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ABSTRACT 

Three dimensional (3D) microscopic distributions of dolomite and calcite in a limestone sample have been analyzed 
with a data-constrained modeling (DCM) technique using synchrotron radiation-based multi-energy X-ray computed 
tomography (CT) data as constraints. In order to optimize the experimental parameters, X-ray CT simulations and DCM 
analysis of a numerical phantom consisting of calcite (CaCO3) and dolomite (CaMg(CO3)2) have been used to investi-
gate the effects on the predicted results in relation to noise, X-ray energy and sample-to-detector distance (SDD). The 
simulation results indicate that the optimal X-ray energies are 25 and 35 keVs, and the SDD is 10 mm. The high resolu-
tion 3D distributions of mineral phases of a natural limestone have been obtained. The results are useful for quantitative 
understanding of mineral, porosity, and physical property distributions in relation to oil and gas reservoirs hosted in 
carbonate rocks, which account for more than half of the world’s conventional hydrocarbon resources. The case studied 
is also instructive for the applicability of the DCM methods for other types of composite materials with modest atomic 
number contrasts between the mineral phases. 
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1. Introduction 

Knowledge of three dimensional (3D) material distribu-
tions for hydrocarbon reservoir limestone at microscopic 
length scales is important in understanding their me-
chanical and hydrological properties in relation to oil and 
gas production and carbon dioxide (CO2) geo-sequestra- 
tion. Traditional methods such as optical and scanning 
electron microscopy are common tools for providing 
valuable information of microstructures, for quantitative 
modeling investigations on microstructure/property rela-
tionship of various materials [1-3]. However, those sur-
face observations are often inadequate in obtaining de-
tailed 3D information of the sample, such as composi-
tional distribution inside limestone. A sample-destructive 
direct 3D analytical method is serial sectioning [4-6]. 
Nevertheless, the materials between sections are de-
stroyed with only the serial sectioned images remaining. 

X-ray computed tomography (CT) is a non-destructive 
method that provides sectional X-ray attenuation images 

(CT images) of objects. The synchrotron radiation (SR) 
source provides energy-tunable, monochromatized, and 
naturally collimated X-ray beams that have many advan-
tages for CT. Monochromatized beams eliminate beam 
hardening, which causes CT image artifacts, and thus 
permit CT values to relate quantitatively to X-ray linear 
attenuation coefficients. Furthermore, the synchrotron- 
based X-ray CT has the advantage of high spatial resolu-
tion and has been widely used in characterization of in-
ternal structures of a diverse range of materials in bio-
logical, medical, materials science and geoscience [7-11]. 
However, as different compositions of materials may 
exhibit similar X-ray absorption and refraction charac-
teristics, it is often inadequate to resolve material com-
positions. A data-constrained modelling (DCM) method-
ology has been developed for characterising composi-
tional microstructures using two or more CT datasets 
acquired with different X-ray spectra and incorporates 
them as model constraints [12-14]. For instance, the ef-
fect of nano-porous regions or partially occupied voxels 
can be identified. The advantage of the DCM approach *Corresponding author. 
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includes its capability in resolving partial occupancy of 
multiple material compositions at the voxel level sample- 
non-destructively. Such partial occupancy accounts for the 
effects below normal CT resolution. The DCM approach 
has been successfully applied to characterize and predict 
the microstructure of a range of different materials inclu- 
ding: the distribution of corrosion inhibitor particles in 
aerospace paint primers [15,16], zinc corrosion product 
distributions [17], gold particle distributions in nano-stru- 
ctured functional materials [18], and mineral phases distri- 
butions in hydrocarbon reservoir sandstones [19,20]. 

In this article, we have applied high-resolution multi- 
spectrum X-ray CT technique combined with a DCM 
approach to study a natural carbonate (limestone) sample 
containing predominantly calcite (CaCO3) and dolomite 
(CaMg(CO3)2) mineral phases. The quantitative effects 
of experimental parameters on prediction accuracy and 
noise immunity have been studied using simulated nu-
merical phantoms. The optimal experimental parameters 
and credibility of prediction for each material in the 
sample have been analyzed. X-ray CT experiments were 
performed at X-ray Imaging and Biomedical Application 
(BL13W) beamline at the Shanghai Synchrotron Radia-
tion Facility (SSRF). The 3D distribution maps of min-
eral phases in the sample with high resolution were ob-
tained with DCM. 

