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Abstract 
This article describes a method of locating the focus of a starting earthquake based on the use of 
the elastic interaction energy. The method allows determining the focus location and its energy 
class as well as evaluating the stresses caused by it and observing its evolution. 
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1. Introduction 
An earthquake is always an unexpected phenomenon. Modern science is not able to predict the time or the place 
or the earthquake strength. The problem of locating the focus of a starting earthquake has not even been set due 
to the poor level of understanding the processes preceding its start. At present the main earthquake hypothesis is 
the “explosive” relaxation of the high elastic stresses accumulated in the lithosphere. A serious objection to the 
above hypothesis is the stress relaxation caused by the plastic flow whose rate grows exponentially with temper-
ature and stress [1]. In the lithosphere the temperature and the pressure increase with the depth and, therefore, 
models of the earthquake focus with no elastic stress concentrations, such as the Inertial Earthquake Focus (IEF) 
model, are more probable [2]-[4]. 

Nowadays, geophysical measurements can be performed only on the surface or in the thin subsurface layer of 
the Earth, so all the earthquake hypotheses are purely theoretical. Although some data can be obtained from 
seismic waves, their amount is far from sufficient, since the waves are long and provide little information. 
Therefore, there remains only one way of locating the focus of a starting earthquake—to develop a method using 
the elastic stress field of a starting earthquake focus. This method is suggested in the present work. 

2. Inertial Earthquake Focus 
In the lithosphere tectonic plates move and turn relative to each other. Due to the Earth’s rotation each plate 
possesses the moment of momentum M  parallel to the axis of rotation of the Earth’s body [5] 
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I=M Ω . 
Here I  is the moment of inertia, Ω  is the vector of the angular velocity of the Earth’s rotation. There can 

be two types of change of the angular velocity of rotation illustrated in Figure 1 by the example of a rotating cy-
linder. One is precession, when by the action of the external moment, that is perpendicular to the axis of rotation 
𝑧𝑧, the orientation of the axis of rotation in space changes, whereas the angular velocity value does not change in 
magnitude. The direction of the axis of rotation changes from the vertical orientation in Figure 1(а) into the ho-
rizontal one, as is shown in Figure 1(b), its position relative to the material points of the cylinder does not 
change, and the external moment does not perform work. The other type of change of the angular velocity of ro-
tation is shown in Figure 1(c), where the position of the axis of rotation relative to the material points of the cy-
linder changes. 

For a cylinder to change the orientation of the rotation axis relative to the points of the body, it is necessary, 
first, in the horizontal rotation position of a cylinder (b) to apply the external moment of force directed opposite 
to the angular velocity vector 1Ω  and stop the rotation. Then, it is necessary to apply the external moment of 
force directed along the axis 𝑧𝑧 and make the cylinder rotate around and along the axis (Figure 1(c)). 

For simplicity, let us consider the IEF in the form of a sphere. As a result of tectonic movement, the direction 
of axis 𝑧𝑧 will deviate by an angle ξ  from the Earth’s axis of rotation. If the turn occurred in a vacuum, the 
direction of the angular velocity would deviate by the angle ξ  and its value would be 1Ω . At the same time, 
the equality 1Ω = Ω  would be satisfied. However, the IEF is located in the solid lithosphere and rotates to-
gether with the Earth, so the angular velocity cannot differ in value or direction from the Earth’s angular veloci-
ty Ω . Here there occurs a change in the position of the axis of rotation relative to the IEF points. Therefore, 
first we stop the IEF rotation applying elastic stresses with the moment of force K  inclined at the angle of 
π ξ+  to the Earth’s rotation axis, with the IEF kinetic energy wholly turning into the potential energy of the 
elastic stresses occurring around it in the lithosphere. Then we make the IEF rotate reaching the angular velocity 
Ω  applying to it the elastic stress with the moment of force K  directed along the Earth’s rotation axis. The 
kinetic energy of rotation completely turns into the potential energy of the elastic stresses and vice versa, which 
means that the following equality will be satisfied 

K K=                                           (2.1) 
The resulting vector is 

= −K K K                                        (2.2) 
hence 

2 sin
2

K K ξ
=                                       (2.3) 

Thus, the IEF gets its own moment of force K . As is known, the condition of equilibrium in the elasticity 
theory requires that all the concentrated moments be zero [6]. However, the above condition applies only to in- 
 

 
(a)                   (b)                         (c) 

Figure 1. The orientation change of the rotating axis is displayed.      
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ertial systems, whereas the rotating Earth is not such a system. If the Earth did not rotate, there would be no 
moment of force. 

