
Int. J. Communications, Network and System Sciences, 2017, 10, 59-74
http://www.scirp.org/journal/ijcns

ISSN Online: 1913-3723
ISSN Print: 1913-3715

DOI: 10.4236/ijcns.2017.104004 April 28, 2017

New Synchronization Algorithm Based on Delta
Synchronization for Compressed Files in the
Mobile Cloud Environment

Rizik M. H. Al-Sayyed, Feras F. Namous, AlMonther H. Alkhalafat, Bashar Al-Shboul,
Samar Al-Saqqa*

Department of Business Information Technology, King Abdulla II School for Information Technology, The University of Jordan,
Amman, Jordan

Abstract
The fast growing market of mobile device adoption and cloud computing has
led to exploitation of mobile devices utilizing cloud services. One major chal-
lenge facing the usage of mobile devices in the cloud environment is mobile
synchronization to the cloud, e.g., synchronizing contacts, text messages, im-
ages, and videos. Owing to the expected high volume of traffic and high time
complexity required for synchronization, an appropriate synchronization al-
gorithm needs to be developed. Delta synchronization is one method of syn-
chronizing compressed files that requires uploading the whole file, even when
no changes were made or if it was only partially changed. In the present study,
we proposed an algorithm, based on Delta synchronization, to solve the prob-
lem of synchronizing compressed files under various forms of modification
(e.g., not modified, partially modified, or completely modified). To measure
the efficiency of our proposed algorithm, we compared it to the Dropbox ap-
plication algorithm. The results demonstrated that our algorithm outper-
formed the regular Dropbox synchronization mechanism by reducing the
synchronization time, cost, and traffic load between clients and the cloud ser-
vice provider.

Keywords
Mobile Cloud Computing, Delta Synchronization, Compressed Files, Dropbox

1. Introduction

Mobile devices play an essential role in everyday life owing to their communica-
tion effectiveness and mobility features. Mobile companies compete to build
business models based on developing mobile applications that can assist people

How to cite this paper: Al-Sayyed, R.M.H.,
Namous, F.F., Alkhalafat, A.H., Al-Shboul,
B. and Al-Saqqa, S. (2017) New Synchroni-
zation Algorithm Based on Delta Synchro-
nization for Compressed Files in the Mo-
bile Cloud Environment. Int. J. Communi-
cations, Network and System Sciences, 10,
59-74.
https://doi.org/10.4236/ijcns.2017.104004

Received: November 19, 2016
Accepted: April 25, 2017
Published: April 28, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/ijcns
https://doi.org/10.4236/ijcns.2017.104004
http://www.scirp.org
https://doi.org/10.4236/ijcns.2017.104004
http://creativecommons.org/licenses/by/4.0/

R. M. H. Al-Sayyed et al.

60

and dominate the marketplace.
Various mobile platforms (e.g., ios and Android) compete to enrich their us-

ers with powerful applications that might include cloud applications.
Cloud computing has been widely recognized as the next generation in com-

puting infrastructure; it offers many advantages such as allowing users to employ
infrastructure devices (i.e., servers, networks, and storages), platforms (i.e., mid-
dleware services and operating systems), and software (i.e., application pro-
grams) provided by cloud providers (e.g., Google, Amazon, Azure, and Oracle)
at low cost. In addition, cloud computing enables users to utilize resources in an
on-demand manner. As a result, both academia and the IT industry have been
encouraged to improve and merge mobile computing and cloud computing to-
gether into mobile cloud computing (MCC) and provide possible solutions for
any challenges associated with this new environment. One of these challenges is
mobile cloud synchronization [1], which is the focus of the present study. For
mobile cloud synchronization, many IT companies are competing to determine
the best solutions for any associated problems and are trying to determine the
type of data that the user requires to be portable.

MCC is a combination of mobile computing, cloud computing, and mobile
internet, and it integrates the advantages of these three technologies. Therefore,
it can be called cloud computing for mobiles.

At its simplest, MCC refers to an infrastructure where data storage and data
processing are both performed from a mobile device, where applications transfer
the computing power and data storage onto the cloud [2]. Therefore, various
business opportunities for mobile network operators, as well as cloud providers,
arise as the large computing power of the cloud is harnessed to benefit different
types of mobile users.

