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ABSTRACT 

A general spatial interpolation method for tidal properties has been developed by solving a partial differential equation 
with a combination of different orders of harmonic operators using a mixed finite element method. Numerically, the 
equation is solved implicitly without iteration on an unstructured triangular mesh grid. The paper demonstrates the per- 
formance of the method for tidal property fields with different characteristics, boundary complexity, number of input 
data points, and data point distribution. The method has been successfully applied under several different tidal envi- 
ronments, including an idealized distribution in a square basin, coamplitude and cophase lines in the Taylor semi-infi- 
ite rotating channel, and tide coamplitude and cophase lines in the Bohai Sea and Chesapeake Bay. Compared to 
Laplace’s equation that NOAA/NOS currently uses for interpolation in hydrographic and oceanographic applications, 
the multiple-order harmonic equation method eliminates the problem of singularities at data points, and produces inter- 
polation results with better accuracy and precision. 
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1. Introduction 

Coastal ocean water level observations are only available 
at a limited number of locations, usually at tide stations 
located primarily along the coastline. Therefore, any tidal 
characteristics derived from data analysis of water level 
measurements, like tidal constituents, residual water lev- 
els, and tidal datums, are limited to these tide station lo- 
cations. However, the spatial distribution of tidal proper- 
ties is always needed in the open waters far from coasts 
for navigation and hydrographic survey purposes. Nu- 
merous approaches have been developed to interpolate 
scattered geo-spatial data [1-3], including self-correcting 
[4] and thin plate spline methods [5]. These methods 
have been developed for rectangular, simply-connected 
regions and thus would have difficulty in interpolating 
tidal properties in irregular regions with complex water- 
ways interspersed with land features such as islands and  

peninsulas. To overcome this difficulty, NOAA’s Na- 
tional Ocean Service (NOS) has used a discrete tidal 
zoning process in which the survey area is divided into a 
number of polygon-shaped zones [6]. Each zone is as- 
signed to a range ratio and time difference; these values 
are applied to tidal data at the appropriate reference tide 
station to obtain the range and phase in the zone. Since 
the value within each zone is a constant, there is a dis- 
continuity in the interpolated tidal characteristics across 
the boundaries between adjacent zoning polygons. The 
development of zoning is also subjective and requires ex- 
tensive cross checking and quality control. 

NOS more recently adapted a solution of Laplace’s 
equation for spatial interpolation of tidal constituents, 
residual water levels, and tidal datums in irregular re- 
gions [7-9]. Laplace’s equation is 

 ,i i
i
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where Δ is the Laplace or harmonic operator *Corresponding author. 
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interpolation function f,   is the Dirac delta function, 
and N is the number of data points. The equation is 
solved iteratively using finite difference methods in a 
regular rectangular mesh grid [9]. Laplace’s equation has 
been proven to be conservative in that the minimum and 
maximum of an interpolated field are always at an input 
point or at the boundary. If the normal derivative at the 
boundary is zero, the range of the interpolated field is 
within the minimum and maximum of the data values. 
This property will eliminate the risk of overshooting (i.e., 
producing interpolated values that are higher/lower than 
the maximum/minimum data values) of the interpolation/ 
extrapolation, although it should be remembered that  
the maximum value of certain properties, such as tide 
range, is undetermined, since the spatial distribution of 
the range is usually not known unless numerous tide sta- 
tions are installed. But Laplace’s equation has some limi- 
tations: it may be too conservative, and most of all, sin- 
gularities (i.e., discontinuities in the slope) exist at all 
data points. 

Another option is to use a higher-order harmonic dif- 
ferential equation. The pioneer in this approach was Briggs 
[10], who used the biharmonic equation 


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to interpolate gravity and aeromagnetic fields but was 
limited to regular grids and rectangular, simply-connected 
regions. The equation is derived by minimizing total do- 

main-integrated squared curvature, , where   2
df


 

  is the domain on which f is defined. 
Smith and Wessel [11] further extend Briggs’ work by 

applying a linear combination of a biharmonic operator 
and Laplace’s operator: 

   21 i i
i

T f T f F x x y y       , i
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    (3) 

where T is a tension parameter. Their applications were 
also restricted to regular grids and rectangular, simply- 
connected regions. Equation (3), which we call minimum 
curvature with tension (MCT), can be thought of as the 
analog of a thin elastic plate, bent to fit the data points 
with a tension applied at the boundary. Tension helps to 
reduce the problem of overshooting. 

Higher order harmonic interpolation functions such as 
 and  are also widely applied in graphic 

processing [12], but their use rarely has been reported in 
hydrographic and oceanographic applications. We in- 
clude them here for completeness. 

