineralogy as it provides an insight to ore 
forming processes. Also the results of such studies provide the basis for distin-
guishing changes in rocks due to weathering (supergene alteration) and those 
directly linked to hypogene processes, such as hydrothermal activity. In this 
study, we describe the recent 1999 eruptive vents at Mount Cameroon volcano 
and the alteration recognized around these vents due to fumarole activity. We 
further identify the principal alteration minerals and precipitate phases by the 
XRD method and compute element dispersion between the fresh basalt and the 
hydrothermally altered varieties using the mass balance technique [20]. 

2. Geological Context of Mount Cameroon and the 1999 
Eruption 

Mount Cameroon in southwest Cameroon (Figure 1(a)) is one of Africa’s most 
active volcanoes and constitutes a major volcanic edifice at the transition be-
tween the oceanic and the continental sectors of the Cameroon Volcanic Line  
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Figure 1. (a) Sketch map of the Cameroon Volcanic Line (CVL) showing the location of Mount Cameroon along the 
NE-SW-trending volcanic chain. (b) Contoured map of Mount Cameroon displaying the 20th century eruption sites and lava flows 
(after [2]). (c) Sample location points along the 1999 eruptive fissure on Mount Cameroon. 

 
(CVL). The near 1700 km long CVL is an African intraplate ‘fan-shaped’ alkaline 
volcano-plutonic rift zone of variable width (<200 km), with a ~66 Ma history of 
magmatic activity without any systematic internal pattern of age variation [7]. 
Mount Cameroon rises steeply to 4095 m and its last eight eruptions have been 
well documented (Figure 1(b)), namely the 1909, 1922, 1954, 1959, 1982, 1989, 
1999 and 2000 eruptions [3] [8] [14] [21]. The Mount Cameroon edifice is built 
on a sedimentary substratum and is dominantly covered by basanite, andesitic 
and hawaiite lavas and subsidiary tephra deposits that reveal a variation in tex-
ture [2] [3] [4]. According to [1] [2] [5] [6] [10] [14] [22], the most critical re-
cent eruptions of Mount Cameroon occurred between 28 March and 22 April 
1999 and 28 May and 7 June 2000. The 2000 eruption may have been a continu-
ation of the 1999 event [2] in part as reflected in the heightened and sustained 
seismic activities during the period separating these eruptions. Mount Came-
roon is characterized by effusion of lava and associated weak Strombolian activ-
ity [2]. The volcanic activity of this edifice results in earthquakes, lengthy lava 
flows, tephra fall and volcanic degassing [14] [21]. According to [2] [4] [5], the 
1999 lavas are basanites with occasional hawaiites. The lava is porphyritic with 
olivine, clinopyroxene, plagioclase and titanomagnetite phenocrysts set in a 
fine-grained often partially glassy groundmass [2] [6]. 
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3. Material and Methods 
3.1. Field Protocol 

Vents with fumaroles on the 1999 eruptive fissures (Figure 1(c)) were mapped 
diligently and representative sample collected. Basaltic rocks bearing precipitates 
were sampled around the eruptive vents and a preliminary mineral identification 
done using the hand lens. The structural configuration of various fissures and 
splays were measured. Both the fresh and hydrothermally altered basaltic rocks 
sampled were split into two parts. While a section of the sample was used for 
thin section preparation the remaining samples were pulverized for X-ray dif-
fraction (XRD) and X-ray Fluorescence (XRF) analysis. 

3.2. Petrography and XRD Investigations 

Thin sections were prepared following standard procedures at the Institut de 
Recherche Geologigue et Miniere (IRGM), Nkolbison Yaoundé (Cameroon) and 
studied using transmitted and reflected light microscopy at the Department of 
Geology, University of Buea. The presence of major minerals where determined 
semi-quantitatively on the bulk fraction using PW1710X-ray diffractometer with 
automatic divergence slit and monochromatic CoKα radiation at the University 
of Botswana, Gaborone. Powder from each sample was mounted with a random 
orientation in an aluminum sample holder. Instrumental conditions were as fol-
lows: 40 kv, 35 nA, goniometerscan from 5˚ to 70˚ 2θ for bulk samples, step size 
= 0.02˚, scan speed = 1.2˚/min and count time = 0.5 s. An interactive software 
package (MacDiff, freeware from  
http://www.geolpal.uni-franfurt.de/Staff/Homepages/Petschick/classisoftware.ht
ml) was used to identify the minerals. Identifications are based on multiple peak 
matches using the mineral data base provided with MacDiff. 