The stress field of the moment of force K  cannot be reduced by plastic relaxation without turning the IEF as 
a whole returning to the initial position. As the angle ξ  increases, the stresses grow and can achieve a critical 
value, the IEF turns abruptly decreasing the angle ξ  and the stress field, and an earthquake takes place. 

3. The Elastic Field of the Moment of Force 
The equation of elastic equilibrium for the displacement vector U  is [6] 

( ) ( ) ( )1 2 0
2 1

ν
ν

−
∇ ∇⋅ − ∇× ∇× =

−
U U                              (3.1) 

The deformation tensor is 
1
2

ji
ij

j i

UU
x x

ε
 ∂∂

= +  ∂ ∂ 
 

and the stress tensor is 

( )2 δ
1 2i j ij xx yy zz i j
νσ µ ε ε ε ε
ν

 = + + + − 
                         (3.2) 

Here µ  is the shear modulus, ν  is the Poisson coefficient, i jδ  is the Kronekker symbol. For the sphere 
S  of the radius R  with the center in the origin of coordinates the force is 

d
S

σ= ∫F S                                       (3.3) 

and the moment of force is 

( )d
S

σ= ×∫K r n S                                  (3.4) 

Here r  is the radius-vector, n  is the unitary normal to S . If the moment (3.4) is not zero, the region will 
be referred to as the Torque Region (TR). Substituting (3.2) into (3.4) we derive 

( ) ( )( ) ( )2 d 2 d 2 d
1 2S S S

S S Sνµ ε µ µ ε
ν

= × + ∇ ⋅ × = ×
−∫ ∫ ∫K r n U r n r n             (3.5) 

since for a sphere with the center in the origin of coordinates the vector r  and n  are parallel. Suppose that 
U  is a solenoidal vector, that is, there exists the vector P  such that 

= ∇×U P                                       (3.6) 
Then (3.1) is reduced to the equation 

0∇×∇×∇× =P                                  (3.7) 
since the first term in (3.1) becomes zero. For the moment of force K  in (3.5) to be independent of R , it is 
necessary that 2~ 1 rU . Therefore, let us take the vector P  in the form 

10,0,A
r

 =  
 

P                                   (3.8) 

Here A  is the arbitrary constant. The vector (3.8) is the solution (3.7), then 

{ } { }3 2, ,0 0,0,sinA Ay x
r r

ϑ= − =U                           (3.9) 

Here the displacement vector is written first in the Cartesian system of coordinates and then in the spherical 
one. The sequence of writing the spherical vector components is as follows: radial rU  zenith Uϑ  and asymu-
thal Uϕ . The Cartesian coordinates are related to the spherical ones in the following way 

sin cos ,     sin sin ,     cosx r y r z rϑ ϕ ϑ ϕ ϑ= = =  
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Differentiating (3.9) we obtain that 
0∇⋅ =U                                       (3.10) 

The potential vector U  produces a deformation tensor having two components not equal to zero in the sphe- 
rical coordinates 

3

3 sin
2r r

A
rϕ ϕε ε ϑ= = −                                  (3.11) 

The stress tensor has the same 

32 3 sinr r r
A

rϕ ϕ ϕ
µσ σ µε ϑ= = = −                            (3.12) 

The values (3.9), (3.11), (3.12) are not zero only outside the IEF. Let us choose a system of coordinates so 
that the moment of force had only one component along the axis z  not equal to zero, then 

( )
2π π

2 2

0 0

d sin d 3πrK r r Aϕϕ σ ϑ ϑ µ= = −∫ ∫                           (3.13) 

hence 

23π
KA
µ

= −                                     (3.14) 

If a source is produced by inertial effects, that is the IEF, then multiplying (3.14) by ( )2sin 2ξ  we derive 

26π sin
2

K A ξµ= −                                 (3.15) 

Similarly, 

{ } { }3 2

2 2sin , ,0 sin 0,0,sin
2 2

A Ay x
r r

ξ ξ ϑ= − =U                       (3.16) 

