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ABSTRACT 

Similarity measurement is one of key operations to retrieve “desired” images from an image database. As a famous 
psychological similarity measure approach, the Feature Contrast (FC) model is defined as a linear combination of both 
common and distinct features. In this paper, an adaptive feature contrast (AdaFC) model is proposed to measure simi-
larity between satellite images for image retrieval. In the AdaFC, an adaptive function is used to model a variable role 
of distinct features in the similarity measurement. Specifically, given some distinct features in a satellite image, e.g., a 
COAST image, they might play a significant role when the image is compared with an image including different se-
mantics, e.g., a SEA image, and might be trivial when it is compared with a third image including same semantics, e.g., 
another COAST image. Experimental results on satellite images show that the proposed model can consistently improve 
similarity retrieval effectiveness of satellite images including multiple geo-objects, for example COAST images. 
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1. Introduction 

The effectiveness of retrieving images from a large Re-
mote-Sensing (RS) archive weightily relies on the de-
scription of images [1,2]. Low-level visual features, e.g., 
color, texture and shape, are widely used in image re-
trieval systems, since they are easy to extract [3]. It is 
well known that there exists an evident semantic gap 
between the demanding of users and the representation of 
low-level features [4]. Therefore, it seems more attractive 
to represent images using high-level semantic features. 
Much attention has been paid to derive semantic features 
from low-level features [5-9] or bridge the gap through 
interaction between users and retrieval systems [10-13]. 
When multiple semantic features are available, cooccur- 
rence semantic features are often employed to measure 
similarity between images [3,8,11,14]. Little attention 
has been explicitly paid to various distinctions of avail-
able semantics, when the semantic features are employed 
to measure the similarity. The possible reason is that one 
might be more interested in whether the semantics are the 
same or how often the same semantics simultaneously 
occur in the two images. Given a set of binary semantic 
features for objects, Tversky argued that similarity meas-
urements should increase with the saliency of common 

features (which are shared by two objects) and decrease 
with that of distinct features (which belong to only one of 
the two objects) [15-17]. As a real implementation of 
Tversky’s set theoretic similarity, Feature Contrast (FC) 
model reduces the saliency of a feature set into the sum 
of number of features in the feature set. The potential 
assumption is that features are independent and at the 
same level of saliency in terms of contribution to similar-
ity measurements. As shown in Tversky’s experiments, 
the assumption seems reasonable when one could care-
fully list all necessary features to avoid or eliminate the 
different generality of features. 

However, the above-mentioned assumption is not same 
as what we could expect in image retrieval. On the one 
hand, one still is very restricted to directly access seman-
tic features of images. Most approaches to semantic fea-
tures are to model an image as an intermediate represen-
tation through supervised or unsupervised learning, such 
as semantic modeling [6,8], bag of features [18-21] and 
probabilistic topic models [2,22]. The intermediate rep-
resentation is based on models of semantics, which are 
either low-level visual features or text semantics [23]. In 
particular, when the semantics are modeled through un-
supervised learning, one might have no direct access to 
what semantics the representations really are. Therefore, 
the distinction between various semantics would often be *Corresponding author. 
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different, even if each semantic exactly corresponds to 
one kind of images or image parts. 

On the other hand, it is intrinsic for some semantics to 
be at the different level of generality in satellite images. 
For example, term land is more general than terms island 
and building-area when they are relative to term water. 
From the viewpoint of dissimilarity, the salience of dis-
tinction between terms island and building-area is less 
evident than that between terms land and water. In terms 
of similarity measurements, the later would cause the 
measurement decrease more than the former. Moreover, 
the meaning of land would be intrinsic in the term island 
or building-area, when they are relative to term water. 
Therefore, even if term land does not appear in a list of 
available semantic features, it still works when terms 
island or building-area in the list. 

In this paper, we explored similarity measures using 
both common and distinct features under the assumption 
that we have access to semantic features in a very re-
stricted way. Specifically, semantic features are assumed 
to be encoded in cluster labels of regions in images. Fol-
lowing Tversky’s set-theoretic similarity, similarity 
measurements between images would increase with how 
many labels are common, and decrease with how many 
labels are distinct. In this case, we argue that the role of 
distinct features could change with the feature sets in 
comparison, since semantic features might be not at a 
same level of generality. Accordingly, it is necessary to 
regulate the saliency or role of distinct features in the 
similarity measurement. 

The rest of this paper is organized as follows. In Sec- 
tion 2, two kinds of image representations used in this 
paper are introduced, and the limitations of Tversky’s 
set-theoretic similarity are outlined. To address the limi-
tations, an extended model is presented in Section 3. Ex-
perimental results and discussions are given in Section 4. 
Some conclusions are drawn in Section 5. 