3.3. Chemical Analysis and Element Mobility 

A portion of each sample was crushed in an alumina plate jaw crusher and then 
pulverized in a shatter box with an alumina container and puck. These powders 
were analyzed for major elements by X-ray Fluorescence (XRF) at Actlabs in 
Canada. Loss on ignition was determined by weight difference after ignition at 
1000˚C. The element dispersion between the fresh basalts and the hydrother-
mally altered varieties were then computed using the mass balance method of 
[20] with TiO2 as the least mobile element of choice. The mass change for a giv-
en element in an altered rock is calculated using the following equation: 

( ) ( )2 2 2TiO . . . TiO . TiO .100 1J J A J F A FC C C C C ∆ = ∗ −   

where CJ.A is the concentration of the element in the altered rock, CJ.F is the con-
centration of the element in the fresh/parent rock. The composition of the par-
ent rock (fresh basalt) was used as a reference for the mass balance calcula-
tion. 

https://doi.org/10.4236/ijg.2018.99030
http://www.geolpal.uni-franfurt.de/Staff/Homepages/Petschick/classisoftware.html
http://www.geolpal.uni-franfurt.de/Staff/Homepages/Petschick/classisoftware.html


A. Vishiti et al. 
 

 

DOI: 10.4236/ijg.2018.99030 517 International Journal of Geosciences 
 

4. Results 
4.1. Alteration around Vents 

Vent- and fissure-controlled active fumaroles sites observed along the 1999 fis-
sures at Mount Cameron volcano are semi-circular to circular in shape (Figure 
2(a), Figure 2(f), Figure 2(h)). They lie along NE-SW-trending deformational 
fissures that define the general trend of the Mount Cameroon rift. The fissures 
range in width from 0.5 m - 1 m (Figure 2(e), Figure 2(g)). Some of the fissures 
occur as splays characterized by low rate degassing. The walls of the vents are 
covered with coatings of various thicknesses and colors (Figures 2(b)-(d)). The 
altered rocks vary from reddish-whitish to yellowish in color (Figure 2(d)). 
Some are covered with thin silica films with typical lava drain features (Figure 
2(d)) reminiscent of repeated lava flux in the conduit and prolonged fumarolic 
alteration. 

The main petrographic features of the fresh basalts and their altered counter-
parts are presented in Figure 3. The rocks are coarse-grained and porphyritic 
with dominant phenocryst phases being olivine and clinopyroxene (Figure 3(a), 
Figure 3(c), Figure 3(e), Figure 3(h)) while plagioclase is common in the mi-
crolite-laden groundmass (Figure 3(b), Figure 3(d), Figure 3(f), Figure 3(g)). 
Some of the olivine phenocrysts show fracture-controlled alteration (Figure 
3(a), Figure 3(c), Figure 3(e), Figure 3(h)). The phenocrysts are usually euhe-
dral to anhedral, amoeboidal and skeletal in shape. Intergrowth textures are 
common (Figure 3(b)) with recognizable simple and polysynthetic twins in au-
gite and anorthite, respectively (Figure 3(b), Figure 3(d), Figure 3(f), Figure 
3(g)). Reaction textures are also common and include sieve-textured cores in 
olivine, serrated core-rim boundaries in clinopyroxene and cleavage-controlled 
coloration and alteration seams. The alteration phases are resolvable only by 
XRD as the material is often amorphous. 

4.2. Mineral Identification and Whole Rock Geochemistry 

The primary and secondary minerals identified by XRD are presented in Figure 
4. The dominant mineral coating on the altered rocks is sulfur (octa-sulfur, na-
tive sulfur and s-brimstone). The other alteration products include silica, 
feldspar (albite), gypsum, magnetite, jarosite and alunite while relicts of primary 
minerals phase such as augite and olivine are still noticeable (Figure 4). 