3

3 sin sin
2r r

A
rϕ ϕ

ξε ε ϑ= = −                             (3.17) 

32 6 sin sin
2r r r

A
rϕ ϕ ϕ
µ ξσ σ µε ϑ= = = −                        (3.18) 

The elastic energy density will be written as 
2

2 2 2
6

sin2 18 sin
2rw A

rϕ
ϑ ξµε µ= =  

The elastic energy of the stresses of the moment of force (2.3) is 
2π π 2

2 2
3

0 0

d d d sin d 16π sin
2V R

AW w V r wr
R

ξϕ ϑ ϑ µ
∞

= = =∫∫∫ ∫ ∫ ∫                   (3.19) 

The unknown constant A  can be determined from two conditions. The first condition is when the moment 
of force is specified, and then the value of A  is found according to (3.14). The second condition is when A  
is determined according to a specified kinetic energy of rotation. The energy density of the elastic field (3.9) is 
as follows 

2
2

6

9 sin
2

w A
r
ϑµ=  

and the energy will be 
2

3d 4π
V

AW w V
R

= =∫∫∫                                (3.20) 

The constant A  is determined from the condition of the complete change of the kinetic energy 
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2
5 24 π

2 15k
IW RρΩ

= = Ω  

into the potential energy of the elastic stresses (3.12). The inertial moment of a sphere is  
58π

15
RI ρ

=                                     (3.21) 

As a result, we obtain 

4

15
A R ρ

µ
= Ω                                   (3.22) 

Substituting (3.22) into (3.15) we derive the value of the moment of force 

2 46π sin
15 2

K R ρµ ξ
= − Ω                              (3.23) 

The stress field according to (3.18) looks like 
4

3

122 sin sin
5 2r r r

R
rϕ ϕ ϕ

ρµ ξσ σ µε ϑΩ
= = = − . 

Substituting (3.22)into (3.19) we obtain an expression for the IEF 

5 2 216 π sin
15 2

W R ξρ= Ω                               (3.24) 

On the IEF surface the stresses are 

12 sin sin
5 2r Rϕ
ρµ ξσ ϑ= −Ω                             (3.25) 

As is shown in [7], in order to derive a general solution for the elasticity problem, a nonpotential solution 
should be added the potential solution (3.16). However, in the Appendix it is shown that the interaction energy 
of the potential and nonpotential solutions is zero. Addition of the nonpotential solution to the potential one 
(3.16) will increase the system energy, and for this reason it is excluded from consideration. 

4. Interaction of Focuses. Locating an Earthquake Focus 
If there exist two torque regions, there is energy of elastic interaction between them, that can be used to locate 
the focus of a starting earthquake. For this purpose, it is necessary to create an artificial TR in the lithosphere 
applying shear stresses to the surface of the artificial cavity. Let us designate the values relating to the artificial 
TR by one point at the top (further referred to as the first TR), and the IEF by two points (further referred to as 
the second TR). The centres of these focuses are located on the abscissa at point a−  for the first TR and a+  
for the second TR. The plane 𝑥𝑥𝑥𝑥 is vertical and passes through the Earth’s center, y -coordinate is normal to it 
and forms the angle π 2 ψ−  with the Earth’s axis. The direction of y -coordinate is chosen so that the system 
of coordinates was right. The vector potentials of the moment of force will be 

{ } { }sin cos ,sin sin ,cos ,     sin cos ,sin sin ,cosA A
r r

ϑ ϕ ϑ ϕ ϑ ϑ ϕ ϑ ϕ ϑ= =
 

      

   

 

P P            (4.1) 

Here 

( ) ( )2 22 2 2 2,     r x a x y r x a x y= − + + = + + +  . 