2. Similarity Measures 

Image similarity measures rest on two basic elements: 
finding a set of features which adequately encodes the 
characteristics that one intends to measure and endowing 
the feature space with a suitable metric [16]. One kind of 
similarity measure is feature vectors coupled with a 
geometric distance, where each dimension corresponds to 
a particular global attribute for instances. Another kind of 
similarity measure is to matching features in two sets 
[15]. For instance, images are represented as feature sets 
in the extended model, where the sets might vary in car-
dinality and elements lack a meaningful ordering. Then, 
feature matching between sets might be employed to 
measure image similarity. For the sake of comparison, 
the two kinds of similarity measures used in our experi-

ments are represented in the following. 

2.1. Image Representation 

Two kinds of image representations used in this paper are 
illustrated in Figure 1. Firstly, each image is partitioned 
into regions with size of 64 × 64 pixels. Secondly, low- 
level visual features are extracted from each region. Then, 
all regions in the image database are clustered into L 
classes using the low-level features, and a digital label is 
allocated to each region by the clustering algorithm. At 
last, an image is represented as either a label vector or a 
set of labels. 

Given image a with m regions, a set of low-level fea-
ture vectors are given by 

 1 2, , ,a mI  x x x ,             (1) 

and image a can be represented as a feature set 

 1 2, , , mA a a a 

a

,              (2) 

  where i  1,i m

 T1 2, , ,a Lw w wV 

w

 is one cluster of L labels from 
clustering using low-level features [24]. Another ap-
proach to image representation is to reconstruct a vector 
space using intermediate-level cluster labels of regions, 
for instance, Concept-Occurrence Vector (COV) used in 
[8]. Therefore, the COV can be written as 

             (3) 

  where i  1,i L  might be the frequency or area 
percentage of regions in an image belonging to ith class. 
Then, general geometric distance can be used to measure 
similarity using COVs of images. Please note that the 
labels used in [8] are obtained through supervised learn-
ing. Although a supervised learning algorithm could be 
used learn semantic concepts more reliably, it needs in-
tensive human annotation and is not scalable [6]. In this 
paper, unsupervised learning is employed to construct 
COV, and Kullback-Leibler divergence is used to meas-
ure image dissimilarity between two COVs. 

2.2. Non-Metric Similarity 

In the society of psychology, human assessment of simi-
larity has been an active research topic for many years, 
since it is one of foundational cognitive problems. As 
outlined by [25], there exist four kinds of main ap-
proaches to similarity measures: feature-theoretic [15], 
geometric [26], alignment-based [27] and transforma-
tional [28]. Among these approaches, the geometric 
model, e.g., Minkowski-type geometric distances, is 
widely used in real applications. However, some psy-
chologists argue that human similarity judgment is not a 
metric [15,27,28]. Many psychological approaches to non- 
metric similarity are utilized to analyze or measure simi-
larity between images. The atent reasons might consist l 
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Figure 1. Image representation through label allocation. (a) Images; (b) Partitioned regions; (c) Allocated labels; (d) Vector 
vs. set. 
 

opyright iRes.© 2013 Sc     

in: 1) Human similarity assessment in the nature might 
be non-metric; 2) Those Minkowski-type geometric dis- 
tances are often not good enough to characterize the 
similarity between images. In the rest of this section, we 
confine ourselves to review the FC model and its fuzzy 
extensions for measuring image similarity. 

2.2.1. The Feature Contrast (FC) Model 
Tversky challenged the dimensional and metric assump-
tion, which underlies the geometric similarity models, 
and developed an alternative feature matching approach 
to the analysis of similarity relations [15]. The FC model 
is a representation form of feature matching functions, 
which satisfies Tversky’s assumptions of feature match-
ing processing. Let A, B, C be the feature sets of objects 
a, b and c, respectively.  is a similarity measure 
between objects a and b. Tversky postulated five as-
sumptions for his similarity theory, i.e., matching, 
monotonicity and independence, solvability and invari-
ance [15]. Any function, which satisfies the first two as-

sumptions, is called a matching function 

 ,S a b

 F x : 
1) Matching:   , , \ , \S a b F A B A B B A  . That is 

to say that the similarity measure could be expressed as a 
function of three parameters: common features, which 
are shared by two objects (i.e., A B

\

) and distinct fea-
tures, which belong to only one of the two objects (i.e., 
A B \B A and ). 

   , ,S a b S a c  wherever  2) Monotonicity: 
A C A B  \ \, A B A C \ \B A C A and . That 

implies the similarity would increase with the number of 
common features and decrease with that of distinct fea-
tures. 