3 0f  4 0f 

In this paper, we present a new, generalized interpola- 

tion method by solving a partial differential equation 
(PDE) with a linear combination of different orders of 
harmonic operators (the 1st, 2nd, 3rd and 4th) on an un- 
structured, triangular-element grid. Our approach has 
three main advantages over previous solution methods. 
First, the use of multiple orders of differentials allows for 
more possible harmonic functions to be incorporated into 
the solution. With proper parameter selection, we can 
eliminate the apparent flaw in the occurrence of singu- 
larities at the data points when using Laplace’s equation 
alone. Second, the use of unstructured grids to represent 
coastal water avoids issues related to interpolation over 
intervening land features, the necessity of over-water 
distance calculations, and the problem of multiple con- 
nected regions. The third is the streamlining of the multi- 
ple-order harmonic PDE interpolation into one simple 
implementation and solving the equation implicitly with- 
out the need for iterations. We note that this approach 
incorporates the (regular grid) equations of Hess [7], 
Briggs [10], Smith and Wessel [11], and Botsch and 
Kobbelt [12] through parameter selection. 

We explore the application of the multiple-order har- 
monic equation to oceanographic properties, namely tidal 
fields. The outline of the paper is as follows: first, we 
introduce the mathematics of the governing equations, 
then we give accounts of the numerical method for the 
solution, the quantitative measure of error, and the jack- 
knife method of testing. After that, we present four cases 
of applications: an idealized function in a square domain; 
Kelvin wave reflection in a semi-infinite rotating channel; 
M2, S2, K1 and O1 tidal constituents in the Bohai Sea; and 
the M2 tidal constituent amplitude and phase in Chesapeake 
Bay. Finally, we offer conclusions based on the applica- 
tions of the generalized multiple-order harmonic equa- 
tion interpolation method. 

2. Methods 

2.1. Governing Equation and Boundary  
Conditions 

The generalized governing equation for spatial interpola- 
tion, which incorporates multiple orders of harmonics, is  


1

,
K

k
k i i

k i

f F x x y y 


           (4) 

where k  (k = 1, 2, 3,···, K) is the coefficient of the kth 
order harmonic operator, and with the constraint 

   
,

, 1,  2,  
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 
  3, , N . 

We note that, with appropriate selection of coefficients 
β, this equation includes Laplace’s equation (Equation 
(1)), minimum curvature (Equation (2)), and MCT (Equa- 
tion (3)). Boundary conditions are specified as: 
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 ,f n x y f    n          (5a) 

0 1,  2,  3, ,  1k f n k K         (5b) 

where f n   is the normal derivative,  0,1   is an 
adjustable dimensionless parameter and f n   is the 
spatial average of the normal derivative in a small region 
adjacent to the boundary. Equation (5a) allows some 
flexibility in simulating tidal properties, and has been 
used successfully in computing tidal constituent distribu- 
tions in Galveston Bay and San Francisco Bay [8]. 

The left hand side of Equation (4) is a linear combina- 
tion of different order harmonic operators. By using dif- 
ferent combinations of k  (k = 1, 2, 3,···, K), the solu- 
tion of Equation (4) provides a class of interpolation 
methods (Table 1). In our applications, we avoid any 
order of harmonic operator higher than 4 due to the high 
computational cost, high computer memory requirements, 
and the natural tendency towards overshooting or oscilla- 
tion, which can be especially pronounced in a domain 
interior in the case of interpolating from boundary data 
without constraints from internal data points. 

Equation (5a) can have different physical explanations, 
depending on the order and the value of α. For Laplace’s 
equation, in analogy to a stretched membrane, 0   
corresponds to a zero slope at the boundary, and 1   
to a constant, non-zero slope at the boundary. For 2nd 
order or MCT, the equation describes an elastic thin plate. 
In this case, 0 

1
 forces the solution to flatten at the 

edge and    corresponds to a free-edge condition 
without bending stress. In general, the α value indicates 
the degree of balance between the 1st and 2nd normal de- 
rivative at the boundary, and it provides a tool to adjust 
the boundary condition and internal field. In our current 
application, we take 0.9  , which has been shown to 
yield realistic solutions to tidal constituent distributions 
[7]. 

 
Table 1. Possible combinations of coefficients for different 
order harmonic operator up to 4th order. Only 1st, 2nd, 3rd, 
and 4th order harmonic equations and minimum curvature 
with tension method are explored in this paper. (note: the 
names of interpolation are interchangeable, as shown in the 
table. For example, 1st order interpolation will be the same 
as Laplace’s equation interpolation.) 

Interpolation equation/coefficient β1 β2 β3 β4 

1st order, Laplace’s equation ≠0 0 0 0 

2nd order, biharmonic or  
minimum curvature 

0 ≠0 0 0 

3rd order, triharmonic 0 0 ≠0 0 

4th order, tetraharmonic 0 0 0 ≠0 

Minimum curvature with tension ≠0 ≠0 0 0 

All other combinations 
At least two of β1, β2, β3, β4 are not 

zero, except case above  
(minimum curvature with tension)

In addition, many of the equations represented by the 
different combinations listed in Table 1 can be derived 
directly from optimization of an energy function through 
variational calculus [12,13]. For example, for k = 1, 
Laplace’s equation describes a surface which minimizes 
the area. For k = 2, a surface that minimizes the curvature 
is represented, and k = 3 represents a surface that mini-
mizes the variation of linearized curvature. In the one- 
dimensional case, the 1st, 2nd, 3rd, and 4th order harmonic 
interpolation equations represent piecewise linear, cubic, 
quintic, and septic polynomial interpolation, respectively. 

