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Abstract 
The structure-coupled joint inversion method of gravity and magnetic data is a powerful tool for 
developing improved physical property models with high resolution and compatible features; how-
ever, the conventional procedure is inefficient due to the truncated singular values decomposition 
(SVD) process at each iteration. To improve the algorithm, a technique using damped least squares 
is adopted to calculate the structural term of model updates, instead of the truncated SVD. This pro-
duces structural coupled density and magnetization images with high efficiency. A so-called coupling 
factor is introduced to regulate the tuning of the desired final structural similarity level. Synthetic 
examples show that the joint inversion results are internally consistent and achieve higher resolu-
tion than separated. The acceptable runtime performance of the damped least squares technique 
used in joint inversion indicates that it is more suitable for practical use than the truncated SVD 
method. 
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1. Introduction 
The joint inversion technique (i.e., imaging) is essential in interpreting collocated gravity and magnetic data. 
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However, handling the combination of geophysical data types, each of which is sensitive to different material 
properties, poses a major challenge. In the early stage, Menichetti and Guillen [1] proposed a generalized in-
verse method to recover 2.5-D models with fixed densities and susceptibilities. Serpa and Cook [2] inverted the 
densities, susceptibilities and the vertices of 2.5-D models with a priori information added. In recent years, 
some advanced numerical solutions were developed. Zeyen and Pous [3] were the first to study 3-D joint inver-
sion of magnetic and gravity data, presenting a quasi-Newton algorithm for a designed model composed of ver-
tical rectangular prisms with fixed lateral boundaries parallel to the local coordinate system. Gallardo-Delgado 
et al. [4] proposed a versatile algorithm for joint 3-D inversion of gravity and magnetic data, with the depths to 
the tops and bottoms as unknowns to be determined. Pilkington [5] jointly processed the gravity and magnetic 
data in terms of a model consisting of an interface separating two layers with constant density contrast and magne-
tization. Gallardo et al. [6] described and applied an automated refinement technique for 3-D multilayer models 
conditioned by gravity and magnetic data and by meaningful geometrical and physical constraints. The objective 
function they had used was a quadratic program in a stable iterative scheme, which produced models that corre-
lated with the surface geology and revealed the subsurface features. Besides the layered model, a model includ-
ing a large set of combined prisms is also preferred to approximately simulate the spatial variations of the phys-
ical properties. Fregoso and Gallardo [7] presented a cross-gradients joint framework applicable to gravity and 
magnetic data. The kernel technique and structural similarity criterion were first applied to electrical and seismic 
data [8], and were then soon developed for other types of data [9] [10]. Zhdanov et al. [11] developed Gramian 
constraints for gravity and magnetic data to illustrate the effectiveness of the approach. Shamsipour et al. [12] 
presented a novel stochastic joint inversion method for gravity and magnetic data based on cokriging. To sum up, 
various methodologies of joint inversion for simultaneously handling these two kinds of data have been investi-
gated, which is an indication of its importance and broad potential application. 

In this study we present a joint inversion framework for gravity and magnetic data using a structural similarity 
criterion, which is proposed as an improved version of the Fregoso and Gallardo [7] approach when taking its 
practical application into consideration. First, the structural similarity criterion is reviewed in detail. Second, a 
cost function with cross-gradients component constraints is given, and iterative formula is presented based on the 
general nonlinear least-squares technique. The key issue in solving this problem concerns the structural vector 
updates at each iteration. Instead of conventional truncated singular value decomposition (SVD) adopted in pre-
vious work, we propose a damped least-squares algorithm to carry out controlled structure resemblance and ef-
ficient computation. We then test the method with several synthetic examples and compare the results obtained 
using mono-inversion of each dataset, and joint inversion of the integrated dataset, to demonstrate the reliability 
and efficiency of the proposed algorithm. 