2. Simulation Analysis of Numerical 
Phantoms 

This section is focused on evaluation of the impacts of 
experimental variables on X-ray CT attenuation map and 
DCM composition map reconstruction accuracies. The 
evaluation is conducted with a numerical phantom with 
512 × 512 × 32 voxels (a voxel has a size of 3.7 × 3.7 × 
3.7 µm3), as shown in Figure 1. The numerical phantom 
was divided into sub-regions which were comprised of 
different proportions of calcite and dolomite with the 
volume fraction step of 10%. From the left to right and 
the bottom to up, the volume fractions of calcite are 
100%, 90%, 80%, 70%, 60%, 50%, 50%, 40%, 30%, 
20%, 10% and 0%. The remainders of the cylinders are 
dolomite. The minerals in the phantom include calcite 
and dolomite, as listed in Table 1. 

Projection images of the phantom have been simulated 
with monochromatic parallel beams at X-ray energies of 
25 keV, 30 keV, 35 keV and 38 keV. The sample-to- 

detector distances (SDDs) were set to 10 mm, 100 mm 
and 200 mm. At each discrete combination of X-ray en-
ergy and SDD, 360 projections over a total rotation angle 
of 180◦ were obtained with a 0.5˚ angular step between 
projections. The projection images correspond mathe-
matically to the Radom transforms of the phantom with 
X-ray absorption and refraction. The images contain 
phase-contrast effects for non-zero SDD. That is, the pro- 
jection images recorded by the detector were intensity im- 
ages of the sample after Fresnel propagation at a distance 
of SDD. For purpose of comparison, a zero SDD case 
was simulated, although it cannot be achieved in practice. 

In order to investigate the effect of noise, various lev-
els of Gaussian noise were added to the simulated X-ray 
projections at levels of 0.1%, 0.2%, 0.5%, 1%, 1.5% and 
2%. The actual experimental noise level was also used to 
simulate the projection images. The measured experi-
mental standard deviation values were 1.21% at 25 keV, 
1.15% at 30 keV, 1.17% at 35 keV and 1.72% at 38 keV. 

After the simulated projections were obtained, images 
were subjected to phase-retrieval processing prior to to-
mographic reconstruction. Phase-retrieval processing 
was a result of the phase-contrast imaging mode which 
exhibited an apparent improvement in signal-to-noise 
level. The resulting tomographic cross sections resemble 
those from a conventional micro-CT. Slices of X-ray 
 

 

Figure 1. The simulated numerical phantom with various 
proportions of calcite and dolomite (the volume fraction 
step is 10%). 

 
Table 1. The total linear absorption indices (β) of calcite and dolomite at the energies of 25 keV, 30 keV, 35 keV and 38 keV. 

Total linear absorption indices (β) 
Material Formula Density (g/cm3) 

25 keV 30 keV 35 keV 38 keV 

Calcite CaCO3 2.71 3.16 × 10−9 1.60 × 10−9 9.18 × 10−10 6.88 × 10−10 

Dolomite CaMg(CO3)2 2.87 2.21 × 10−9 1.14 × 10−9 6.73 × 10−10 5.11 × 10−10 
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attenuation information at a given X-ray energy were 
obtained by using the filtered back-projection algorithm 
as the CT reconstruction method. 

The DCM linear optimization approach was then used 
to reconstruct the compositional maps. On each voxel at 
position i, the DCM approach [19,20] can be expressed 
as 
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where por vi , i and i  denote for the volume 
fractions for pore, calcite and dolomite respectively; 

v  cal  dolv

,i E  is the absorption indices in reconstructed slices at 
the X-ray beam energy of E; and ,i E , ,i E  

and 

,i E  
are the absorption indices for pore, calcite and 

dolomite at the X-ray beam energy of E respectively [20]. 
Equation (1) constitutes a linear optimization problem 
with non-negativity constraints. It is solved using the 
DCM software with the Simplex algorithm [21]. The 
solutions of the values 
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voxels form a predicted compositional map of the origi-
nal phantom. For each discrete combination of SDD and 
noise level, a DCM predicted 3D set of images was ob-
tained. 
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In order to evaluate the performance of multi-energy 
X-ray CT and DCM under different experimental condi-
tions, the normalized cross-correlation (NCC) between 
the predicted image and the original volume fractions for 
each material was calculated 
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where p
i  and i  are DCM-predicted and original 

volume fraction values of the material at ith voxel re-
spectively, while 

v  ov

 pv  and  ov  are their mean values. 
The NCC represents a template matching of two datasets, 
which means that a higher NCC value corresponds to a 
closer match between the predicted image and the real 
sample. 