As will be shown in the next section, the PDE (Equa-
tions (4), (5)) can be readily solved using mixed finite 
element methods with linear triangular elements. 

2.2. Mixed Finite Element Method 

Laplace’s and Poisson’s equations can be readily solved 
using a standard finite element method with linear trian-
gular elements [14]. To directly solve a higher order 
harmonic equation, we employ a mixed finite element 
method [15-17] to transform Equation (4) into a 1st order 
linear Poisson’s equation system. First, we assume  

 
1

1 , 1,  2,  3, ,  1k
k

g f

g f k K



   
. 

We then transform the high order linear harmonic 
Equation (4) into a low order linear PDE system, 

 1, 1,  2,  3,  ,  1k kg g k K          (6a) 
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with the boundary conditions, 

 1 , 1g n x y g n               (7a) 

 0, 2,  3, ,  kg n k K            (7b) 

Equation (6b) is a screened Poisson equation. Apply- 
ing the mixed finite element method to the above mixed 
PDE system, i.e., Equation (6) with boundary conditions 
Equation (7), and using a discrete Laplace operator [18, 
19], we have a linear system AG B . Here A is a (K × 
n) × (K × n) sparse matrix for a linear triangular mesh 
with n nodes. B is a (K × n) column vector.  

1 2, , , KG G G G    is a (K × n) column vector, where Gk 
(k = 1, 2, 3,···, K) is a (1 × n) column vector representing 
the value of gk (k = 1, 2, 3,···, K) at the unstructured tri- 
angular mesh nodes. This sparse linear equation AG = B 
is solvable by straightforward array arithmetic (we used 
the MATLAB© built-in linear system function). The equa- 
tion not only solves the interpolation field, but also pro- 
duces the kth (k = 1, 2, 3,···, K − 1) order Laplacian field 
as a byproduct. The method can also be used for solving 
the Poisson equation, the Helmholtz equation, and the 
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bi-Helmholtz equation with the addition of appropriate 
terms to Equation (4). 

2.3. Experiments, Error Estimation and the 
Jackknife Method 

To test the generalized multiple-order harmonic spatial 
interpolation method, we use two different types of data 
sets. The first type of data set has a known reference field 
such as an array of observations or an analytic solution. 
The second type of data set does not have a known ref- 
erence field, as only the values at a limited number of 
locations are known. Each type of data set requires a 
unique experimental approach. 

2.3.1. Experiments with a Known Reference Field 
Assuming there is a two-dimensional distributed refer- 
ence data set A containing N points, we randomly sub- 
sample A to create a data set B, a subset of A with M 
points, where M N . The spatial interpolation method 
uses B to create an interpolated field C, which has the 
same size as A and contains values at all locations in the 
domain. The number of points selected, M, starts at a 
small value (for example, we use 5), then increases 
gradually by adding 5 randomly selected points to the 
previously selected points. The points are selected from 
the entire domain. Every time 5 additional points are 
added, interpolation is performed to create a new field C, 
and the associated maximum absolute error (MAXE), 
mean absolute error (MAE), and root mean square error 
(RMSE) are calculated by comparing the interpolated 
field C with the reference field A. This experiment is 
designed to quantify the performance of different meth- 
ods under different data density scenarios. 

Since a tidal property is known primarily at locations 
along the coastal boundary of the ocean domain, we also 
conduct one parallel experiment with a realistic con- 
straint: select subset B from boundary points only, again 
starting with 5 randomly-selected boundary points, then 
adding another 5 boundary points, and so on. The error 
statistics are calculated with this data series in the same 
way as for the random selection from all points. 

2.3.2. Experiments with an Unknown Reference Field 
In many coastal applications, there is no known back- 
ground reference field, and only scattered station data 
located mostly along the land-sea boundary are available. 
Because of a limited number of stations, subsampling 
may encounter the problem of small total sample size. To 
reduce the uncertainty due to sample size, we will fix the 
subsample size and repeat the subsampling for any pos- 
sible combination. In our application, the delete-1 jack- 
knife method will be used [20]. Specifically, a subsample 
size of N − 1 out of a total of N samples will be used, and 
a total of N repeat samplings will be performed by re- 

moving one station at a time. At the end we have N error 
values, one at each station, and the same MAXE, MAE, 
and RMSE will be calculated. This experiment is de- 
signed to quantify the performance of different methods 
using limited data points at fixed locations without a 
known reference field. 