The zenith angles ϑ  and ϑ  are measured from z  axis, and the angles ϕ  and ϕ  from that of abscissa. 
The moments K  and K  coincide in direction with P  and P . The laboratory Cartesian system with the ori-
gin in the center of the first focus is oriented in the following way (the variables related to it are designated by 
the sign ^): the axis ẑ  coincides with the vertical at the given point and is directed upward, the axis x̂  is di-
rected along the meridian to the north and the axis ŷ  is directed along the latitude to the west. The plane ˆˆxz  



A. Ivanchin 
 

 
1142 

is meridianal, the angle between the normals of the planes ˆˆxz  and xz , that is between the axes y  and ŷ , is 
ψ . The change to the laboratory Cartesian system of coordinates is implemented by turning around axis ẑ  by 
the angle ψ  and is described by the matrix 

cos sin 0
sin cos 0

0 0 1

ψ ψ
ψ ψ

− 
 =  
 
 

Λ  

The displacement vectors in the laboratory system of coordinates can be represented like this 

( )
( )

( ) ( )
( ) ( )

( )
( )

( ) ( )
( ) ( )

3

3

cos sin sin
cos sin cos ,

sin cos sin

cos sin sin
sin cos sin cos

2
sin cos sin

y z
A x a z
r

y x

y z
A x a z
r

y x

ϑ ϑ ϕ ψ
ϑ ϑ ϕ ψ

ϑ ϕ ψ ϕ ψ

ϑ ϑ ϕ ψ
ξ ϑ ϑ ϕ ψ

ϑ ϕ ψ ϕ ψ

 − + +
 

= ∇× = + − + 
 + − +   

 − + +


= ∇× = − − + 
 + − +  

 



  





 

 





  







 

U ΛP

U ΛP .




                (4.2) 

The displacements (4.2) determine the deformation tensors 

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ){ }

5

5

5

2 2
5

5

3 cos sin sin ,

3 cos sin cos ,

3 sin cos sin ,

3 cos sin cos sin ,
2
3 cos
2

xx

yy

zz

xy

xz

A x a y z
r
A y x a z
r
A z y x a
r
A x a y z x a y
r
A yz
r

ε ϑ ϑ ϕ ψ

ε ϑ ϑ ϕ ψ

ε ϑ ϕ ψ ϕ ψ

ε ϑ ϑ ϕ ψ ϕ ψ

ε ϑ

 = + − + 

 = − + + + 

= − + + + +  

 = − + + + + + − +   

=



 

 





 

 







  





 

  











( ) ( ) ( )( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

2 2

2 2
5

sin cos sin ,

3 cos sin cos sin .
2yz

y x a x a z

A x a z z y y x a
r

ϑ ϕ ψ ϕ ψ

ε ϑ ϑ ϕ ψ ϕ ψ

 + + + + + − +  

 = − + + − + + + + 



 



 

  



            (4.3) 

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

5

5

5

2 2
5

3 sin cos sin sin ,
2

3 sin cos sin cos ,
2

3 sin cos sin ,
2

3 sin cos sin cos
22

xx

yy

zz

xy

A x a y z
r
A y x a z
r
A z y x a
r
A x a y z x a
r

ξε ϑ ϑ ϕ ψ

ξε ϑ ϑ ϕ ψ

ξε ϕ ψ ϕ ψ

ξε ϑ ϑ

 = − − + 

 = − − + + 

= − + + − +  

 = − − + + − 



 

 





 

 





  





 





( ) ( ){ }
( ) ( ) ( )( ) ( ){ }

( ) ( ) ( ) ( ) ( ){ }

2 2
5

2 2
5

sin ,

3 sin cos sin cos sin ,
22

3 sin cos sin cos sin .
22

xz

yz

y

A yz x a y x a z
r
A x a z z y x a y
r

ϕ ψ ϕ ψ

ξε ϑ ϑ ϕ ψ ϕ ψ

ξε ϑ ϑ ϕ ψ ϕ ψ

+ − +  

 = + − + − − − +  

 = − − + − + + − + 

 



 

  





 

  



        (4.4) 

The total deformation tensor is 
ε ε ε= +                                         (4.5) 

The total elastic energy density is written as 
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( ) ( )2 2 2 2 2 2 22 2 2 2
1 2 xx yy zz xx yy zz xy xz yzw µν ε ε ε µ ε ε ε ε ε ε

ν
= + + + + + + + +

−
                (4.6) 

Substituting here (4.5) we find that the total density energy is the sum of the following components: the den-
sity of the energy of the first focus 

( ) ( )2 2 2 2 2 2 22 2 2 2
1 2 xx yy zz xx yy zz xy xz yzw µν ε ε ε µ ε ε ε ε ε ε

ν
= + + + + + + + +

−
          

the energy density of the second focus 

( ) ( )2 2 2 2 2 2 22 2 2 2
1 2 xx yy zz xx yy zz xy xz yzw µν ε ε ε µ ε ε ε ε ε ε

ν
= + + + + + + + +

−
          

and the density of the interaction energy of the focuses 

( )
( )

4
1 2

         2 2 2 2 .