As a simple form of matching function, the FC is 
given by 

       , \ \S a b f A B f A B f B A        (4) 

 fwhere X  is a nonnegative salience function of fea-
ture X ; nonnegative constants  ,   and   reflect 
the relative salience of common features (i.e., A B

\
) 

and two kinds of distinct feature (i.e., A B \B A and ), 
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respectively. However, please note that the nonnegative 
constants do not depend on the two feature sets in com-
parision, i.e., A  and . In addition, the salience func-
tion 

B
f X

i

 is assumed to satisfy feature additivity 

1
( )

N

ii
f X


 

N

( )f X               (5) 

when 
1

iX X

  and i jX X   i j

 :

  . 

2.2.2. The Fuzzy Feature Contrast (FFC) Model 
Let  be a set and pR  

 P
 a set of p measure-

ments on the elements of . Let   be a predicate 
about the element   . The truth-value of the predi-
cate P  is  T P        with  : 0,1pR 

    , , p

. 
All measurements can be collected into a vector 

  1     



             (6) 

where    is the fuzzy set of p true predicates on the 
measurements  [1]. Let and be the measurements 
of two objects a and b, respectively. In order to extend 
the FC to the fuzzy set   


, the salience func-

tion f x

 

is given by Equation (5). The similarity meas-
urement of the FFC model is given by 

         f

    
,S f

f

       

    

 

 

    

    ,p p  

  
  

1 1 ,0 , ,

,0p p

 

 

 

 (7) 

where the intersection and difference of two fuzzy sets 
are respectively given by 

   
     1 1mi , , , min

  

    n






  (8) 

and 

     
 

max

max

    

 

 


      (9) 

2.3. The Limitation of the FC Model 

In Tversky’s original paper, two primary comments are 
made about the feature representation before the theory 
was presented [15,17]. First, one has access to a general 
database of properties concerning a specific object (e.g., 
person or country), where the properties are deduced 
from human general and prior knowledge of the world. 
Given a specified task (e.g., identification or similarity 
assessment), one can extract or compile a limited list of 
relevant features from the database, to fulfill the re-
quested task. Second, features are often represented as 
binary values, i.e., presence or absence of a specified 
property. The underlying assumption of the comments is 
that the process of feature extraction is out of similarity 
measures since all relevant features have been available 

in a suitable form (e.g., binary value) before similarity is 
measured. It is in the case that it seems reasonable for 
features to be additive in Tversky’s experiments, because 
the extraction or compiling of relevant features is strictly 
under control. 

The two underlying assumptions of the feature addi-
tivity shown in Equation (5) include: 1) features are in-
dependent of each other; 2) each feature is at the same 
level of saliency in terms of contribution to the similarity 
measure. Actually, each feature is regarded as an ele-
mentary atom in the sense that it cannot be split into 
“finer” features any more and any object under investiga-
tion cannot be represented by two different subsets of 
features in an equivalent way. It is the very reason that 
the salience of features can be reduced to the number of 
features in Tversky’s experiments. The underlying as-
sumption is that any semantic feature must not be a 
summary of other semantic features. According to the 
assumption, terms land, island and building-area should 
not occur in a same list of elementary features, since term 
land might be a summary of terms island and build-
ing-area in some senses. However, even when available 
semantic features themselves are well defined in the fea-
ture list to be used, the case could be still inevitable in 
image retrieval, because it is natural to replace some 
more general semantics with some specific ones when 
one would like to tolerate the distinction between them. 

An intuitional example is shown in Figure 2, where 
four images (i.e., a, b, c and d) belong to three image 
categories: SEA, COAST and CITY. Note that the name of 
image category (e.g., SEA) does not denote any semantic 
feature but a set of images in our ground truth database. 
In contrast, the texts on images are desirable semantic 
features for corresponding image parts, such as water, 
island and so on. Note that these semantic features are 
not available in our experiments and we expect they 
could be encoded by cluster labels of regions during 
clustering. However, in current example, we suppose 
they are ready to use. For example, the semantic feature 
sets of images a, b, c and d are A = {water}, B = {water, 
island}, C = {water, building-area}, and D = {build-
ing-area}, respectively. 

In both images b and c, there are two salient and het-
erogeneous objects, i.e., “sea” and “land”, which are re-
lated to a same concept “COAST”. So, most people might 
think that the two images b and c would be the most 
similar among the four images shown in Figure 2. How-
ever, this kind of human similarity judgment can not be 
validated by similarity measures based on the FC model. 
As shown in Table 1, the similarity measurement be-
tween images b and c (i.e.,     ) would be never 
higher than that between images a and b (i.e.,   ), 
and that between images c and d (i.e.,   ) at the 
same time. In other words, human similarity judgments  
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Figure 2. Example images and real semantics of regions. (a) Sea; (b) Coast; (c) Coast; (d) City. 
 