As shown in Figure 1, the architecture of mobile cloud computing consists of
two main components: mobile computing and cloud computing [3]. The mobile
computing component consists of various mobile devices such as smart phones,
PDAs, and laptops. These devices are normally connected to a network via dif-
ferent communication technologies that enable the mobile user to send requests
to the cloud service provider so adequate resources can be allocated to the mo-
bile devices throughout the established connection. By starting the web applica-
tion, the monitoring and calculating functions of the system are implemented to
guarantee that quality of service is maintained until the connection is completed
and the task is performed. This process includes accomplishing tasks such as
sending responses rapidly, synchronizing files, and load balancing to ensure that
the resources are allocated fairly to the appropriate clients.

MCC has a major benefit of moving data storage and computing power from
mobile devices to the cloud, with other benefits including solving the problem of
short battery life via transferring the execution of extensive communications to
the cloud and centralizing security that might be useful in detecting patterns of
security threats.

However, many challenges arise for MCC such as synchronization, quality of

R. M. H. Al-Sayyed et al.

61

communications (i.e., wired, wireless, 3G, and LTE), quality of service (i.e., la-
tency, delay, and bandwidth), mobile device classification (i.e., high-end, low-
end, battery, CPU, and RAM), and individualization of mobile for various
available operating systems.

In this context, we need to introduce cloud storage. Figure 2 briefly illustrates
the evolution of cloud storage that is based on the traditional network storage
and on hosted storage [4]. Applications employ traditional network storage to

Figure 1. Mobile cloud computing architecture [3].

Figure 2. Evolution of cloud storage [4].

R. M. H. Al-Sayyed et al.

62

store data either using the Network Files System or the Common Internet File
System directly or via the Internet. Hosted storage employs clouds owned by
cloud service providers to enable applications to store users’ data via the Internet.

Cloud storage consists of logical pools that physically span to multiple servers
and possible locations. These physical environments are usually owned and ma-
naged by cloud companies (called hosting cloud storage providers) such as Mi-
crosoft Azure and Amazon Web Services.

The main responsibilities of these cloud storage providers are to maintain the
data and ensure it is available and accessible to its clients, as well as to protect
the physical environment and ensure it remains running efficiently. Organiza-
tions and people lease or buy storage capacity from these cloud providers to
store data for users, organizations, and/or applications [5].

Cloud storage systems occur in many different varieties, i.e., several storage
systems are specialized and have a specific focus (e.g., the storage of web email
messages or the storage of digital pictures), while other cloud storage systems are
utilized to store digital data of all forms. Certain cloud storage systems might be
described as small operations, while others are so large that their physical
equipment can fill up an entire warehouse. The combined facilities that house
and compose the cloud storage systems are known as data centers.

Each cloud storage system requires one data server and a connection to the
Internet via an ISP. Any client (e.g., mobile user subscribing to any cloud storage
service) sends their file(s) over the Internet to the cloud data server and then the
cloud data server records the sent information. If the client requested action is to
retrieve the information, he/she accesses the corresponding cloud data server via
an interface that is web-based. The cloud server can then either send the re-
quested file(s) back to the client who made the request or allow the client to ma-
nipulate and access the file(s) on the server itself.

Synchronization is a method to synchronize a single set of data (such as a us-
er’s contact list) by automatically copying any changes back and forth between
the mobile device and the cloud storage. This process ensures that the user’s data
can be easily viewed from anywhere by any authorized mobile device. For exam-
ple, mobile users of Google Drive and Dropbox can access and share their own
data in mobile environments. In such applications, a user can add or modify a
file in his/her local folder and this update is then automatically reflected (syn-
chronized) by a cloud server. In the case of sharing a file with other users, the
cloud server takes the responsibility of synchronizing this shared file with all
sharing users. If this file has frequent updates, it generates a significant amount
of traffic during the synchronization process, which leads to challenges with
trying to determine ways of reducing the synchronization traffic and its required
time. These challenges constitute one of the most important issues in applica-
tions that employ data sharing [6].

A major issue in MCC synchronization is how to guarantee the data that is
required to be synchronized given the different uncertainties, e.g., disconnec-
tions before process completion and insufficient cloud storage space. The

R. M. H. Al-Sayyed et al.

63

present study addresses the problems of synchronization, discusses a synchroni-
zation method utilized by one major cloud service provider, and proposes a new
method of synchronization.

This work proposes an algorithm, based on Delta synchronization, to solve
the problem of synchronizing compressed files under various forms of modifica-
tion (e.g., not modified, partially modified, or completely modified). To measure
the efficiency of our proposed algorithm, we compared it to the Dropbox appli-
cation algorithm.