3. Applications 

The performance of the new interpolation method using 
the high order harmonic PDE is evaluated in four test 
cases, each with different numbers and distributions of 
data points and varying complexity of the domain. In 
each case we first tested pure 1st, 2nd, 3rd and 4th order 
interpolation. If 3rd and 4th order interpolation is not as 
good (i.e., has higher error measures) as both 1st and 2nd 
order interpolation, a few MCT cases are then tested, and 
the 3rd and 4th order results are not presented. Usually we 
start by testing the use of all internal and boundary data 
points, then proceed to testing the use of boundary points 
only. For the cases in which an analytic solution is 
known, we test the solution using various harmonics with 
progressively larger numbers of data points. 

3.1. Analytic Function 

Here we apply the PDE to an idealized square basin with 
a known analytic function describing the distribution. 
Since the reference field is a known analytic function, we 
may compare the interpolated solution and reference 
field at any desired point, especially at randomly-selected 
internal points. The analytic function, Peaks, included in 
the MATLAB© software, takes the form of: 

      
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 

     
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 (8) 

Peaks is a combination of three two-dimensional Gaus- 
sian functions, each multiplied by a polynomial function, 
which ensures that the function  approaches 
zero at locations far from the origin (in our idealized ba- 
sin, x and y each varies between −3 and 3). The function 
ranges in value from a minimum of −6 to a maximum of 
8. In our experiments, we represent the square basin with 
an unstructured grid mesh having 161 equally-spaced 
nodes in the x- and y-direction. The reference field was 
generated by evaluating Equation (8) at the nodes of the 
mesh. 

 ,h x y

A flaw in the Laplace’s equation solution is very ob- 
vious from a plot of the test with 90 random data points, 
in which singularities occur at the data points (Figure 
1(a)), while the higher order harmonic interpolation gen- 
erates a very smooth surface (Figure 1(b)). The surface 
contour plots (Figure 2) indicate that the pure 3rd order  
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(a) 

 
(b) 

Figure 1. Idealized basin and the Peaks function (Equation 
(8)). (a) Laplace’s equation interpolation with 90 random 
data points (blue circles). (b) Triharmonic equation inter-
polation with same data points. Numbers along the axes 
refer to grid points in the 161 × 161 array. 

 
harmonic interpolation gives the best results, compared 
to either the 1st or 2nd order interpolation with 90 random 
data points (this conclusion is also supported by the plots 
in Figures 3a-c). The MAE for Laplace’s interpolation 
decreases steadily with an increase in the number of data 
points. At low data point numbers (M < 25), Laplace’s 
interpolation performs better than all of the higher order 
harmonic interpolations. But at the same time, at low 
data point numbers, the overall error is relatively high, 
i.e., on the same order of magnitude as the interpolated 
values. With an increase in the number of data points, the 
higher order harmonic interpolations, especially the 3rd 
and 4th order harmonic equations, improve much faster 
than the Laplace’s interpolation. When the number of  

 

Figure 2. Idealized basin and the Peaks function (Equation 
(8)). Inter-comparison of two-dimensional contour plots 
between the original data and the 1st, 2nd, and 3rd order in-
terpolation with 90 random data points. Numbers along the 
axes refer to grid points in the 161 × 161 array. 

 
observed points increases to 100, the 4th order outper- 
forms the 3rd order. The trends from all three error meas- 
ures are similar in that they decrease with increasing 
number of data points, although the errors decrease faster 
with the higher order. As for the use of boundary points 
only, we note that since the values along the boundary 
are all very close to zero, interpolation using only bound- 
ary points will not yield much useful information about 
the interior of the basin. We therefore do not present any 
results from boundary only data. 

In general, high order interpolation gives a smooth so- 
lution with a continuous derivative within the domain, 
including at the data points. For all interpolation methods, 
errors decrease when more data points are used. The 
higher-order PDEs outperform lower-order PDEs, except 
when the number of data points is small (M < 25). 

3.2. The Taylor Problem 

The original Taylor problem, which was first presented 
and solved analytically by Taylor [21], is the Kelvin 
wave reflection in a semi-infinite rotating channel with- 
out friction. In our experiments, to be consistent with 
Taylor [21], we simulated flow in a channel that is 500.4 
km wide (north to south), 74 m deep, and 1000 km long, 
east to west (Figure 4). The Coriolis coefficient is 
0.000119 s−1 (corresponding to latitude 54.46˚N) and the 
period of oscillation was set to 12.4 hours to approximate 
the M2 period. This example was selected because it has 
an analytic solution for tidal amplitude and phase distri- 
bution, thus providing a reference field, and unlike the 
previous case it has non-zero boundary values. The 
dominant feature in the analytic solution is a chain of  
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Figure 3. For the idealized basin, the maximum absolute 
error (MAXE), mean absolute error (MAE), and root mean 
square error (RMSE) of 4 different order harmonic equa-
tion interpolations, and their variation with the increase of 
internal data points of Peaks: a) MAXE; b) MAE; c) 
RMSE. 