The geochemical composition of both fresh and altered basaltic rocks is pre-
sented in Table 1. Compared to the fresh basalt, the altered products have ele-
vated concentrations of SiO2 but show significant depletion in Al2O3 (avg. = 4.8), 
Fe2O3

T (avg. = 4.6), MgO (avg. = 2.4), CaO (avg. = 3.6) and Na2O (avg. = 0.8). It 
is remarkable that the altered samples have high loss on ignition values since the 
precipitates are essentially water-bearing or hydrous phases. On the gain and 
loss plot (Figure 5), the altered basalts show a significant gain in SiO2 while most 
of the other major elements are depleted. Exceptionally, Al2O3, T

2 3Fe O , MnO, 
MgO, CaO and K2O also show an increase (Figure 5) in some samples. 
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Figure 2. Characteristic hydrothermal alteration features of the 1999 eruptive vents. (a) 
Aligned cones around the 1999 eruptive vents. Note that the inner walls of some vents are 
reddish to whitish/yellowish due to hydrothermal alteration by fumaroles (volcanic gas-
es). (b) Different types of altered robbles on the inner wall of a cone. (c) Vent with red-
dish wall due to alteration. (d) Rock piece sampled from the inner wall of the cone in (c). 
Here, a reddish, altered, polished thin coating of oxidized siliceous material with lava 
drain structures mantles a dark unaltered basaltic core. (e) NE-SW running fissures that 
control cone alignment and serve as passage ways for rising fumaroles. (f) Alteration 
around walls of vents. (g) Fissure running NE-SW. (h) Alteration along the walls of vents. 

https://doi.org/10.4236/ijg.2018.99030


A. Vishiti et al. 
 

 

DOI: 10.4236/ijg.2018.99030 519 International Journal of Geosciences 
 

 
Figure 3. Representative photomicrographs of altered basaltic rocks from the Mount 
Cameroon 1999 eruptive vents (a) Olivine crystal defined by fracture-controlled altera-
tion. (b) Intergrowth of feldspar with olivine. Notice the simple twin in feldspars. (c) (e) 
(h) Fractured olivine with hydrothermally altered rims and cores. (d) (f) (g) Laths of pla-
gioclase feldspar defining weak magmatic (flow) alignment. Ol = olivine, fel = feldspar. 

5. Interpretation and Discussion 
5.1. Development of Alteration Products at Active Volcanoes 

At active volcanoes, magmatic gases tend to interact with surrounding wall rock 
materials and pre-existing hydrothermal systems thereby greatly modifying the 
composition of the fluids, the residual gas and the wall rock [23]. Basaltic rocks  
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Figure 4. Representative XRD patterns of altered basaltic rocks from the 1999 vents, 
Mount Cameroon volcano. (a) Sulfur coating occurring in the form of octa-sulfur. Alte-
ration products here include silica and albite. (b) Sulfur and albite alteration. (c) (d) 
Gypsum, sulfur, magnetite, alunite, pyroxene, augite, jarosite and silica. (e)-(h). Sulfur, 
gypsum, albite and silica alteration. Abbreviations alb = albite, s = sulfur, octa-s = octa-
sulfur, s-brim = sulfur brimstone, qtz = siliceous material, gyp = gypsum, alu = alunite, 
aug = augite, mag = magnetite, pyx = pyroxene, jar = jarosite. 
 
from the 1999 eruptive vents at Mount Cameroon volcano are hydrothermally 
altered and coated with oxidized siliceous material as well as sulfur-rich 
amorphous phases (Figures 2-4). This coating developed as a result of the 
chemical interaction between the rock substrate (basaltic glass and primary 
minerals) and fluids in its environment [24] [25]. Although this chemical  
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Table 1. Major element (wt%) composition of fresh and hydrothermally altered basalts from the 1999 eruptive vents on Mount 
Cameroon volcano. Sample collection sites are shown in Figure 1. 