Table 2 shows the NCC values at different energy 
combinations and a SDD of 10 mm at experimental noise 
level and the condition numbers [21] of the coefficient 
matrix in Equation (1). From Table 2, it is shown that the 
best X-ray energy combination for the limestone sample 
is at 25 keV and 35 keV. This is different from the en-
ergy combination at 25 keV and 38 keV which gives the 
smallest condition number. The discrepancy is due to the 
fact that in this paper, it is assumed that the noise level is 
the same for projection images at different X-ray beam  

Table 2. The NCCs at different energy combinations at 
SDD of 10 mm and the condition numbers of the coefficient 
matrix in Equation (1). 

Normalized  
Cross-Correction (NCC) Energy/keV 

CaCO3 CaMg(CO3)2 

Condition 
Number 

25 & 30 0.88 0.70 256 

25 & 35 0.89 0.72 142 

25 & 38 0.89 0.70 120 

30 & 35 0.86 0.65 195 

30 & 38 0.87 0.66 127 

35 & 38 0.85 0.63 274 

25 & 30 & 35 0.88 0.59 N/A 

25 & 30 & 38 0.88 0.56 N/A 

30 & 35 & 38 0.86 0.51 N/A 

25 & 30 & 35 & 38 0.87 0.62 N/A 

 
energies. The estimation with the matrix condition num-
ber has an implicit assumption that the noise level is the 
same with the CT reconstructed absorption indices [18]. 

The above analysis uses 2 sets of CT data. In order to 
know whether the accuracy would be improved with ad-
ditional sets of CT data at other X-ray energies, we also 
included 3 and 4 sets of CT data as shown in Table 2. 
Instead of improvement, inclusion of additional data set 
has shown a decrease in prediction accuracy. This could 
be related to the fact that the data sets have a low degree 
of linear independence as suggested by the relatively 
large condition number. Separate datasets may have dif-
ferent zero offset due to experimental noise. Further in-
vestigations are required to fully understand the phe-
nomena. 

Figure 2 shows that the NCC values decrease with 
noise level for fixed values of X-ray beam energy and 
SDDs. This is expected as the DCM reconstruction ac-
curacy decreases with increasing noise. The figure also 
indicates that the reconstruction accuracy is very sensi-
tive to noise for small SDD. This is particularly true at 
SDD = 0 mm. The noise immunity increases at higher 
values of SDD. Figure 3 shows the relation between 
SDD and NCC at beam energies of 25 keV & 35 keV 
and at the experimental noise level. In the figure, the 
solid line is for calcite and the dashed line is for dolomite. 
It has been observed that the NCC value first increases 
and then decreases with SDD. From Figures 2 and 3, 
NCC appears to be small and sensitive to noise at SDD = 
0 mm. This is because the slices were reconstructed di-
rectly from projections. As SDD increases from zero, 
NCC increases. This is owing to the fact that phase  
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Figure 2. The graph of the NCC at 25 keV & 35 keV at a 
series of SDDs as a function of the noise. 
 
retrieval processing was applied to the non-zero SDD 
case which could improve the signal-to-noise of the CT 
reconstructions. When SDD takes higher values, NCC 
reaches a maximum then decreases with increasing SDD. 
This is because a larger SDD induces a higher level of 
Fresnel diffraction and edge enhancement effect, which 
will affect the reconstructed absorption indices [22]. The 
noise level is usually in the range of 1% to 2% in the 
experiment. From Figure 2, the NCC at SDD of 10 mm 
reaches its highest value for calcite, while for dolomite 
the maximum NCC is obtained at a SDD of 100 mm. 
Figure 3 also shows that the best SDDs for calcite and 
dolomite are found to be 10 mm and 100 mm respec-
tively, consistent with the analysis above. For a sample 
composed of both calcite and dolomite, the optimal SDD 
is the one that gives the highest value of NCC. Figures 2 
and 3 indicate that the optimal SDD is 10 mm. 