 
amphidromes along the center line of the channel. Rie- 
necker and Teubner [22] introduced friction (with a coef- 
ficient of 0.00005 s−1), and with friction the amphidromes 
shift laterally from the center line of the channel to the 
right side of the channel if facing the inbound wave 
(Figure 4a). There are two amphidromes within the first 
1000 km of the channel. The first amphidrome is close to 
the center line. Further away from the closed western end, 
the wave is attenuated and the second amphidrome is 
closer to the southern boundary. Depending on the bot- 
tom friction, the amphidrome may be degenerated, and 
the center may move inland, producing a virtual am- 
phidrome. 

To create the interpolation we use an unstructured tri- 
angular grid having a uniform 5 km resolution with a  

 

 

Figure 4. Taylor basin solution (the M2 tide in a semi-infi- 
nite rotating channel). The coamplitude (dashed) and co-
phase (solid) lines for a) analytic results [22] and b) inter-
polated from 40 random boundary points using 2nd order 
interpolation. The green dots are the amphidrome locations 
from analytic solution. 

 
total number of 20,301 nodes. A tidal constituent consists 
of amplitude A and phase φ, which can be expressed as a 
complex number, iAe R E i  , where R is the real part 
and E is the imaginary part of the number. We interpolate 
R and E separately, and after interpolation, we reverse the 
calculation,  2 2A sqrt R E  , and  arctan ,R E  . 
This complex number interpolation is also used for the 
interpolation of the M2 tidal constituent in the following 
Bohai Sea and Chesapeake Bay cases. 

Two tests were conducted for the Taylor case, one in- 
terpolated from random internal and boundary data points 
and the other from only random boundary points. For 
both tests, along with the usual statistics, another statistic 
was computed: the average distance between amphidromes 
in the reference field (here the analytic solution) and 
corresponding amphidromes in the interpolated field. 

In the internal points case, locations of the amphidromes 
are able to converge quickly (M > 50) to the analytic po- 
sitions (Figure 5d). For both amplitude and phase, the 
2nd order interpolation dramatically reduces the error in 
MAXE, MAE, RMSE, and the distance between the 
amphridromes (Figure 5) in comparison with the 1st or- 
der interpolation. The 1st order interpolation error is 
about 10 times that of the 2nd order interpolation error in 
all three measures. The 3rd order interpolation is consis- 
tently better than the 2nd order, but only by a small mar- 
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gin (i.e., only a few percent). The 4th order is comparable 
to the 3rd order, or slightly better, especially for large data 
numbers (M > 600). However, the 4th order interpolation 
performance can deteriorate (most likely from overshoot- 
ing) as demonstrated by a sudden increase in RMSE at M 
= 250 (Figure 5f), although it is still better than the 1st 
order and performance improves with further increase of 
data points (M > 600). 

In the boundary points only case, besides the pure 1st 
and 2nd order interpolations, we tested three interpola- 
tions using MCT, with pairs of coefficients  1 2,   = 
(0.5, 1), (0.2, 1), and (0.1, 1). We do not present results 
for the 3rd and 4th order for the boundary case because we 
found that the 2nd order interpolation consistently out- 
performs both the 3rd and 4th order in all error measures. 
The errors decrease with increasing number of boundary 
data points for both amplitude and phase for the 1st order 
and the three MCT cases. The order of their performance 
in decreasing magnitude of error corresponds to  1, 2   
values of (1, 0), (0.5, 1), (0.2, 1), and (0.1, 1). By contrast, 

the pure 2nd order performance is different for amplitude 
and phase. For amplitude, there is relatively high accu- 
racy at a low data point number (M < 35), but perform- 
ance deteriorates very quickly with the increase of bound- 
ary point number, and the 2nd order interpolation is out- 
performed by all other methods (Figures 6a-c). For phase, 
the 2nd order performs the best (Figures 6e and f). With 
the increase of boundary data points, the phase and am- 
phidrome position improve quickly initially, and after a 
certain number, the improvement from the additional 
points levels off. That is reflected in the flat line from M 
= 150 points and beyond (Figures 6d-f). The interpolated 
amphidrome is further offshore as compared with the 
analytic results (Figure 6b), especially for the rightmost 
amphidrome. Unlike the internal point case, information 
from the boundary, no matter how detailed, cannot in- 
definitely improve the results or provide all necessary 
information for the interior, even when there is still a 
room to improve. 