2. Joint Inversion Methodology 
2.1. The Structural Similarity Criterion 
The principle of the structural similarity criterion is that collocated multiple physical property models that reflect 
the same geological structure are considered implicitly to have common boundaries. Therefore the structural si-
milarity criterion is required to quantitatively evaluate the structural resemblance of one or two physical proper-
ty models. Haber and Oldenburg [13] introduced a structural operator for conducting constraint inversion pro- 
cesses. Gallardo and Meju [8] extended the formula to the cross-product of two given model gradients, termed 
the “cross gradient”: 

( ) ( ) ( )1 2, , , , , ,x y z m x y z m x y zτ = ∇ ×∇ .                            (1) 

where 1m  and 2m  are the two participating physical property values at an arbitrary subsurface location in 3-D 
space, and ∇  is the gradient operator. The model is a naturally continuous variable of x-, y- and z-geometrical 
measures; however, it is discretized with an aggregated prism set, which is suitable for carrying out numerical 
computations. The cross-gradients vector, τ , indicates the structural similarity at the current point. The vector 
can obviously be written as three orthometric components: 

1 2 1 2 1 2 1 2 1 2 1 2; ; .x y z
m m m m m m m m m m m m
y z z y z x x z x y y x

τ τ τ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − = − = −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
           (2) 
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which express the structural similarity of the two models on their orthometric vertical projection surfaces. When 
the model gradients have the same or reverse direction, that is, their gradients are parallel, these three compo-
nents tend to have very small values; otherwise they would be non-zero quantities. So, for the whole model vo-  
lume beneath the study area, a built-up array 

TT T T, ,x y z =  τ τ τ τ  is used to measure the structural similarity  

throughout the whole space. When the structures are consistent, the array τ  should approach a null space 0. 
This property is what we have used as a structural constraint in the cost function in order to obtain the desired 
results with a good structural resemblance feature. 

2.2. Cost Function of Joint Inversion 
As described by Gallardo and Meju [8], joint inversion promises to reduce the set of solutions by combining var-
ious data in a single scheme, and driving the updated model to explain all the requirements included in the cost 
function, such as data fitting, model smoothness, the distance of the model from prior information, and the struc-
tural similarity. Thus the cost function is expressed as: 

( )
( )

( )
( )11 1

22 2
1 1 1 1 1 1 10

2 2 2 2 2 2 20

ˆ
min ,     subject to 

ˆ
Ld pCC C

g
g

ϕ
−− −

− −
= + + =

− −
0

p d Lp Z p p
p d Lp Z p p

τ .           (3) 

where subscripts 1 and 2 represent the gravity and magnetic methods; subscript 0 represents reference vector in-
formation; d is the observational data vector; p is the transformed model vector; ĝ  is the transformed for-
ward-modeling operator; the transform function between p and m is defined by the user to satisfy some known 
physical information; Z is the depth-weighting matrix [14]; L is the Laplacian matrix; C is the covariance matrix 
with respect to subscripts d (data), L (smoothness) and p (smallness), which are terms in the cost function; and τ  
is the assembled cross-gradients three-component array. The cost function satisfies the equality constraint, which 
is mainly where it differs from unconstrained optimization frameworks. The structural constraints provide the 
correlation between model parameters that formulate the complete algorithm. When the two models are coupled 
in structure, the operator tends to reach null space 0. 

Following the robust statistical optimization algorithm framework developed by Fregoso and Gallardo [7], the 
nonlinear generalized inversion problem that minimizes this cost function is solved so that the data and discrete 
model can be submitted into a general framework and can be processed simultaneously: 

( ) 11 1 T 1 T 1
k k k k k k k k k k k k

−− − − − ∆ = + − p N n N B B N B B N n τ .                    (4) 

where 
TT T

1 2, =  p p p  is the combined model vector; N and n are a matrix and an array which involve the ma-
trices described above; B is the cross-gradients Jacobian matrix with respect to 1m  and 2m ; and k is the itera-
tion number. The intermediate variables are expressed by: 

( ) ( )

T 1 T 1 T 1

T 1 T 1 1
0

;

ˆ .
k d L p

k d k L k p kg

− − −

− − −

= + +

 = − + + − 

N J C J L C L Z C Z

n J C p d L C Lp C Z p p
.                   (5) 

where J  is the combined and transformed forward modeling Jacobian matrix. The inverse of N may be calcu-
lated by any conventional algorithm, and the inverse of 1 T−  BN B , which does not have to be computed direct-
ly, is presented in detail below. The model update in the kth iteration is then obtained by: 

1k k k+ = + ∆p p p .                                  (6) 

The final models 1m  and 2m  are extracted from p by an inverse transform function when the iteration pro-
cedure satisfies the given threshold concerned with data misfit and structural similarity. 