3. DCM Characterization of a Limestone 
Sample 

The natural limestone sample used for experiments  

 SDD/mm 

Figure 3. The relation of SDD and NCC at 25 keV & 35 keV 
at experimental noise. 
 
consists of calcite and dolomite. In this rock, the two 
minerals were distinct, and can be well differentiated by 
electron microscopy incorporating back-scattered elec-
tron contrast. This provided a good basis for quantifying 
the success of the X-ray based methods. The limestone 
sample was from the Triassic Feixianguan (T1f) Forma-
tion from the Zhujia-1 well (5578.7 m) in the north- 
eastern Sichuan Basin, South China. The Feixianguan 
Formation was a major reservoir interval in the basin and 
hosts a number of gas fields including the giant Puguang 
Gas Field. T1f was deposited as inter-bedded oolitic 
limestone and calcareous marl in a restricted marine (la-
goonal) environment associated with gypsum deposition 
on a carbonate platform margin [23]. Multiple dolomiti-
sation occurred during the post depositional diagenesis 
[24]. For high resolution imaging, a cylindrical plug was 
prepared with a diameter of about 3.5 mm. 

The X-ray micro-tomography experiments were car-
ried out at BL13W beamline at SSRF in Shanghai, China. 
Micro-tomography is composed of an X-ray source, a 
sample stage, a double-crystal monochromator and a 
charge-coupled device (CCD) system, as shown in Fig-
ure 4. BL13W is a wiggler beamline producing mono-
chromatic X-rays with a flux density of ~3.4 × 1010 pho-
tons/s/mm2@20 keV and narrow energy band pass (ΔE/E 
< 5 × 10–3, where E is the photon energy) by an Si(111) 
double-crystal monochromator. As suggested by the 
simulation results in the previous section, X-ray energies 
were set to 25 keV and 35 keV and SDD was chosen as 
10 mm. An Optique Peter X-ray CCD detector was used 
to acquire images, which has a native pixel size of 7.4 × 
7.4 µm2. Combined with a 2× optical lens, it has pro-
vided an effective isotropic voxel with a 3.7 µm edge. 
For each X-ray beam energy, 1080 projection images 
were acquired with a 0.167˚ angular spacing between 
each view. For background correction, flat-field images      
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Figure 4. A schematic of the micro CT system at BL13W of SSRF used in the present experiments. 
 
of direct X-ray beams were measured with no sample for 
every ten degrees during the sample scanning to correct 
for time decay of the X-ray intensity. Dark current of the 
detector system was measured after the CT measurement 
for correction of the images. The exposure time was 1.5 
seconds at both 25 keV and 35 keV beam energies. 

The CT slices were reconstructed using the X-TRACT 
software package [25]. Background corrections were 
applied using flat-field and dark-current images. Figure 
5 is a typical projection image after background correc-
tion at 35keV at SDD of 10 mm. Image normalization 
was performed to compensate the uneven beam within 
the image field. Next, the normalized images were sub-
ject to Paganin’s phase-retrieval processing prior to to-
mographic reconstruction. Paganin’s phase-retrieval al-
gorithm was applied with parameters tuned to optimize 
the signal-to-noise and minimize the edge enhancement 
without loss of resolution [26]. Finally, the slices were 
reconstructed by using the method of filtered back-pro- 
jection of parallel X-ray beam. Since there were some 
ring artifacts in the slices, a ring artifacts correction 
based on polar coordinate transformation was performed 
for these slices. After that, image alignment of data sets 
for the two slices at different energies was achieved by 
translation and rotation of slices to maximise the cross- 
correlations between corresponding images. The proc-
essed slices so produced, containing information of ab-
sorption indices were used for further analysis by using 
the DCM method. 

 

Figure 5. A typical projection image after background cor-
rection at 35 keV at SDD of 10 mm. 
 
10−11, respectively. The reconstructed attenuation values 
were lower than that expected for the two material phases. 
The discrepancy may be caused by a number of factors 
including the point-spread function (PSF) of the imaging 
system, which is induced by source size, the PSF of de-
tector, the geometry of the system and so on [27]. The 
CT reconstructed absorption coefficients were corrected 
by linear rescaling of the reconstructed slices and shifting 
of pores values. The CT datasets for both beam energies 
of 25 keV and 35 keV have been rescaled by a multipli-
cation factor of 1.1, whilst the shifting of pores values for 
the 25 keV and 35 keV beam energies are 8 × 10−11 and 
−6 × 10−11, respectively. 