This paper is organized as follows. Section 2 covers a literature review related
to the research, while section 3 explains the concept of Delta synchronization. In
section 4, the research problem is defined, and a theoretical solution and our
proposed algorithm design are described. The experimental setup is shown in
section 5, while results are discussed in section 6. Section 7 provides the conclu-
sions of the study.

2. Literature Review

Many mobile cloud applications share data among various users and synchron-
ize with their corresponding cloud servers. In [7], an Update-triggered Delta
Synchronization (UDS) algorithm was proposed, which is a popular solution for
data synchronization in mobile cloud applications.

Delta encoding computes the difference (i.e., Delta) between the old and new
versions of a file. When a shared file is modified, only the difference in the file
computed by the algorithm is notified to the users and the cloud server for syn-
chronization. If the shared file is frequently modified, and a large number of us-
ers are sharing the file, the proportion of synchronization traffic of the UDS al-
gorithm is deemed significant. Therefore, a proxy-based aggregated synchroni-
zation scheme has been proposed to reduce the synchronization overhead when
frequent updates were applied to a shared file being accessed (shared) by many
users [8].

An efficient Delta synchronization (EDS) algorithm that improves the per-
formance of the UDS has been proposed [9]. The algorithm aggregates updated
data (i.e., Delta) in a step aimed at reducing the network traffic, and then syn-
chronization is applied to the aggregated updates in a periodic manner to reflect
modifications and satisfy consistency of files. In MCC, the cloud service is uti-
lized to resolve the resource constraint problem of mobile device offloading,
which causes excessive mobile battery consumption.

In Min & Hei work [10], a response time-based model was proposed, where
data synchronization was perceived to estimate the efficiency of the offloading
scheme in terms of response time. The goal was to improve the accuracy of the
response time estimation when the cloud processes the requested task received
from any mobile device.

Domingos et al. [11] proposed adapting the Synchronization Algorithms
based Message Digest to the mobile environment to minimize the usage of mo-
bile device resources (i.e., reducing the amount of data transmitted during the

R. M. H. Al-Sayyed et al.

64

synchronization process and reducing the processing carried out by the mobile
device) by using only standard Structure Query Language (SQL) queries. The
major goal for this proposed model was to minimize the amount of data ex-
change.

Furthermore, the authors of [12] proposed a model to Improve Synchroniza-
tion Algorithms based on Message Digest (ISAMD) to resolve inconsistencies
between the server-side database and the mobile client database.

Asynchronous data synchronization model that blocks the user interface dur-
ing synchronization to prohibit any updates during the synchronization process
has also been proposed [13], although this model disables other processes during
synchronization and is disliked by the majority of users.

3. Delta Synchronization

Delta synchronization is one of the available designs that can assist in solving the
challenges facing synchronization [14]. It is a new feature that increases the
speed of transfer of updated files by only uploading/downloading the modified
parts of the files, instead of sending/receiving the entire files whenever the files
are changed.

3.1. Description

Figure 3 provides an example of Delta synchronization, showing six users on the
left hand side, with two of these users (numbers 2 and 6) altering their data (dif-
ferent colors indicate a change) and the remaining users (1, 3, 4, and 5) not al-
tering their data. For the latter users who have not changed their data, we avoid
re-synchronizing the data and synchronization was only applied to the data of
users 2 and 6 as their data had changed.

3.2. Solution

A variant of Delta Synchronization called EDS is shown in Figure 4.

Figure 3. Delta synchronization example.

R. M. H. Al-Sayyed et al.

65

Figure 4. Efficient delta synchronization [9].

In EDS, a given file F is shared by N+1 mobile nodes and the file is synchro-

nized with the corresponding cloud server. Let F' be a newer version of F and d
denotes the difference between F and F'. The nth update of d is denoted by dn. In
this environment, a mobile node can be one of the following two types: a write
node (i.e., W-node) or a read-only node (i.e., R-node). To avoid simultaneously
updating the F file from more than one node, only one node is allocated as a
W-node while the remaining M nodes are allocated as R-nodes. Regardless of
whether the file is compressed or not, the W-node is able to update d of the file F
onto the cloud server. During the writing connection, the update process re-
quires a T time interval. At the end of the writing connection of the W-node
(i.e., once the process is terminated) another new W-node is selected. On the
other side of this process, the file F can be read by activating the R-nodes during
the T time interval. Any activated R-node during the read-only operation of the
file F is called an activated R-node.