Table 1. Similarity measurements using FC. Therefore, when images b or c are judged to be the most 
similar, one actually replace semantic feature island and 
building-area with a more general feature land. As men-
tioned above, Tversky ruled out this kind of multiple 
meanings of semantic features from his set-theoretic 
similarity by assuming that available features are inde-
pendent and at a same level of generality. In image re-
trieval, the assumption is often hard to satisfy, in par-
ticular for the case that limited semantic features still 
need to be derived from low-level features or through 
interacting with users. 

 a b c d 

a            

b    2      2     

c         2     

d     2         

 
mentioned above could not be validated whatever the 
three constants (i.e.,  ,   and  ) would be when the 
FC model is used to measure the similarity. One might 
argue that this does not originate from the weakness of 
FC, but from the multiple meanings of the semantic fea-
tures. The category COAST is related to two heterogene-
ous geo-objects, i.e., water in a sea and land near the sea.  

It can be concluded from the discussion men-
tioned-above that there exist two major limitations in the 
FC model: 1) the constants in the FC model can not adapt 
with the feature sets in comparison, but only regulate the 
relative salience between common and distinct features 
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in a constant way; 2) semantics of features are assumed 
to be at a same level of generality in the FC model. 

3. Self-Adaptive Feature Contrast Model 

In this section, an adaptive feature contrast (AdaFC) 
model is presented to deal with the two limitations of the 
FC model, which have been drawn at the end of Section 
2. 

3.1. The Proposed Model 

As shown in Equation (4), there exist two kinds of sali-
ence in the FC model: 1) the salience of individual fea-
ture; 2) the relative salience between common and dis-
tinct features. Therefore, a possible way to cope with the 
limitation of the FC model to directly model salience 
between features as suitable weights. [17] explored the 
former in the fuzzy feature contrast model. Although the 
three nonnegative constants in Equation (4) can reflect 
the relative salience between common and distinct fea-
tures in a constant way, the constants are independent of 
any specific feature subset under measurement. [29] 
proposed a modified model to reflect the salience of in-
dividual feature when it acts as common or distinct fea-
ture. Following Daniel and Lee’s principle, the extreme 
case is that a feature is either purely common feature or a 
purely distinct feature. In other words, if a feature has 
been modeled as a purely distinct feature, it would not 
increase the similarity of the two objects even when it is 
a common feature in fact. Therefore, the weight defined 
by Daniel and Lee is independent of the fact that a fea-
ture is a common or distinct feature when comparing two 
objects. 

In this paper, we explore the relative salience between 
common and distinct features in the sense that the dis-
tinctiveness of distinct features is dependent on the two 
feature sets involved in current similarity assessment. 
Intuitionally speaking, some of distinct features would be 
distinguished if similarity measurement should be de-
creased significantly due to them. At the same time, we 
assume that common features are reliable and would al-
ways increase similarity measurements of images in a 
consistent way. Then, the relative salience between com-
mon and distinct features would be reduced to the sali-
ence of distinct features. To deal with the first limitation 
of the FC model, an adaptive feature contrast (AdaFC) 
model is given by 

   
   

,

, \

S a b f A B

 \g A B f A B

 

f B A   

 ,

    (10) 

where 

Similar to both FC and FFC, the AdaFC also use both 
common and distinction to measure the similarity be-
tween two objects. Different from both FC and FFC, the 
AdaFC employs an adaptive function instead of the 
three constants as shown in both Equations (4) and (7) 
to balance the common and distinction between objects 
under consideration. Since the adaptive function g(A, B) 
in the AdaFC could change with the feature sets A and 
B, the first limitations mentioned at the last section 
would be eliminated. Please note that, instead of dis- 
crete feature sets in both the FC and AdaFC, fuzzy fea- 
ture sets are used in the FFC. Consequently, it is un- 
necessary for the FFC to discretize continue visual fea- 
ture vectors of images to a set of discrete feature set. In 
the AdaFC, we used an unsupervised clustering algo- 
rithm (i.e., Kmeans) to derive a set of feature set for each 
image. 

3.2. The Adaptive Function 

g A B

 ,

 is an adaptive function describing the 
variation of relative salience of distinct features in simi-
larity measurements. 

