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Abstract 
We carried out time-lapse analysis in a producing Niger Delta X-field, by first investigating the re-
sponse and sensitivity of rock properties/attributes to lithology and pore fill in 3-D cross plot do-
main and by Gassmann’s fluid substitution modeling. Furthermore, 4-D seismic data were inverted 
into acoustic impedance volumes through model based inversion scheme. This served as input in-
to a multi-attribute neural network algorithm for the extraction of rock attribute volumes based 
on the results of the petrophysical log analysis. Subsequently, horizon slices of rock properties/ 
attributes were extracted from the inverted seismic data and analyzed. In this way, we mapped 
hydrocarbon depleted wells in the field, and identified probable by-passed hydrocarbon zones. 
Thus, the integration of well and time lapse seismic (4-D) data in reservoir studies has remarkably 
improved information on the reservoir economic potential, and enhanced hydrocarbon recovery 
factor. 
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1. Introduction 
Reservoir characterization is aimed at identifying hydrocarbon bearing reservoirs, delineating them and subse-
quently, determining the distribution of relevant physical properties such as lithology, porosity, permeability, 
water saturation and pore pressure, which will make for an easy determination of the reservoir’s economic po-
tential [1]. Prospect definition requires more than just mapping of geologic structures that can bear hydrocarbon. 
It entails a more quantitative evaluation of both the static and dynamic properties of the specific reservoir.  

Recent interests in reservoir characterization focus on optimizing the clarity of the geological and reservoir 
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simulation models of prospects, by accurately defining both the static and dynamic properties of reservoirs, 
through the integration of petrophysics in the interpretation of seismic data. The use of inversion algorithms 
based on the approximations of Zoeppritz’s equations has been studied by various researchers [2] [3], for the 
inversion of prestack seismic data into acoustic and shear impedance volumes. Their results demonstrated the 
use of seismically derived attributes such as acoustic impedance, lambda-rho, Poisson impedance and Murho as 
effective tools for lithology and fluid prediction in a hydrocarbon reservoir.  

During the production life of a reservoir, changes in fluid saturation, pressure and temperature induce changes 
in the reservoir’s density and compressibility properties. These changes undoubtedly, will affect the seismic re-
sponse of reservoir rocks which could be investigated over a time lapse using (4-D) seismic data. This serves as 
a veritable tool to monitor and update reservoir models for optimized hydrocarbon recovery.  

The study area lies to the NE of Niger delta in southeastern Nigeria, situated on the continental margin of the 
gulf of Guinea (Figure 1). The present work attempts to enhance hydrocarbon prospect definition in the field by 
integrating well and 4-D seismic data sets for effective monitoring of the in-situ reservoir properties over the 
producing regions and map possible by-passed hydrocarbon resources in the field.  

2. Geology of the Study Area 
The Niger delta is a sedimentary basin formed as a complex regressive off lap of clastic sediments and contains 
only one identifiable petroleum system referred to as the tertiary Niger delta (Akata-Agbada) petroleum system. 
This is characterized by structural and stratigraphic hydrocarbon plays overlain by the most recent Benin For-
mation [4]. 

Preliminary analysis of the 4-D seismic data shows that the producing reservoir is situated on the crest of a 
multi-fractured rollover anticlinal structure (Figure 2), bounded by a major growth fault on the North-East of 
the field. The significant petroleum reservoir sands in the field consist mainly of middle Miocene deltaic sand-
stones, which are poorly consolidated, with high effective porosities and permeability’s [5]. This makes the field 
ideally suited for a time-lapse analysis, as effects due to fluid saturation change could be readily discernible.  

3. Method of Research 
Logs from producing wells (A, B, and C) and 4-D seismic data from the field were used in this study. The well 
logs comprising Density, Gamma ray, Sonic and Resistivity were de-spiked using a median filter, after correc-
tions for mud filtrate invasions, well bore wash outs and missing data. Gamma ray and Resistivity logs were  
 

 
Figure 1. Map of the Niger Delta region showing the study area. 
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(a)                                                            (b) 

Figure 2. Seismic section (a) and time structure map (b) of the field. 
 
used in delineating HD2000 hydrocarbon reservoir based on low gamma ray counts and high electrical resistivi-
ty values (Figure 3). VpVs ratio, Poisson’s ratio, Lambdarho, Murho, acoustic and shear impedance logs were 
derived from appropriate rock physics empirical models [6]-[9]. These rock attributes were analyzed over the 
reservoir interval in 3-D cross plot space and by Gassmann’s fluid substitution modeling for varying oil and 
brine saturations. Generally, common lithologic units and fluid types tend to form distinct clusters in cross plot 
space, and this helps in making a straight forward interpretation of probable lithology and pore fill saturant. 

The original oil-water contact (OOWC) for HD2000 reservoir was about 5900 ftss while as at the year 2000, 
the oil water contact (OWC) was at about 5856 ftss. Average pressure and gas-oil ratio were 2532 psi and 298 
scf/stb respectively, for well B. Well information’s were not available for wells (A and C) in this study.  