2.3. Damped Least-Squares Technique 
The inverse of matrix 1 T−  BN B  is usually difficult to compute because the production of the several in-
volved matrices makes it singular. As described by Frogoso and Gallardo [7], the truncated SVD is an effective 
way of calculating its pseudo inverse. For the kth iteration, the decomposition formula is: 
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( )1 T 1 T
k k k

+− −= ΛB N B V U .                               (7) 

where U and V are orthonormal matrices, and Λ  is the corresponding singular value matrix. Then the recons-
titution is expressed as: 

( )1 T 1 T
k k k c c c

+− −= ΛB N B V U .                               (8) 

where c is the truncated index of the non-null singular sequence 1 2 cλ λ λ≥ ≥ ≥� . However, this technique is 
not suitable for large-scale computations. Especially in the present case, the vectors are ready to compute in a 
combined manner, which enlarges the dimensions of both the model and the data. We suggest the use of an al-
ternative algorithm to handle this problem. A damping factor is introduced to help improve the ill-posed feature 
of the matrix. The equation becomes: 

( )1 T
1 T 1

max k k k
k k k k k k k kβ

−
− −

 
 + = −
  

B N B
B N B I t B N n τ .                    (9) 

where I is the identity matrix, and β is the denominator of the damping factor. The second term added in brack-
ets has the effect of making the total matrix well-posed. Although some structural perturbation information is 
lost in such a scheme, the computation stability is enhanced. This linear system is easy to compute with an itera-
tive conjugate gradient solver, which accelerates the computing rates compared to truncated SVD. Then model 
updates of the equation at the kth iteration is solved using: 

1 1 T
k k k k k k

− −∆ = +p N n N B t .                              (10) 

which is the equation adopted in this paper. In this scheme, β is termed a coupling factor, and has an impact on 
the final achieved structural resemblance such that large values of β indicate greater model similarity. In other 
words, the structural coupling level may be readily controlled by tuning β by trial and error. A synthetic test be-
low outlines the principle of choosing an optimal value of β. 

3. Synthetic Examples 
We first describe a synthetic example that illustrates the basic features of the proposed joint technique, using a 
typical synthetic model similar to that of Frogoso and Gallardo [7]. The subsurface was divided into a mesh of 20 
× 20 × 10 rectangular elements with a 50 m space in the x-, y- and z-directions. The geological target was located 
at a roof depth of 100 m beneath the center of the study area. The density contrast was 1.0 g/cm3 and magnetiza-
tion amplitude was 1.0 A/m. Figure 1 shows the theoretically modeled gravity and total magnetic intensity ano-
maly contaminated by 2.5% Gaussian noise, and the geomagnetic field was set as declination D = −5˚ and incli-
nation I = 50˚. The separate inversion experiment was carried out by omitting the second term on the right-hand 
side of Equation (10), and the joint inversion was completed with 45.0 10β = × ; the selection of this value is ex-
plained below. For gravity and magnetic inversions, the depth-weighting technique should be included to counte-
ract anomaly concentrations near the surface. The reference models for both density and magnetization model are 
set to 0. The maximum number of iterations was 6. 

Figure 2 shows the inversion results for both the separate and joint inversion cases. For reasons of symmetry, 
only the vertical profile on northing = 500 m is presented. All the results reflect the true geological target in a 
fuzzy manner. Considered separately, better recovery was obtained from the magnetization model than from the 
density model due to the greater sensitivity of the magnetic method; however, the density values were lower, and 
these results were distorted with a broad tail at depth. In the joint inversion, both the density model and magneti-
zation model improved, with more focused features than when separate. A significant characteristic was that the 
resultant density and magnetization structure were consistent. Not only did the resultant compatible images en-
hance the resolution, they also reduced the inherent non-uniqueness of the inverse problems. It is clear that the 
joint inversion technique incorporating the structural similarity constraint produced improved images with higher 
resolution. 