To deal with the second limitation, a two-layer clustering 
schema is employed to explore the various generality of 
features, so that the adaptive function g A B  can be 
defined as a function of the two feature sets under meas-
urement. As shown in Figure 3, the two-layer clustering 
schema consists of two clustering algorithm, i.e., KME- 
ANS and Latent Dirichlet Allocation (LDA). The LDA 
[30] is a generative probabilistic hierarchical clustering 
model, which is originally developed to model collec-
tions of text documents. In this model, documents are 
represented as a finite mixture over latent topics, also 
called hidden aspects [31]. Each topic in turn is charac-
terized by a distribution over words. The LDA has been 
extended to model image databases for image annotation 
[5], image categorization [6], and image retrieval [32,33]. 
When the LDA is used to model image databases, the 
terms documents and topics correspond to images and 
semantic objects, respectively. As a result, an image is 
represented as a mixture of topics, in other words, a  
 

 

Figure 3. An illustration of two-layer hierarchical clustering 
process. 
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mixture of multiple semantic objects. 
As shown in Figure 3, a two-layer clustering schema 

is used to illustrate a perfect hierarchical clustering proc-
ess using a subset of images shown in Figure 2. At layer 
#1, a set of sub-images partitioning from large images 
are clustered using KMEANS algorithm, and each of 
them is allocated a label, e.g., 1, 2 and 3 in Figure 3. At 
layer #2, the LDA is used to learn semantic topics, e.g., 
T1 and T2 in Figure 3, and all images are represented as 
mixtures of the topics, e.g., MT. Each topic is a probabil-
istic distribution over the labels from KMEANS. For the 
sake of illustration, the topics T1 and T2 are tied a seman-
tic name water and land, respectively. Note that we do 
not claim that the two-layer clustering in our experiments 
would exactly behave like that. In terms of visual consis-
tence, the similarity judgment for sub-images within 
cluster 2 or 3 is more reliable than that within topic T2. In 
contrast, it is not the case for the dissimilarity judgment 
for sub-images among different clusters or topics. For 
instance, the dissimilarity judgment of sub-images be-
tween Topic T1 and T2 is more reliable than that between 
clusters 2 and 3. The reason is that clusters 2 and 3 share 
a same semantic, i.e., both of them belong to a more 
general concept land. In the proposed method, cluster 
labels instead of topic labels are used as features to rep-
resent images, because their similarity judgments are 
more reliable, and cluster labels would be at a same level 
of salience from the viewpoint of similarity measurement. 
At the same time, the adaptive function  ,g A B  based 
on topic mixtures is proposed to regulate the role of dis-
similarity judgments in any two images a and b 

     ,T T

1
,g A B KL M

T
 A M B         (11) 

where A and B are the sets of cluster labels of image a  

and b, respectively;    ,T TKL M A M B    is the Kull-  

back-Leibler divergence of topic mixture coefficients 
 TM A  and  TM B

 ,

; T is the number of topics. 
According to the definition given in Equation (11), 

adaptive function g A B  can be used to solve the 
multiple meanings of features by regulating the role of 
distinct features. For the four images shown in Figure 2, 
the expected behavior of the AdaFC model is as follows: 
1) when the similarity between images b and c is meas-
ured, it will be a smaller value, so that the distinction of 
distinct features is trivial and should be totally ignored or 
tolerated; 2) when measuring the similarity of images a 
and b (or c and d), it will be a larger value, so that dis-
tinct features would be distinguished by allocating a lar-
ger weight. 

4. Experiments and Discussion 

The goal of content-based image retrieval is to obtain 

images with content similar to a given sample image. In 
this section, the AdaFC model is evaluated in the frame-
work of content-based image retrieval for satellite images 
database. All experiments are performed on a database 
consisting of over 10,000 SPOT5 PAN images with size 
of 512 × 512. The database is made of five scenes (i.e., 
CITY, COAST, FIELD, MOUNTAIN, SEA). Except the 
scene COAST, only one typical semantic object occurs in 
the image. For instance, building-area (resp., field, 
mountain, water) occurs in the scene CITY (resp., FIELD, 
MOUNTAIN, SEA). Among all scenes in the image data-
base, COAST might be the most difficult to well retrieve 
using similarity measurements. The difficulty originates 
from two aspects: 1) images include two different se-
mantics, i.e., water and land; 2) the semantic land might 
occur in different forms, e.g., island or building-area. 