Thus we can conclude that for the internal points case  
 

 

Figure 5. For the Taylor basin (the M2 tide in a semi-infinite rotating channel), the MAXE, MAE, RMSE and amphidrome 
distance of four different order harmonic equation interpolations, and their variation with incremental internal data points. a) 
MAXE, amplitude; b) MAE, amplitude; c) RMSE, amplitude; d) amphidrome distance; e) MAE, phase; f) RMSE, phase. 
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Figure 6. For the Taylor basin, the MAXE, MAE, RMSE and amphidrome distance of five different interpolations, and their 
variation with incremental boundary data points. M2 tide in a semi-infinite rotating channel. a) MAXE, amplitude; b) MAE, 
amplitude; c) RMSE, amplitude; d) amphidrome distance; e) MAE, phase; f) RMSE, phase. 

 
in a semi-infinite rotating channel, the 2nd order interpo- 
lation provides a solution that dramatically reduces the 
error to 10% of that for the 1st order interpolation of both 
M2 amplitude and phase. The use of the 3rd and 4th order 
terms subsequently further improves the solution, but with 
a much smaller margin. For the boundary points only 
case, the phase is best simulated using the 2nd order or 3rd 
order solution (3rd order results are not presented). For 
amplitude, though, MCT gives better solutions. Overall, 
of the limited pairs of coefficients tested, the solution for 
 1 2,    = (0.1, 1.0) provided the best results for both 
amplitude and phase. Finally, in the absence of internal 
data, an increase in the number of boundary data points 
does not improve the accuracy of the position of the am- 
phidrome after a certain number of data points (M > 
150). 

3.3. Tides in the Bohai Sea 

The Bohai Sea is a semi-enclosed embayment on the 
coast of China in the northwest Pacific Ocean, and its  

tidal system has been well documented from observa- 
tions and hydrodynamic model simulations [23-25]. The 
test data set for this case consists of M2, K1, S2, and O1 
tidal constituents from 31 observed tidal stations in the 
Bohai Sea [23], of which 29 are near the coast, and two 
are from islands in the mouth of the Bohai Sea. To carry 
out the interpolations, we generated an unstructured grid 
with 101,217 nodes, having on average a 1 km resolu- 
tion. 

We tested five pairs of  1 2,   to estimate the per- 
formance of different interpolation schemes of the com- 
plex solution using the jackknife method (Table 2). For 
all tidal constituents and for both amplitude and phase, 
except for the K1 phase, there are more than three com- 
binations of  1 2,   that perform better than the 1st 
order. The 2nd order is better than the 1st order in all am- 
plitudes of the four tidal constituents, and better than the 
1st order in MAE, and RMSE for the phase of all tidal 
constituents. The 2nd order interpolation has worse phase 
MAXE for the K1, S2, and O1 constituents. For the K1  
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Table 2. Results for the Bohai Sea. MAXE, MAE, and 
RMSE of amplitude and phase for the M2, S2, K1 and O1 
tidal constituents for different interpolation methods using 
31 data stations. Underlined values are the best results for 
five pairs of (β1, β2) in a single error measure. 

Amplitude (cm) Phase (˚) 
 β1 β2 

MAXE MAE RMSE MAXE MAE RMSE

1 0 46.22 17.69 21.50 131.18 17.12 29.94

0.5 1 39.28 14.60 18.15 100.08 14.06 23.74

0.2 1 36.52 13.31 16.78 79.99 12.56 20.29

0.1 1 34.21 12.21 15.58 59.91 11.21 17.10

M2 

0 1 15.57 5.22 6.21 22.81 5.21 7.45

1 0 13.01 5.09 6.26 61.10 13.75 19.97

0.5 1 11.13 4.48 5.53 76.65 12.51 19.49

0.2 1 10.22 4.27 5.25 101.04 12.81 22.31

0.1 1 9.63 4.10 5.02 147.33 13.94 29.20

K1 

0 1 11.24 3.05 3.97 80.67 10.90 17.62

1 0 17.18 5.51 6.73 45.46 14.40 18.93

0.5 1 15.24 4.62 5.78 34.80 12.57 16.11

0.2 1 14.48 4.27 5.39 30.47 12.10 15.16

0.1 1 13.86 3.95 5.06 27.87 11.74 14.48

S2 

0 1 5.41 1.89 2.33 49.17 9.06 13.23

1 0 10.69 4.15 3.80 47.55 10.88 15.79

0.5 1 9.26 3.72 3.57 30.11 8.32 11.46

0.2 1 9.32 3.55 3.50 26.06 7.62 10.45

0.1 1 9.48 3.39 3.44 22.81 7.07 9.69

O1 

0 1 10.46 2.62 3.54 60.68 6.70 12.61

 
phase, the 1st order MAXE is the smallest of all methods. 
That is the only case that there is no better alternative 
 1 2,    than the 1st order in all three measures. The 2nd 
order gives the best results in K1 phase, as measured by 
the MAE and RMSE (Table 2). 