The synchronization process commonly involves extra overhead owing to the
setup and maintenance of the TCP/HTTP(S) and the delivery of metadata be-
tween the cloud server and the R-node. Aggregating the updates from the
W-node in the cloud server and propagating them to all the R-nodes to complete
synchronization later greatly assists in mitigating the traffic overhead. As a re-
sult, a d update from the W-node is determined to be either aggregated in the
cloud server or synchronized with all R-nodes at each T time interval. Although
update aggregation can mitigate the traffic of synchronization, it can also cause
inconsistency between the activated R-nodes and the W-node; in such case and
when the updates are not yet modified, the activated R-node could possibly use
an F file that is outdated.

3.3. Motivation

Even though Delta synchronization assists in solving the problem of redundant
data synchronization that decreases the cloud storage usage, it is problematic

R. M. H. Al-Sayyed et al.

66

when dealing with new mobile device users who frequently access large files.
Generally, large files (e.g., video, music, digital photo, Photoshop files, among
others) are stored compressed; therefore, a change in a small part of a com-
pressed file requires re-synchronizing the whole file because Delta synchroniza-
tion does not deal with file parts. Therefore, there is a need for the proposal of a
new model to be developed to overcome this problem.

4. Proposed Method

Delta synchronization is a reasonable solution when handling regular files.
However, it significantly fails when handling large compressed files, with the
main source of failure being that the whole file has to be re-synchronized instead
of merely updating the sub-files. This causes network congestion and reduces
the available bandwidth, especially when synchronizing mobile devices in a
wireless environment.

One possible solution to the problem of synchronizing large compressed files
is to synchronize only the altered sub-files contained within the compressed file.
Given that compressed files normally have many sub-files, a logical method to
update the files contained within is to decompress the files, synchronize the up-
dated sub-files, and then recompress the files. This process might take a consi-
derable amount of time, especially when there is a large number of compressed
files. Therefore, the development of a method to synchronize only the changed
sub-files without having to send the whole folder and have to go through the
lengthy process of extracting and compressing is required. Such a method would
reduce the time, traffic overheads, and synchronizing costs. In the present study,
we propose a method (an algorithm) that will only update the sub-files of a large
compressed file.

Specifically, the proposed algorithm employs the concepts of hashing or hash
functions. Hashing is utilized to convert several data types into a relatively small
number that could serve as digital “fingerprint” data. The algorithm used in
hashing is the one that manipulates the data to create the fingerprints that are
called hash values or hash codes.

Figure 5 illustrates a client who has a database that contains a hash code for
each synchronized file and its sub-files (of the compressed file), i.e., a client who
has a compressed file and needs to synchronize it. Our synchronizing algorithm
works by first calculating the hash code and, based on it, assumes one of three
cases: 1) the compressed file is new, 2) the compressed file is not updated, and 3)
the compressed file is updated. In the third case, four different scenarios for the
sub-files are possible: a) the sub-file is new (No Update is Needed), b) the
sub-file exists but has not been updated (Inserting a New Sub-file), c) the
sub-file exists and has been updated (Updating an Existing Sub-File), and d) the
sub-file has been deleted (Deleting an Existing Sub-file). At the end, the algo-
rithm applies the necessary synchronization and deletes the resulting lists. A de-
tailed description of our proposed synchronization algorithm is described in
Figure 6.

R. M. H. Al-Sayyed et al.

67

Figure 5. Compression delta synchronization system.

5. Experimental Design

The hardware and software utilized play an important role in the performance of
any algorithm subject evaluation or study. For algorithm implementation and
experiment design in the present study, a laptop with regular hardware (i.e.,
Core i5-5200U CPU @ 2.20 GHz, 8 GB RAM) and software (i.e., Windows 10
Pro x64) specifications was utilized. We implemented our proposed algorithm
under Visual Studio 2010, with C#. Furthermore, MD5 hashing function was al-
ready embedded within the .Net 4.0. Even though MD5 has some security con-
cerns and can be figured by simple reverse engineering technique such as
Brute-force attacks, it was selected because of its calculation speed. The disad-
vantages of using MD5 fall outside the scope of the present study and should be
discussed further in the future.