4.1. Image Representation and Similarity 
Measures 

As shown in Figure 1, image representation can be di-
vided into 4 steps: partition, feature extraction, clustering 
and representation. Each image is partitioned into 64 
sub-images with size of 64 × 64. Then, a low-level fea-
ture is extracted from each sub-image. The low-level 
features include Gabor texture, gray histogram and gra-
dient histogram. Texture feature is the average and vari-
ance of Gabor filters (2 scales and 5 directions) [34,35]. 
Therefore, each region corresponds to a 20-dimensional 
texture feature vector. In addition, after a gray histogram 
of 256 bins has been extracted from each region, the 
principal component analysis is employed to reduce the 
dimension of histogram to 20 dimensions by keeping 
more than 95% energy. The gradient histogram is created 
by first computing the gradient magnitude and orienta-
tion at each pixel in a sub-image. Then, gradient magni-
tudes of all pixels are accumulated into the orientation 
histogram, in which there are 18 orientations equally 
partitioning a circle. In total, each sub-image corresponds 
to a 58-dimensional low-level feature vector. The three 
types of low-level features are individually normalized 
using 

 
0, 3 ;

0.5 1 , 3 3 ;
3

1, 3 .

i

i i i

i i
i i i i i

i

i i i

Norm x

x x

x x
x x x

x x



 




 


        
 

  

   (12) 

where ix , ix  and i   are ith dimensional feature 
value, mean and variance. 

Based on the extracted low-level features, the two- 
layer clustering algorithm as shown in Figure 3 is used 
to allocate a label for each subimage. Using all labels of 
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sub-images in the image, images are represented as label 
vectors or sets. Apart from the extended model, two 
kinds of similarity measures are selected as benchmark 
methods in our experiments. One is the FC model, and 
the other is COV coupled with Kullback-Leibler diver-
gence. Specifically, four kinds of similarity measures in 
our experiments are described as follows: 

1) AdaFC: the extended model is defined in Equation 
(10), where the feature set for each image is a set of 
cluster label allocated by KMEANS, i.e., layer #1 clus-
tering in Figure 3, and the adaptive function defined in 
Equation (11) is dependent on the clustering from LDA, 
i.e., layer #2 clustering in Figure 3; 

2) FC: The feature contrast model is given in Equation 
(4), where the feature set for each image is a set of clus-
ter label allocated by KMEANS, i.e., layer #1 clustering 
in Figure 3; 

3) FFC: The fuzzy feature contrast model is given in 
Equation (7), where the feature vector for each image is 
the 58-dimensional low-level feature. 

4) KL: It is the Concept Occurrence Vector coupled 
with Kullback–Leibler divergence, where the vector is 
the topic mixture due to layer #2 clustering in Figure 3. 
It is a state-of-the-art approach for image retrieval using 
probabilistic topic models [14,32]. 

4.2. Experimental Results and Discussion 

Retrieval Precision (RP) and recall are used to evaluate 
the effectiveness of similarity measures. Given M re-
trieved images, assume there exist P positive images in 
the M images, and TP positive images in the image data-
base. The RP is the ratio of number of positive images to 
that of retrieved images, i.e., P/M. The recall is the ratio 
of number of positive and retrieved images to that of all 
positive images in the image database, i.e., P/TP. In ad-
dition, a Receiver Operating Characteristic (ROC) and its 
Area Under Curve (AUC) are also employed to evaluate 
the performance of the similarity measures. In the ROC, 
the false positive rate is the ratio of the number of N 
negative images in the M retrieved images to that of TN 
negative images in the image database, i.e., N/TN. The 
hit rate (i.e., true positive rate) is equal to the recall. 

In our experiments, the retrieval performance might be 
influenced by some parameters, such as the number of 
topics in the LDA, number of clusters in the KMEANS, 
the constants defined in the FC model. In the following, 
we discuss these parameters using experimental results. 

4.2.1. The Number of Topics in the LDA 
The perplexity is frequently used to assess the perform-
ance of LDA in the context of both text and image mod-
eling [14,30,31]. It measures the performance of the 
model on a held out dataset  and is defined by testD
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w N

      (13) 

where i  and i  are the set of “words” (i.e., cluster 
labels from KMEANS) and the number of words in ith 
image;  p wi  is the likelihood of ith image under the 
estimated model. 

A five-fold cross-validation is employed to determine 
the number of topics. Specifically, we use 20% images in 
the image database to train LDA models over different 
numbers of topics, and respectively calculate the per-
plexity on the 80% holdout images using Equation (13). 
The averaged value and standard variance of perplexities 
over the five-fold subsets is shown in Figure 4. It can be 
seen from Figure 4 that the perplexity decreases with an 
increasing number of topics. Specifically, when the 
number of topics is less then 15, the perplexity rapidly 
decreases. This indicates that the model does not fit the 
holdout data every well. However, when the number of 
topics is larger than 15, the perplexity becomes relatively 
stable. In other words, the fitness can not be furthermore 
improved when the number of topics is larger than 15. 
Therefore, the number of topics is set to 15 in our ex-
periments. 