The dominant feature of the results using 2nd order 
harmonic interpolation is the amphidromic system (Fig- 
ure 7). For example, the M2 tide system indicates an 
amphidrome in the north, and possibly a degenerated 
amphidrome in the west. The location of the amphidromes 
for all constituents is very close to the position estimated 
by Fang et al. [24] from altimetry and observed station 
data (Table 3). As in the Taylor boundary case, the in- 
terpolated position of the semi-diurnal amphidrome is 
slightly more offshore than the estimation, while the di- 
urnal amphidrome’s position is almost identical. 

In general, both the pure 2nd order  1 2,    = (0, 1) 
and the MCT  1 2,    = (0.1, 1.0) give the best results 
for all four tidal constituents. 

3.4. Tides in the Chesapeake Bay 

The Chesapeake Bay, on the U.S. East Coast, is repre- 
sentative of an embayment with a long, complex coast 
whose shoreline length is extremely large compared with 
its area. In addition, most data locations are situated 
along the shore and are thus not representative of internal 
conditions. In this case, the interpolation of the M2 tide,  

 

Figure 7. Bohai Sea M2, S2, K1, and O1 cophase lines in de- 
grees (solid line) and coamplitude lines in meters (dashed 
line). Also displayed are 29 data stations along the coast, 
and two island stations near the entrance (red dots). The 
green dots are the amphidrome locations from Fang et al. 
[24]. 

 
Table 3. For the Bohai Sea tidal constituents, the location of 
amphidromes from the Fang et al. [24] model (reference 
position), our interpolation results, and the approximate 
spatial difference between the two. Results are for 2nd order 
harmonic interpolation only. 

 Tidal constituents 

 M2 S2 K1 O1 

Reference position
120.02E, 
39.92N

120.17E, 
40.00N 

120.70E, 
38.18N

120.92N, 
38.07N

Interpolated position
120.24E, 
39.81N

120.18E, 
39.91N 

120.80E, 
38.17N

120.91E, 
38.06N

Difference (km) 26.0 11.0 16.0 1.0 

 
from which the coamplitude and cophase lines are ex- 
tracted, will be performed and compared using only the 
1st order, 2nd order, and MCT interpolation. The unstruc- 
tured mesh grid we used has 318,860 nodes, and a spatial 
resolution varying between 0.02 and 20 km [26]. 

For comparison purposes, the coamplitude (Figure 8a) 
and cophase (Figure 9a) lines for the Chesapeake Bay 
are hand-drawn contour plots from Browne and Fisher 
[27], using data from 121 present and historical tide sta- 
tions. There are two features in the tidal amplitude field 
that are the most apparent. First, as is the situation in the 
Taylor case, the amplitude is usually higher in the Bay’s 
east side, or the left side when facing the incoming tide 
wave. This is due to the existence of a virtual am- 
phidrome (i.e., an amphidrome whose center is located 
on land) just south of latitude 38˚N [27]. Second, the 
tidal amplitude can either increase or decrease in the di- 
rection of wave propagation, while the tidal phase is al- 
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(a)                                        (b) 

Figure 8. Chesapeake Bay M2 coamplitude lines in feet. (a) Hand drawing from historical data (Reproduced from Browne 
and Fisher [27]). (b) Interpolated field using generalized minimum curvature interpolation (β1 = 0.5, β2 = 1) and 50 tide sta-
tions (red dots). 

 

     
(a)                                        (b) 

Figure 9. Chesapeake Bay M2 cophase lines in degrees. (a) Hand drawing from historical data (Reproduced from Browne and 
Fisher [27]). (b) Interpolated field using 2nd order harmonic interpolation (β1 = 0.0, β2 = 1) and 50 tide stations (red dots). 
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ways monotonically increasing. The behavior of the phase 
indicates that the tide in the Bay is a progressive wave. 

In our Chesapeake Bay application, the M2 tidal con- 
stants are obtained from 50 NOS tide stations that had 
long term tide observations and tidal constituent analysis. 
The error analysis using jackknifing (Table 4) indicates 
the results would be the best when using different pairs 
of β values for amplitude and phase. If we look individu- 
ally,  1 2,    = (0.01, 1) is the best for M2 amplitude. 
However for M2 phase, the 2nd order interpolation is the 
best.  

The resulting interpolated fields of M2 coamplitude 
and cophase for the optimal pair of  1 2,    are pre- 
sented in Figures 8 and 9, respectively. The major fea- 
tures of the amplitude (i.e., the virtual amphidrome) and 
phase are reproduced. The MAE of the amplitude inter- 
polation is about 5.90 cm. The phase distribution is more 
regular and monotonic with a MAE of 13.45 degree us-
ing the 2nd order interpolation (Figure 9). 