Major elements 
 Basaltic rocks 

 Fresh Hydrothermally altered 

 DL  MCF5 MCF9 MCF8 MCF6 MCF1 MCF4 MCF2 MCF3 MCF10 MCF7 

XRF (wt.%)             

SiO2 0.02 45.99 59.82 70.01 45.98 79.99 73.75 73.6 81.33 79.52 54.99 59.08 

TiO2 0.001 3.25 1.32 1.69 3.24 0.57 1.62 1.55 0.55 0.57 2.33 1.36 

Al2O3 0.01 15.02 6.22 7.61 15.05 0.22 2.14 3.14 0.14 0.13 7.01 5.91 
T

2 3Fe O  0.01 11.85 6.04 7.34 11.88 0.49 3.56 2.76 0.71 0.69 5.94 6.14 

MnO 0.001 0.2 0.07 0.1 0.2 0.1 0.1 0.2 0.02 0.02 0.01 0.01 

MgO 0.01 6.91 3.01 3.16 6.92 0.11 0.13 0.11 0.07 0.06 4.11 5.91 

CaO 0.01 11.11 4.67 5.69 11.12 0.46 0.39 0.41 0.33 0.39 5.49 6.78 

Na2O 0.01 3.71 0.63 0.77 3.7 0.28 0.18 0.17 0.11 0.16 0.73 0.94 

K2O 0.01 1.44 0.43 0.34 1.46 0.77 0.28 0.29 0.1 0.1 0.53 1.31 

P2O5 0.001 0.65 0.88 0.09 0.66 0.08 0.08 0.09 0.03 0.05 0.07 0.1 

LOI 0.1 −0.33 17.7 3.05 -0.35 16.91 17.61 17.6 16.51 17.96 18.7 12.21 

Total  99.8 99.99 99.85 99.86 99.98 99.84 99.92 99.9 99.65 99.91 99.75 

DL = Detection Limit. 

 
interaction may involve external deposition from silica-saturated fluids [18] 
[26], in this study microtextural evidence such as reaction rims of mineral grains 
suggests that the silica coating formed by in situ dissolution and re-precipitation 
of silica mobilized in solution as noted previously by [27]. The textural characte-
ristics of coatings formed in this study reveal an interaction with acidic fluids 
and vapor. A potential source of acidity for alteration of the basaltic surfaces at 
active volcanoes is volatile degassing of the magma before, during and after an 
eruption. The high sulfur content of the altered basalts at Mount Cameroon 
(Figure 4) indicates that SO2 is the principal acid source involved in coating 
formation at the 1999 eruptive vents. According to [5], the most primitive glass 
inclusions from this volcanic edifice are volatile-rich with 1.7 wt.% H2O, 967 
ppm CO2, 1530 ppm F, 2400 ppm S, and 1270 ppm Cl; with the F content being 
the highest known for basaltic glasses. These gases, once dissolved in shallow 
ground water produce acidic solutions capable of altering the primary minerals 
in the basaltic rocks. The melts upon experiencing fractional crystallization be-
came S-saturated resulting in extensive S outgassing and the precipitation of na-
tive sulfur. This is supported by a continuous degassing of sulfur from the erup-
tive vents. High sulfur contents and tiny spherical sulphide grains in glass inclu-
sions from the Mount Cameroon volcano is reported in [5]; further evidence of 
S-rich melts at this edifice. 

Replacement reactions in the basaltic rocks resulted in the formation of vari-
ous secondary minerals. The breakdown of pyroxene and calcic plagioclase re-
sulted in the liberation of silica and calcium. While the siliceous material is  
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Figure 5. Mass balance calculation data of altered basaltic rocks from the 1999 Mount 
Cameroon eruption displayed as loss and gain diagrams (a)-(j). The basaltic rocks are 
characterized by a gain in silica although some samples are typified by a gain in Al2O3, 

T
2 3Fe O , MnO, MgO, CaO and K2O. 
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progressively reddened by iron possibly derived from the breakdown of fayalitic 
olivine, the calcium is consumed in the formation of gypsum. Indeed ancient 
hydrothermal ore deposits that are rich in silica and iron also form by replace-
ment reactions within silicious rocks at low temperatures [28] similar to the 
temperature expected at these 1999 vents. The occurrence of silica in the altered 
samples reflects cations depletion by acid leaching. Reddish to brownish 
Fe-oxyhydroxide coatings observed on the Mount Cameroon vent wall samples 
have been reported from mid ocean ridge basalts that have undergone acidic 
fluids-driven hydrothermal alteration due to the replacement of plagioclase, oli-
vine and basaltic glass [29]. We show in this study that these processes although 
better documented at oceanic settings also occur on land. At oceanic settings, 
diffuse hydrothermal fluid flow is observed from cracks and crevices in the ba-
saltic seafloor. At Mt Cameroon the fluids follow fissures and vents pointing to 
the similarity of both marine and continental volcanic degassing. 