4.2.2. The Number of Clusters in the KMEANS 
Because cluster labels are employed to represent images, 
the number of clusters is an important parameter for the 
“quality” of representation. Although some principles 
could be employed to select a suitable number of clusters, 
e.g., Minimum Description Length, what we are inter-
ested in is not to choose an optimal number, but expect 
that the extended model would consistently improve the 
effectiveness of FC model independent of the number of 
clusters to some extent. 

The retrieval precisions and recall, shown in the four 
plots of Figures 5 and 6 respectively, are calculated 
when the number of clusters is equal to 100, 500, 1000 
and 1500, respectively. Although the performances of 
similarity measures do change with the number of clus-
ters, the relative performances among different categories 
do not change for a given similarity measure. For exam-
ple, the retrieval precision of COAST is always the low-
est one among the five categories. The retrieval preci-
sions of both MOUNTAIN and SEA are always higher 
than 90%. 

For the category COAST, the retrieval precision of the 
AdaFC is near to 80%, and the AdaFC outperforms FC 
up to over 10% retrieval precision. For other categories, 
the performance of AdaFC is larger than or almost equal 
to that of both FC and FFC. In other words, the proposed 
adaptive function given in Equation (11) could consis-
tently improve the performance of FC. As we known, the         
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Figure 4. Perplexity vs. number of topic. 
 

 

Figure 5. Retrieval precision using AdaFC, FFC, FC and KL. (a) Number of clusters = 100; (b) Number of clusters = 500; (c) 
Number of clusters = 1000; (d) Number of clusters = 1500. 
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Figure 6. Retrieval recall using AdaFC, FFC, FC and KL. (a) Number of clusters = 100; (b) Number of clusters = 500; (c) 
Number of clusters = 1000; (d) Number of clusters = 1500. 
 
adaptive function is a function of Kullback–Leibler di-
vergence between the topic mixture coefficients for the 
two images. As shown in Figure 5, there is another 
similarity measure, i.e., Kullback-Leibler divergence 
between the topic mixture coefficients, which has been 
widely applied to image or text retrieval [14,32]. Like the 
AdaFC, the retrieval precision based on the KL is larger 
than that based on the FC for the categories COAST and 
FIELD. However, unlike the AdaFC, the performance of 
KL is significantly worse than that of FC for the rest of 
categories, i.e., CITY, MOUNTAIN and SEA. Therefore, 
it can be concluded from these results that the AdaFC 
inherits the merits from both the FC and the KL. In other 
words, it is the two-layer clustering schema (KMEANS + 
LDA) that makes the adaptive become a successful prac-
tice. 

Figure 7 lists the Receiver Operating Characteristic 
and its Area Under Curve (AUC). In terms of the AUC, 
the AdaFC outperforms both the FC and KL whatever 
the number of cluster is. The AdaFC is still comparable 
to the FFC when the number of cluster is equal to 1500. 
In addition, when the false positive rate is less than 0.2, 
the true positive of the AdaFC is always higher than that 
of the FFC. 

4.2.3. Constant Parameters vs. Adaptive Function 
The three constants in Equation (4), i.e.,  ,   and   
do reflect the relative salience of common features (i.e., 

B ) and two kinds of distinct feature (i.e., A A B  
and B A ). One might argue that the FC could perform 
as well as the AdaFC after the constants are carefully 
selected. In the following, two experiments are made to 
refute this argument. 

It can be seen from comparing Equation (10) and 
Equation (4) that there exist two assumptions about the 
relative salience in similarity measurements, i.e., 1 , 
   and the constant   is replaced with an adaptive 
function  ,g A B

1

 in Equation (10). To fairly compare 
the performance between the FC and AdaFC, we assume 
that  ,     and the constant  increase from 0 
to 1 at the step of 0.1 in the first experiment. Table 2 lists 
the retrieval precisions for the FC when 1  and the 
 increase from 0 to 1. It can be seen from Table 2 that: 
(1) the retrieval precision does not change very much for 
all of six categories when the  increase from 0 to 1; (2) 
for the category COAST, the highest retrieval precision is 
still lower than 70%. However, as shown in Figure 5, the 
retrieval precision of AdaFC is near to 80%. Therefore, 
we an not expect that the performance of the AdaFC can    
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Figure 7. The ROC of the AdaFC, FFC, FC and KL. (a) Number of clusters = 100; (b) Number of clusters = 500; (c) Number 
of clusters = 1000; (d) Number of clusters = 1500. 
 

Table 2. Retrieval precisions using the FC when theta =1 and alpha varies from 0 to 1. 