4. Summary and Conclusions 

In this paper, we developed a PDE containing multiple, 
high order harmonics for spatial interpolation of tidal 
properties in the coastal ocean. The equation is solved on 
an unstructured triangular grid with a mixed finite ele- 
ment method. The use of an unstructured grid allows for 
the representation of geometrically complex regions, in- 
cluding islands, and eliminates the need for over-water 
distance calculations or interpolating across land. In its 
numerical implementation, the method avoids iteration, 
which may not converge, and instead uses a simple im- 
plicit procedure. Four test cases have been examined,  

 
Table 4. Results for the Chesapeake Bay. Comparison of M2 
tide amplitude and phase errors using 1st order, MCT and 
2nd order interpolation. The results are derived using the 
jackknife method. Underlined values are the best results of 
13 pairs of (β1, β2) in a single error measure. 

Amplitude (cm) Phase (degree) 
β1 β2 

MAXE MAE RMSE MAXE MAE RMSE

1 0 30.93 6.80 7.71 149.80 17.58 33.83

20 1 30.86 6.48 7.70 149.42 17.40 33.60

10 1 30.87 6.45 7.70 149.40 17.38 33.58

5 1 30.88 6.42 7.70 149.36 17.37 33.56

2 1 30.90 6.35 7.70 149.28 17.33 33.51

1 1 30.92 6.28 7.69 149.20 17.28 33.46

0.5 1 30.95 6.19 7.68 149.08 17.22 33.38

0.2 1 31.99 6.05 7.67 148.86 17.11 33.25

0.1 1 31.01 5.90 7.66 148.64 17.01 33.11

0.05 1 31.02 5.74 7.64 148.37 16.92 32.95

0.02 1 31.97 5.50 7.62 147.88 16.81 32.67

0.01 1 30.85 5.32 7.60 147.37 16.73 32.42

0 1 109.15 10.23 20.72 132.23 13.45 26.77

including an idealized function in a square basin, tidal 
properties in a semi-infinite rotating channel, tides in the 
Bohai Sea, and tides in the Chesapeake Bay. The results 
demonstrate that the multiple-order harmonic interpola- 
tion method eliminates the singularities at the observed 
data points that occur in Laplace’s equation interpolation 
(Figure 1b). It also reduces the computed error and im- 
proves the accuracy and precision of the interpolated 
field when appropriate values of the adjustable parameter 
(i.e., the values of β, Table 1). Computationally, the 
method is comparable in speed to the solution of La- 
place’s equation by iteration. 

In all our test cases, the optimal combination of coef- 
ficients k  (k = 1, 2, 3,···, K) is highly dependent on the 
spatial characteristics of the interpolated property, com- 
plexity of the boundary, and the number and spatial dis- 
tribution of the data points. In practice, different combi- 
nations of coefficients have to be tested to find an opti- 
mal combination. It is advisable to test pure 1st, 2nd, 3rd 
and 4th order interpolations first. If 3rd and 4th order in- 
terpolations do not reduce errors, they should be ignored 
and then MCT cases should be tested. The optimal com- 
bination of coefficients can be determined by evaluating 
the error measures from these tests. 

To interpolate the tidal constituents’ amplitude A and 
phase φ, it is good practice to separately interpolate the 
real part R and imaginary part E of the complex number 
representation, iAe R E i  . In our experience, the 
interpolated R and E fields are usually smoother than 
amplitude and phase, with maxima and minima at the 
domain boundary. 

Interpolation from boundary data alone can produce 
good results for tidal properties (Figures 4, 6e and f), but 
has its limits. No matter how dense the data points are, 
the missing information from the interior (i.e., offshore) 
will never be fully recovered from the boundary data 
alone. This is demonstrated by the persistent error in the 
distance between amphidromes between the reference 
field and the interpolated field (Figure 6d), and the flat 
line of error measures when increasing the number of 
boundary points (Figures 6a-f). 

In practice, tidal amplitude and phase can be interpo- 
lated separately, each using different values of β coeffi- 
cients to achieve an optimal result, as demonstrated in 
the Taylor basin and the Chesapeake Bay M2 tide cases. 
For amplitude in those cases, MCT is better than either 
the 1st order or the 2nd order interpolation alone (Figures 
6a-c; Table 4). For phase, the 2nd order interpolation is 
the best in all three error measures in Chesapeake Bay 
(Table 4), as well as for M2 phase in the Taylor bound- 
ary point case (Figures 6d-6f). The fact that different 
values of β produce optimal results may be due to dif- 
ferences in the underlying properties of tidal amplitude 
and tidal phase. In other words, the tidal phase field is 
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much smoother than the tidal amplitude field, and there- 
fore the tidal phase is more suitable for a higher order 
harmonic interpolation. 

In summary, our development of the high order har- 
monic interpolation provides a full set of options for the 
user to choose from for their specific application. Besides 
being a better tool to achieve more accurate interpolation 
results, there are also many potential benefits. For exam- 
ple, in hydrographic and oceanographic applications, 
decisions often have to be made on new locations for 
data collection. Optimizing the installation of data ob- 
servation stations (or temporary water level stations for 
storm surge) may be achieved by differentiating multiple 
potential station sites by their improvement in overall 
error measures using this interpolation method. 
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