Using the above two CT datasets as constraints, a 
DCM linear optimization approach was used to obtain 
compositional distributions of calcite and dolomite [19]. 
The mineral phases of the slice (Slice 500) with the size 
of 1119 × 1080 pixels were obtained. The distributions of 
dolomite and calcite have been extracted from the sample, 
as shown in Figures 7(a) and (b), respectively. The pixel 
intensities in these figures denote the volume fractions of 
the corresponding mineral phases. The DCM calculated 
3D compositional distributions of dolomite and calcite on 
a cubic grid of 500 × 500 × 300 pixels inside the sample  

A typical slice (Slice 500) at 35 keV and its histogram 
are shown in Figures 6(a) and (b), respectively. There 
are three peaks in the histogram which correspond to air- 
filled pores, dolomite and calcite with the β values of 
7.99 × 10−12 ± 1.1 × 10−10, 6.35 × 10−10 ± 1.45 × 10−10 and 
8.31 × 10−10 ± 3 × 10−11, respectively. Similarly, the β 
values of the slice at 25 keV for pores, dolomite and cal-
cite were obtained. Their values were 2.84 × 10−11 ± 2.42 
× 10‒10, 1.99 × 10−9 ± 3.96 × 10−10 and 2.58 × 10−9 ± 9 ×  
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Figure 6. A typical X-ray CT reconstructed slice (slice 500) 
at 35 keV at SDD of 10 mm. 
 
are shown in Figures 8(a) and (b), respectively. 

It is shown in Figures 7 and 8 that a fraction of calcite 
formed clusters inside dolomite, and pores was concen-
trated in some parts of the sample. The figures also indi-
cate that there was a significant proportion of pores and 
dolomite which were smaller than the CT resolution (3.7 
µm), which is shown as unsaturated pixel intensity for 
images. The volume fractions of calcite, dolomite and 
pores were calculated as average voxel values. In the part 
of the sample shown in Figure 8, their values are 15%, 
81% and 4%, respectively. The correct value of porosity 
and the correct assignment of the pores within the 3D 
volume is very important for the computation of rock 
properties such as fluid permeability and elastic constants, 
which are important for exploitation of carbonate oil and 
gas reservoirs. 

4. Conclusions 

Microscopic 3D distributions of calcite and dolomite in a 
limestone sample were studied with a data-constrained 
modeling (DCM) approach using multi-spectrum quanti- 

 
(a) 

 
(b) 

Figure 7. Distribution of mineral phases on the same X-Y 
plane (slice 500) as in Figure 6, (a) is dolomite and (b) is 
calcite. 
 
tative X-ray CT data as model constraints. A simulated 
numerical phantom with various ratios of calcite and 
dolomite was used to investigate noise sensitivity, effects 
of X-ray beam energy and sample-to-detector distance 
(SDD). The simulation results show that the prediction 
accuracy decreases with increasing noise, the optimal 
compromise for SDD is 10 mm and the optimal X-ray 
energies are 25 keV and 35 keV which were selected as 
the experimental distance and energies. The optimized 
parameters are useful for future analysis of the micro-
structures of similar samples. 

A natural limestone sample was prepared and syn-
chrotron-based monochromatic multi-energy X-ray CT 
experiments have been carried out at SSRF with parame-
ters of X-ray beam energies at 25 keV and 35 keV and 
SDD at 10 mm as simulated.  DCM characterisation of 
the microscopic distribution of mineral phases was ob-
tained from multi-energy quantitative X-ray CT recon-
structed image sets. The results indicated that the pore 
was concentrated in some parts of the sample, and a 
proportion of pores and dolomite had sizes smaller than 
the CT resolution. It has been demonstrated that by using 
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(b) 

Figure 8. The three dimensional compositional distribution 
of part of sample, (a) is dolomite and (b) is calcite. 
 
multiple energies X-ray CT and the DCM method, a 
segmentation for mineral phases and pore space could be 
achieved. The DCM method enables us to visualize the 
distribution not only of discrete, resolved pores, but also 
regions of calcite and dolomite minerals that are mi-
cro-porous. The investigation has demonstrated that the 
method is a powerful tool for quantitative analysis of 
geological samples with complex mineralogy where the 
single energy X-ray tomography method fails to produce 
an adequately segmented rock volume. 
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