 Category 
alpha 

CITY COAST FIELD MOUNTAIN SEA 

0 0.9171 0.6908 0.8197 0.9858 0.9732 

0.1 0.9215 0.6957 0.8244 0.9866 0.9759 

0.2 0.9215 0.6942 0.8242 0.9866 0.9766 

0.3 0.9217 0.6917 0.8238 0.9866 0.9772 

0.4 0.922 0.6896 0.8227 0.9865 0.9778 

0.5 0.9224 0.6869 0.8219 0.9866 0.9776 

0.6 0.9223 0.6846 0.8214 0.9866 0.9779 

0.7 0.9222 0.682 0.8207 0.9865 0.9781 

0.8 0.9222 0.6812 0.8205 0.9865 0.9781 

0.9 0.9222 0.6811 0.8205 0.9865 0.9781 

1 0.9219 0.6775 0.819 0.9863 0.978 
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be obtained by the FC through selecting a suitable value 
for the  , since the adaptive function  ,g A B  in the 
AdaFC is not a constant, but is adaptive with both A and 
B. 

The other question is whether we could obtain the 
same performance of the AdaFC through changing the 
two kinds of constants, i.e.,   for common features and 
 ,   for distinctive features, at the same time. To an-
swer this question, a second experiment is made to 
evaluate the effect when the constant   for comment 
features and   (or  ) for distinct features are a con-
vex combination, i.e., 1    and   . Table 3 
list the retrieval precisions for the FC when the   in-
creases from 0 to 1, 1    and   . For the 
category COAST, the highest retrieval precision is still 
lower than 70%. Although only a simple linear convex 
combination is tested in this experiment, we still could 
believe that the performance of the AdaFC can not be 
obtained using the FC only by selecting a suitable set of 
constants. 

4.2.4. Retrieval Results 
Apart from the statistical retrieval performance men-
tioned above, two intuitional retrieval results are shown 
in Figures 8(a) and (b), where we used a same querying 
image (i.e., the top-left COAST image in Figure 8(a) or 
Figure 8(b)) coupled with two similarity measures (i.e., 
AdaFC and FC). As shown Figure 8(a), all of the top 40 
most similarity images belong to the same category as 
the querying image, i.e., COAST. In contrast, as shown in 
Figure 8(b), both one CITY image and two SEA images 
are incorrectly retrieved the FC as a similarity mea-  

surement. Since there are two geo-objects in the querying 
image, i.e., water and building-area, both CITY and 
COAST images could be retrieved using the FC. The 
contrast between the two retrieval results intuitionally 
shows the improvement of AdaFC over FC. 

5. Conclusion 

In this paper, we extend Tversky’s FC model to the 
situation that semantic features might not be at a same 
level of generality. Unlike common features, the role of 
distinct features might be switched from one state to an-
other in the situation. Therefore, an adaptive function is 
employed to simulate the switch of distinct features in 
satellite image retrieval. Experimental results show that 
the retrieval precision can be improved more than 10% 
for satellite images with heterogeneous objects, e.g., 
COAST images. However, the solution is still far from 
achieving fluent feature selection of human, which actu-
ally is a process of feature selection for a given task. 
Therefore, the key is to discover the relevance of features 
to the goal when comparing two objects. However, the 
term feature selection (i.e., select relevant features for 
objects to be compared) is different from that used in 
machine learning (i.e., select a subset of features for all 
objects from a feature set). It seems to be a “local” or 
real-time feature selection in the sense that selected fea-
tures would not be used in a consistent way. Therefore, 
the feature switch of human is too ideal to realize in real 
applications. Any way, we attempt to approach it in some 
limited situations. The next step is to explore the rele-
vance of features during feature extraction. Then, fea-
tures could be utilized in a more local or real-time way. 

 
Table 3. Retrieval precisions using the FC when theta = 1-alpha and theta varies from 0 to 1. 

         Category 
Theta 

CITY COAST FIELD MOUNTAIN SEA 

0 0.9196 0.6556 0.8087 0.9851 0.9769 

0.1 0.9211 0.6633 0.8129 0.9857 0.9784 

0.2 0.9211 0.6648 0.8129 0.9857 0.9785 

0.3 0.9215 0.6688 0.814 0.9858 0.9784 

0.4 0.9218 0.6737 0.8164 0.986 0.9783 

0.5 0.9219 0.6775 0.819 0.9863 0.978 

0.6 0.9222 0.6833 0.8209 0.9866 0.978 

0.7 0.9221 0.6891 0.8227 0.9865 0.9778 

0.8 0.9216 0.6927 0.824 0.9866 0.9768 

0.9 0.9215 0.6957 0.8244 0.9866 0.976 

1 0.9171 0.6908 0.8197 0.9858 0.9732 
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Figure 8. (a) Retrieval results using AdaFC where all of retrieved images are COAST images; (b) Retrieval results using FC 
where there are two SEA images and CITY image are incorrectly retrieved. 
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