I xx xx yy yy zz zz xx yy xx zz yy zz

xx xx yy yy zz zz xy xy xz xz yz yz

w µν ε ε ε ε ε ε ε ε ε ε ε ε
ν
µ ε ε ε ε ε ε ε ε ε ε ε ε

= + + + + +
−
+ + + + + +

           

           

 

Integrating w  and w  we obtain the focus energies in the form (3.19). The interaction energy of the focuses 
is 

dI I
V

W w V= ∫∫∫                                        (4.7) 

For integrating turn to the bipolar coordinates in (4.7). The elastic energy density is a scalar, and the change to 
the bipolar coordinates is performed by replacing the Cartesian coordinates by the bipolar ones (4.7) using the 
formulas [8]: 

( )

3

3

sinh sin cos sin sin sin,    ,     ,     
cosh cos cosh cos cosh cos cosh cos

a a a ax y z Yτ σ ϕ σ ϕ σ
τ σ τ σ τ σ τ σ

= = = =
− − − −

        (4.8) 

The coordinate surface for constτ =  is the radius sphere 

sinh
aR
τ

=                                       (4.9) 

with the center on the abscissa at the point cosha τ . At 1τ >  the value of coshτ  is close to unity and the 
center of the coordinate sphere, in fact, coincides with that of the IEF. For instance, already for 1.5τ =  the 
value of cosh 1.10τ = . Therefore, one can expect with sufficiently great accuracy that the centers of the focus-
es and the centers of the coordinate spheres coincide. For this reason, the limits of integration over τ , in accor-
dance with (4.9), are as follows 

1 2arcsinh ,     arcsinha a
R R

τ τ= =
 

 . 

The elastic interaction energy (4.7) in the bipolar coordinates is written as 

( ) ( )

2

1

π 2π

0 0

2 2 2 2
3 3 3

2 d d d

3π 1 1    sin 2 1 ln 1 2 1 ln 1 .
28

I IW w Y

AA
a

τ

τ

µ τ σ ϕ

µ ξη ζ ζ ζ ζ ζ ζ
ζ ζ

=

 
= − + − + + − + + + + 

 

∫ ∫ ∫
 

     

 

      (4.10) 

Here it is designated 

( ) ( )cos cos cos 3cos 2 sin sin ,     ,     R R
a a

η ϑ ϑ ϕ ϕ ϕ ϕ ψ ϑ ϑ ζ ζ= − − + + + = =
 

     

                (4.11) 

Since the first TR is an artificial source of the moment of force, the distance to the focusawill always be much 
larger than its size R , therefore, 
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1ζ   

hence 

( )2 2
3 2

1 12 1 ln 1ζ ζ ζ
ζ ζ

+ − + + ≈ −  

 

 

For the second TR the following relation can be true ~ 1ζ , however, in both cases, we deal with the equality 

( )2 2
3 2

1 12 1 ln 1ζ ζ ζ
ζ ζ

+ − + +  



 

 

As a result, we derive from (4.10) 
4

2 sin
2 158πI

K RW
aR

η ξ ρ
µ

Ω
=
 



 

The total energy will be written as 
4

2 sin
2 158πI

K RW W W W W W
aR

η ξ ρ
µ

Ω
= + + = + +

 

   



                  (4.12) 

Here, instead of a , the value of 2s a=  is used, which is the distance between the centers of the focuses. 
Differentiating the energy W  with respect to s  we obtain a generalized force acting between the focuses in 
the form 

4

2 2

d sin
d 2 154π
W K Rf
s R s

η ξ ρ
µ

Ω
= = −

 



                         (4.13) 

If 0f < , then the focuses are attracted to each other, and if 0f > , then they repel. The sign depends on the  

coefficient η  from (4.11) The following unknowns are included here: R  is the IEF size, sin
2
ξ , the distance  

between the focuses s , and 5η ≤ .The values ,  ,  R ρ Ω  and µ  are known, they are specified during an ex-
periment. After measuring the value f  for various orientations of the vector K , we determine the orientation 
factor η , that is the IEF orientation. The above method does not allow defining the value R  separately from 

( )sin 2ξ . However, we can suppose that the angle ξ  will not be very small, otherwise the energy of the focus 
of a starting earthquake will not be very small too, so it may be that ( )sin 2ξ  will be of the order of ~ 1 , then 
the size of the focus of a starting earthquake R  and its energy are evaluated according to (3.24) and (4.13). 
Making measurements for various orientations one can define the unknown parameters ,  ϑ ϕ

  and ψ  and 
hence the IEF orientation. 