The 4-D seismic data were reprocessed in parallel to ensure no extraneous effects due to acquisition footprint 
and processing shows up during 4-D analysis. Also, a cross correlation test was carried out between the vintages 
to ensure repeatability. Minimum correlation coefficient of 0.61 and maximum of 0.85 were obtained around 
and beyond the producing wells (Figure 4). This is an indication that the repeatability between the two vintages 
is good enough to allow for effective visualization of production induced effects in the field.  

Subsequently, the seismic data from the two vintages were independently inverted into acoustic impedance 
volumes through a model based inversion scheme. These inverted impedances were used to generate the Lamb-
da-mu-rho attributes for saturated media [5] [8] [10], to quantitatively characterize the reservoir in the field 
based on the results of well log cross plot analysis. The generation of Lambda-mu-rho attributes was done using 
a multi-attribute neural network algorithm. This algorithm works by identifying all possible linear and non-  
linear relationships that may exist between the desired log attribute and the several available seismic attributes at 
the well location. Based on these relationships, networks are trained to predict the log attribute over the seismic 
volume away from the well position in a least-squares sense, after validation.  

4. Presentation of Results 
4.1. Well Log Cross Plot Analysis 
Several rock properties were cross plotted for the primary purpose of investigating their sensitivity and potential 
for fluid and lithology discrimination in 3-D cross plot space. The cross plotted rock/attribute property pairs are 
acoustic impedance versus lambda-rho (Ip vs. λρ), compressional to shear wave velocity ratio versus lambda-rho 
(VpVs ratio vs. λρ), and mu-rho versus lambda-rho (μρ vs. λρ). The acoustic impedance (Ip) is the product of the 
compressional wave velocity (Vp) and the bulk density (ρ), lambda-rho (λρ) is a scaled difference between 
acoustic and shear impedances, which is very sensitive to fluid saturation as it ideally contains only effects re-
lated to the saturating fluid, mu-rho (μρ) is a scaled form of the shear impedance and is mainly related to the 
rock matrix. VpVs ratio is the ratio of the compressional wave velocity to the shear wave velocity, which can be 
very diagnostic of fluid saturation, since fluids do not shear and hence don’t support shear wave transmission. 
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Figure 3. De-spiked well logs showing the HD2000 reservoir interval. 

 

 
Figure 4. Cross correlation slice of HD2000 seismic horizon. 

 
Cross plots of Ip vs. λρ, VpVs ratio vs. λρ, and μρ vs. λρ color coded with density and resistivity properties as 

the third dimension respectively (Figures 5-7), isolated four distinct anomalous zones which are interpreted as 
gas sands, oil sands, brine sands and shale, respectively. Generally, gas and oil sands plots as low property clus-
ters on the Ip vs. λρ, VpVs vs. λρ, and μρ vs. λρ cross plot space, while brine sands and shales plots as medium to 
high property clusters in the cross plot space respectively.  
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Figure 5. Ip vs. λρ cross plot color coded with density and resistivity properties. 

 

 
Figure 6. Cross plot of VpVs vs. λρ color coded with density and resistivity properties. 

 

 
Figure 7. Cross plot of μρ vs. λρ color coded with density and resistivity properties. 
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Results show that these cross plotted property pairs show good discrimination for pore fluids and lithology 
with varying sensitivities within the reservoir. μρ vs. λρ and Ip vs. λρ cross plot pairs are the most robust for pore 
fill discrimination than the other cross plotted property pairs. Gas and oil sands plot as low ρ, λρ, μρ and Ip, and 
high R (Resistivity) clusters than brine sands and shale. 

These cross plot results were further validated by Gassmann’s fluid substitution modeling for 0% - 100% oil 
and brine saturations in the reservoir zone. The model shows a heightened sensitivity to varying oil saturations 
by ρ and λρ properties in tracks 1 and 2, followed by Ip in track 3 of the panel (Figure 8). 

Model analysis show higher oil saturations associated with low ρ, λρ and Ip properties. This is consistent with 
the results of the cross plot analysis. Result of the model analysis suggests λρ as the most sensitive attribute with 
distinct separations for 0% to 100% oil and brine saturations, while ρ and Ip are most sensitive to saturations 
above 75% oil saturations. The other properties are less responsive to these saturation changes. 

4.2. Seismic Horizon Attribute Analysis 
Rock properties and attributes identified to be robust for fluid and lithology discrimination in the petrophysical 
well log cross plot analysis and Gassmann’s fluid substitution modeling, were extracted through a probabilistic 
Neural network algorithm [8]. These extracted rock/attribute property slices (Ip, λρ, ρ and Sw) for base and 
monitor data, were subsequently analyzed for 4-D effects.  

The Ip slice (Figure 9) delineated the producing well locations (producing zone) as low Ip zones for the base 
data than the monitor slice. The difference slice show relatively high change index for well B location and high-
er values for wells A and C. This is attributed to changes in pore fill saturation and pore pressure due to produc-
tion. The region north of well B, bounded by regional faults, shows no observable 4-D effects. Zones A and B 
interpreted as sand packs that are probably hydrocarbon charged were also mapped in the slice.  