Alunite and jarosite as alteration minerals in numerous ore deposits represent 
advanced argillic alteration [30]. The presence of these phases in altered rocks at 
Mount Cameroon emphasizes the role of acidic hydrothermal fluids in the for-
mation of such deposits. Alunite typifies S-saturated systems which upon oxida-
tion develop sulfate-bearing phases. The presence of jarosite also supports the 
fact that a primary volcanically-derived source of acid is involved in the forma-
tion of the precipitates which occur as coatings [31]. Sodium mobilized from the 
breakdown of primary phases is used up in the formation of albite detected by 
the XRD technique. The occurrence of albite within this volcanic edifice points 
to a sodic alteration and generally, albite commonly replaces plagioclase in per-
vasively altered igneous rocks (e.g. [32]). 

5.2. Element Remobilization during Hydrothermal Alteration 

The changes in the mineralogy of the altered basaltic rocks as described above 
are also reflected in their whole rock geochemistry. In fact the mass balance cal-
culations have identified high contents of SiO2, T

2 3Fe O , Al2O3, MnO, CaO and 
K2O in some samples when compared to the fresh unaltered basalt. According to 
[18], thin films of water acidified by contact with volcanic vapor can dissolve 
near surface basalts then precipitate amorphous silica. This results in high SiO2 
content in such samples. The sulfur dioxide emanating from the vents and fis-
sures react with fluids such as rain water to form weak sulfuric acid which then 
attacks the surface of the basaltic rocks reacting with the cations and leaching 
them out from the system. Such remobilized cations constitute the main ele-
ments in the new mineral phases in the altered rocks, thus they have enrich-
ments in these cations over the fresh basalt. The high loss on ignition values of 
the altered basalts as compared to the fresh basalt concords with the develop-
ment of hydrated mineral phases through various cation-driven reactions. 

6. Conclusions 

The following conclusions can be drawn from this study: 
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1) The 1999 eruptive vents at Mount Cameroon are aligned along 
NE-SW-trending fissure that served as pathways for the flow of hydrothermal 
fluids from magmatic degassing. 

2) Basaltic rocks sampled from this vent are hydrothermally altered and are 
coated with sulfur, Fe-oxyhydroxides and siliceous material. The coating devel-
oped as a result of a chemical interaction between the basaltic glass and volcani-
cally acidified fluid as observed at mid ocean ridges. 

3) Alteration products identified include: silica, feldspar, gypsum, alunite, 
magnetite and jarosite. These alteration minerals are similar to an advance argil-
lic alteration in ancient mineral deposits. 

4) The whole rock geochemistry reveals high silica content in the altered ba-
salts. Silicification is matched with the development of gypsum (Ca enrichment), 
alunite (elevated Na), oxyhydroxides (Fe enrichment). This is reflected in the 
mass balance calculations and confirms the dissolution of the near surface basal-
tic glasses and primary mineral phases by acidified volcanic vapor. The remobi-
lized soluble cations are then taken up in formation and the precipitation of the 
various amorphous secondary mineral phases. These results are significant be-
cause they show conclusively that this alteration mineral assemblage developed 
purely through hydrothermal alteration and it is not weathering-related. Identi-
fying a similar assemblage at an ancient ore deposit allows for the interpretation 
that the deposit is certainly hypogene in origin. However, further work at Mount 
Cameroon should focus on proposing a suitable model that incorporates ele-
ment dissolution, redistribution and precipitation and how this is influenced by 
the chemical composition of the fumaroles. To date, the chemistry of these fluids 
remains unknown. 
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