The force f  acting on the first focus can be considered as the concentrated force. The displacement field of 
the concentrated force can be found from the following considerations. As the value of the concentrated force 
does not depend on the radius of the integration sphere in (3.3), so the stress field must decrease with the dis-
tance from the point of its application as 21 r ,and then the displacement field will decrease as 1 r . Consider 
that the concentrated force is directed along the axis z , therefore, let us take the displacement vector such as 

2 2 2
0,0, B

x y z

  =  
+ +  

u  

Here B  is the arbitrary constant. The above vector does not satisfy the equation of elastic equilibrium (3.1), 
whereas a check proves that the following equality is satisfied 

( )∇ ∇ ⋅ = ∇×∇×u u  
We have 

( )3 22 2 2

Bz

x y z
∇⋅ = −

+ +
u  
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The potential Ψ  satisfying the equation 

( )3 22 2 2

Bz

x y z
∇⋅∇Ψ = −

+ +
 

is 

2 2 22

Bz

x y z
Ψ =

+ +
 

The vector 

( ) ( ) { }1 cos sin2 ,sin sin2 ,7 8 cos 2
2 1 8 1

B
r

ϕ ϑ ϕ ϑ ν ϑ
ν ν

= − ∇Ψ = − +
− −

u u  

is the solution of the Equation (3.1). Here the vector u  is written in the Cartesian system of coordinates. The 
force (3.3) caused by the field u  does not depend on the size of the integration sphere S  and is 

4πf Bµ=                                        (4.14) 

This force is directed along the line connecting the IEF centers. Equating the forces (4.13) and (4.14) we ob-
tain the value of the arbitrary constant B  

4

2 2 2 3 sin
216π 15

K RB
R s
η ρ ξ

µ
Ω

= −
 



. 

The displacement vector component zu  is directed along the line connecting the IEF centers and can be 
written as 

( ) ( )
7 8 cos2

8 1 8 1zu B B
r r

ν ϑ
ν ν

−
= +

− −
 . 

It consists of two terms. The first term is the displacement of the radius sphere r as a whole without deforma-
tion. The second term is the deformation component. Substituting the coefficient B with the change of r R=   
into the first term, we get the displacement of the first TR in the form 

( )
4

2 3 2 3

7 8 sin
8 1 216π 15

K R
R s

ν η ξ ργ
ν µ

− Ω
= −

−

 



. 

Measuring γ  for various orientations and at several points we obtain a set of equations to determine the an-
gles ,  ,  ϑ ϕ ψ

  the distance s  and the size of the focus R . In this way we determine the focus location, its 
orientation and energy. For instance, for the following parameters: 0.0000729 rad/sΩ = , 0.1mR = , a = 
40000 m, 1η = , 33000 kg/mρ = , 9 210  N/mµ = , 0.3,  20000 mRν = =  (such a value of R  corresponds 
to the focus energy of the order of 16 1710 10  J− ), we obtain ~ 17 mmγ . The direction of the displacement 
vector γ  is always oriented to the focus of a starting earthquake. Depending on the sign of the orientation fac-
tor η  the displacement will be either toward IEF or from it. Measuring γ  at several points one can define the 
IEF coordinates and evaluate the energy level by the value γ . According to (3.24) and (3.25), even for the most 
intensive earthquakes of an energy of the order of 2210  J , when 200000 mR = , the maximum stress will be 

7 2 ~ 4 10 N/m× . In the IEF there is no stress concentration. 
To locate an IEF, it is necessary to determine the displacement of an artificial TR with an accuracy up to a 

millimeter and better. In order to create the moment of force, one can use precession. Between the moment of 
force K  normal to the moment of momentum M  and the angular velocity of precession ω  there exists the 
relation [5] 

[ ]= ×K ω M  

The above method can be the simplest one. It allows achieving an arbitrary orientation of the moment of force, 
which is necessary to perform measurements. 