The ρ horizon slice (Figure 10), is in agreement with the Ip slices. It delineated the producing well locations 
(producing zone) and other sand bodies (zones A and B), as low ρ zones. The producing well locations exhibit  
 

 
Figure 8. Reservoir rock and attributes property response to varying oil saturations. 
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(a) 

 
(b) 
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(c) 

Figure 9. Acoustic impedance horizon slices. (a) Base; (b) Monitor; (c) Difference slice. 
 

 
(a) 
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(b) 

 
(c) 

Figure 10. Density horizon slices. (a) Base; (b) Monitor; (c) Difference slice.  
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4-D effects shown by increased ρ values on the monitor slices. This is evidenced on the difference slice. The 
difference slice show a moderate degree of change for well B location and higher degrees for wells A and C.  

The λρ horizon slice (Figure 11), exhibits low λρ values around the producing well locations in the base than 
the monitor slice. The difference slice shows a moderate change around well B location and high λρ change 
around wells A and C locations. These are likely indications of changes in pore fill saturations in the reservoir 
induced by hydrocarbon production. The λρ slice also showed that zones A and B which had been previously 
interpreted as probable by-passed hydrocarbon zones by Ip and ρ slices are not hydrocarbon bearing. The region 
north of well B is associated with no observable 4-D change and is thus, considered to be a probable by-passed 
hydrocarbon zone. 

The water saturation slices (Figure 12), indicate low water saturation around the producing well locations on 
the base slice and increased water saturation on the monitor. The difference slice shows no much 4-D effect 
around well B, while wells A and C are pronounced. 

The results of the inversion provided a quantitative estimate of rock/fluid property changes that validated the 
log-based analysis of HD2000 reservoir in this study.  

5. Discussion of Results 
The petrophysical well log analysis in cross plot domain and fluid sensitivity modeling using Gassmann’s fluid 
substitution, revealed that low ρ, λρ and Ip, and high R are associated with gas and oil sands, while medium to 
high ρ, λρ and Ip, and low R values are associated with brine sands and shale, respectively. Results also show 
that λρ attribute is the most robust in discriminating for reservoir pore fill than the other investigated properties 
for all saturations. ρ and Ip properties are only sensitive to saturations above 75% oil saturation. 

The sensitivity of ρ and Ip properties to oil and brine sands is dependent on saturation. At low oil saturation, ρ 
and Ip do not distinctly distinguish oil from brine sands, but becomes more responsive with increasing oil satura-
tion. This is attributed to the comparable densities of these reservoir saturants, such that increasing oil saturation 
will mask the effect of brine density on the responses of ρ and Ip properties in the reservoir. 
 

 
(a) 
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(b) 

 
(c) 

Figure 11. Lambda-rho horizon slices. (a) Base; (b) Monitor; (c) Difference slice. 
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(a) 

 
(b) 
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(c) 

Figure 12. Water saturation horizon slices. (a) Base; (b) Monitor; (c) Difference slice. 
 

Reservoir sands plotted as low μρ and Ip, and high R clusters than shale. This low μρ for oil sands is in va-
riance with the high μρ associated with hydrocarbon sands from petrophysical studies [7]. Low μρ value sug-
gests that the reservoir sands are probably unconsolidated and might be associated with minor shale intrusions in 
the investigated field.  

The horizon attribute slices delineated the producing well locations as low ρ, λρ, Ip and water saturation zones 
in the base compared to the monitor slice, which is consistent with the results of the log-based analysis. The dif-
ference slice show that well B location is delineated by moderate ρ, λρ, Ip and water saturation values, while 
wells A and C lies on higher values. These results are obvious indications that well B will soon water out, while 
wells A and C have watered out. This effect is attributed to hydrocarbon withdrawal and replacement by brine 
associated with pore pressure depletion in the reservoir.  

The region north of well B is associated with no observable 4-D change and is thus, considered to be a proba-
ble by-passed hydrocarbon zone. The presence of NE and SW faults bordering this region supports this pay 
proposal, as the faults are adequate seal structures for hydrocarbon accumulation in the field. Other mapped 
zones (A and B) which do not show convincing prospects for hydrocarbon accumulations from petrophysical 
analysis, could be further investigated for probable by-passed resources. 

6. Conclusions 
The horizon attribute slices show that low ρ, λρ and Ip associated with hydrocarbon charged sands are consistent 
with the result of the log-based petrophysical analysis. These rock attributes were observed to have increased in 
magnitude on the monitor slices, indicating pore fill saturation changes and pore pressure depletion. Wells A 
and C have watered out, while well B will soon water out. 

The region north of well B within the producing zone however, shows no observable 4-D effect and could be 
considered as a bypassed hydrocarbon prospect. The presence of faults bordering this zone supports this pay 
proposal. Other mapped zones (A and B), which do not show convincing 4-D effects should be subjected to fur-
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ther petrophysical investigation.  
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