To illustrate the use of the coupling factor β, we assigned different values to compute the cross-gradients L-2 
norm at each iteration as shown in Figure 3. A small value of cross-gradients norm indicates that the model  



J. J. Zhou et al. 
 

 
176 

 
0 

N
or

th
in

g 
(m

) 

167 333 500 667 833 1000 
Easting (m) 

0 

167 

333 

500 

667 

833 

1000 

0 

N
or

th
in

g 
(m

) 

167 333 500 667 833 1000 
Easting (m) 

0 

167 

333 

500 

667 

833 

1000 

nT 
−56.98 

−26.55 

3.886 

34.32 

64.75 

95.19 

125.6 

0.009556 
mGal 

0.2399 

0.4703 

0.7006 

0.931 

1.161 

1.392 

Observed Gravity Data 
400 data 

Observed Magnetic Data 
400 data, I = 50, D = −5 

 
Figure 1. Schematic of synthetic gravity data (a) and magnetic data (b). The black boxes indicate projected view 
of geological targets with different physical property feature. 
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Figure 2. Synthetic density and magnetization model and inversion results. (a) density model; (b) magne- 
tization model; (c) separate imaging result of density distriution; (c) separate imaging result of magnetization 
distriution; (e) joint imaging result of density distriution; (f) joint imaging resultof magnetization distriution. 
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Figure 3. Cross-gradients norm convergence curves using dif-
ferent structural coupling factor β. 

 
structures are consistent with each other, while a large value accounts for the incompatible feature. Clearly, a 
large β value achieved better convergence than a small value; however, if too big, the stability of the computa-
tion may be compromised. The choice often entails a trial-and-error process. A relatively large number may be 
chosen provided it achieves satisfactory convergence of the cross-gradients norm and that the numerical compu-
tation is stable. 

We then tested and compared the efficiency of the proposed damped least-squares technique and the conven-
tional truncated SVD. Two different mesh discretization scales were adopted with various model dimensions to 
demonstrate runtime performance on the same computer platform. Table 1 shows that, for the smaller model scale, 
the damped method (final cross-gradients norm 8.3 × 10−8) was slightly faster than SVD (final cross-gradients 
norm 3.9 × 10−8), but for the larger model scale, the runtime of the truncated SVD (final cross-gradients norm 
6.0 × 10−8) dramatically increased at each iteration except the initial computation, compared to the damped me-
thod (final cross-gradients norm 2.4 × 10−8). It was seen that the truncated SVD is not suitable for large-scale 
problems. The damped least-squares method obtains the same results but with better runtime performance. 

4. Conclusions 
Efficient, simultaneous 3-D structure-coupled joint inversion of collocated gravity and magnetic data using a 
damped least-squares technique is presented. It is consistent with the previous view that the cross-gradients con-
straints have a significant capacity to obtain more compatible models with higher structural resemblance than 
separated inversion. 

The damped least-squares technique is introduced to perform efficient computation of the structural perturba-
tion term in the linear system at each iteration. A coupling factor is proposed to regulate the final structural si-
milarity level achieved. A relatively large value of this factor, chosen by trial and error, is suggested to achieve 
desired cross-gradients norm convergence on condition that the numerical computation is stable. 

The synthetic experiments show that the joint inverted density and magnetization results are consistent, which 
reveals the geological setting. Furthermore, the runtime performance is more acceptable than that of truncated 
SVD, indicating its suitability for practical use. 
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Table 1. Runtime comparison of damped least squares and truncated SVD. 

Model scale Iteration 
Runtime performance 

Damped least squares (s) Truncated SVD (s) 

5 × 10 × 10 

1 0.75 0.76 

2 0.76 1.35 

3 0.79 1.29 

4 0.79 1.28 

5 0.85 1.33 

6 0.80 1.33 

5 × 20 × 20 

1 3.03 3.13 

2 6.18 102.71 

3 6.67 101.36 

4 6.04 99.52 

5 6.04 101.84 

6 5.92 101.36 
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