5. Conclusions 
In the present work a method of locating the focus of a starting earthquake is suggested. The existence of the 
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IEF is the effect of the Earth’s rotation. Its analogue is the Coriolis force. Cyclones and anticyclones are caused 
by the Earth’s rotation. In the lithosphere they are analogous to the IEF. Undoubtedly, the IEF evolution takes 
much longer than a cyclone, and the rates of gas flows in the atmosphere are by orders of magnitude higher than 
tectonic rates. However, it should not lead to denying or ignoring inertial effects in the lithosphere. 

The existence of tectonic plates with localization of elastic stresses is the main hypothesis of earthquake fo-
cuses. The reasons for stress localization can be different as well as their space dependence. If there exist two 
regions with a similar space distribution of stresses, then between them there is the energy of elastic interaction. 
Using the above energy it is possible to locate the focus of a starting earthquake creating artificially a region 
with a specified stress profile. Mathematical calculation of other models of earthquake focuses will be somewhat 
different from the one discussed here, which is not a problem. 
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Appendix. Nonpotential Solution 
As is known, along with the potential solution there can also be a nonpotential one [7] [9]. A general solution 
will be their linear combination, whose coefficients are determined from the condition of the total energy mini-
mum. 

To derive the nonpotential solution take the vector 

30,0, z
r

+  =  
 

U  

The rotor is 

{ }5

3 , ,0z y x
r

+∇× = −U                              (6.1) 

One must find the solenoidal vector G , such that 

{ }5

3 , ,0z y x
r

+∇×∇× = −∇× = −G U , 

then the vector 
1

1 2ν
+= − ∇×

−
U U G                                   (6.2) 

is the solution (3.1). For simplification, let us integrate (6.1) over z : 

{ }3

1d , ,0z y x
r

+∆ = ∇× = −∫Ψ U                           (6.3) 

Here it is designated 

{ }, ,0 dx y z= Ψ Ψ = ∫Ψ G . 

Since G  is the solenoidal vector, that is 0∇⋅ ≡G , the following equality takes place ∇×∇× = −∆G G . 
Proceeding from (6.3) it is necessary to solve two equations 

3x
y
r

∆Ψ =                                           (6.4) 

3y
x
r

∆Ψ = −                                          (6.5) 

Integrate (6.4) over y and (6.5) over x . As a result, we will derive, practically, the same equation 

1 2
1 1,     
r r

∆Φ = − ∆Φ =  

Here it is designated 

1 2d ,     dx yy xΦ = Ψ Φ = Ψ∫ ∫  

In the spherical coordinates we have 

2 21 2
2 2

1 1 1 1,     r r
r r r r r rr r

∂Φ ∂Φ∂ ∂   = − =   ∂ ∂ ∂ ∂   
 

Its solution is 

1 2
1 1,     
2 2

r rΦ = − Φ =  

Differentiating we obtain the components of the vector Ψ  in the form 

1 2,     ,     0
2 2x y z
y x

y r x r
∂Φ ∂Φ

Ψ = = − Ψ = = Ψ =
∂ ∂

                     (6.6) 
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The vector divergence is 
0∇⋅ ≡Ψ . 

which means that the vector Ψ  is solenoidal. Differentiating (6.6) over z  we find 

{ }3 , ,0
2
z y x
r

= −G , 

hence 

{ }
2 2

5

3 , ,
2

r z x y z
r
−

∇× =G . 

The nonpotential solution (6.2) is written in Cartesian and spherical coordinates as 

( ) ( ) ( ) ( ){ }
( )
( )

2 2 2 2 2 2
5

2

1 3 , 3 , 4 1 3
1 2 2 1 2

4 3 4 5 cos21   ,sin2 ,0 .
2 1 22

z x r z y r z z r z
r

r

ν
ν ν

ν ν ϑ
ϑ

ν

+  = − ∇× = − − − − − − −

 − + − = −  
−  

U U G

 

In the deformation tensor for the displacement U  the component 0rϕε =  and in the deformation tensor 
(3.17) only this component is other than zero. It means that the interaction energy of the potential and nonpoten-
tial solutions is zero. Hence, the elastic energy minimum is achieved using the potential solution (3.9). 
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