R. M. H. Al-Sayyed et al.

68

For simplicity, a small database architecture was created. The database con-
tained just one table with three columns (Table 1). The File Parent column was
utilized to hold the name of the compressed file, while the File FullName column
was utilized to hold the name of the sub-file(s). Finally, the File Hash was uti-
lized to hold the value of the Hash code of File FullName.

The main motive behind creating this database was to summarize files saved
on the client’s device. In addition, changes during the synchronization process
were saved as there was no need to monitor each change in all of the client’s
files.

Figure 6. Proposed synchronization algorithm.

Table 1. Database architecture: files table.

File Parent Text

File FullName Text

File Hash Text

R. M. H. Al-Sayyed et al.

69

6. Results and Discussion

To analyze the results of our proposed algorithm, we conducted two different
tests (Test 1 and Test 2). In Test 1, the time required to perform an operation
was recorded and compared between various file sizes, while in Test 2 the pro-
posed method was benchmarked in a live environment against a popular cloud
service provider. Results of the Test 1 experiment are reported in Table 2, which
summarizes the results we recorded running our proposed algorithm on a num-
ber of different compressed files, each of which had a different file size and file
type (e.g., text, image, audio, and video). For each compressed file, five different
synchronization times for five different cases were recorded. First, the required
time needed for inserting a new compressed file was recorded. Then, the time
necessary to determine that there was no need to update was calculated, i.e., the
time required for calculating and comparing the hash codes, the time needed
when a new sub-file had to be inserted, the time needed for updating that file,
and the time needed to delete a sub-file. Regarding the state where No Update is
Needed involved synchronizing the same file without any changes. It is shown in
Table 2 that our proposed algorithm performed very well as it did not upload
any file and took a relatively short time to ensure that no changes were available
while calculating the HashCode. Inserting a New Sub-file was concerned with
the state where a new file had been inserted into the compressed file. In our
proposed algorithm, only the new sub-file was synchronized instead of updating
the whole compressed file. Updating an Existing Sub-File case dealt with updat-
ing one of the sub-files in the compressed file; therefore, the updated sub-file
was synchronized instead of synchronizing the whole compressed file. Finally,
Deleting an Existing Sub-file was the state when the existing sub-file available
inside the compressed file had been deleted. Our proposed algorithm was capa-
ble of deleting the targeted sub-file from the compressed file, and there was no
need to synchronize the whole compressed file.

The result revealed that the time for calculating the HashCode (no update)
was consistently the minimum for each of the nine files (Table 2, column 3) and
the maximum time needed was for inserting a new compressed file (Table 2,

Table 2. Test 1: compressed files recorded results.

File size
(MB)

Insert new file
(ms)

No update
(ms)

Insert new sub-file
(ms)

Update sub-file
(ms)

Delete sub-file
(ms)

36 1423 320 681 653 638

45 5313 467 1,231 874 859

64 4783 623 4629 4577 4536

105 7217 922 6671 6649 6725

123 6006 1093 3417 3372 3385

137 9791 970 3806 3837 3695

213 5363 1023 3625 2813 2843

664 53,225 7000 36,537 36,483 36,998

1710 >65,800 >13,000 >79,000 >81,000 >80,000

R. M. H. Al-Sayyed et al.

70

column 2). As shown in Table 2 and by comparing the recorded times for all
cases, it can be concluded that our proposed algorithm significantly reduced the
time needed to perform a specific operation (e.g., insert, update, delete, and so
on) resulting in a reduced cost. However, the sub-files that were subject to modi-
fications in all cases were mainly small files; hence, the experiment was subject to
file type/size adjustments.

To benchmark the efficiency of our algorithm, we compared our results with a
popular live cloud synchronizing environment, the Dropbox application (Drop-
box, Inc., headquartered in San Francisco, California, USA, [15]). In this test,
called Test 2, Case 1, we developed an application to upload a file to Dropbox
while measuring the time needed for uploading the file. Table 3 summarizes the
performed experiments. In brief, five different groups, each of which contained
three files of the same type (e.g., text, image, audio, video, and mixed type) with
various file sizes were utilized.

As shown in Table 3, the original file size before and after compression was
calculated before performing other operations. For file compression, we applied
the free WinZip tool embedded within Windows. Further, the compression ratio
(CR) was calculated and then reported as shown in Equation (1):

,CR OFS CFS= (1)

where, OFS denotes the original file size and CFS represents the compressed file
size.

Table 3 reveals that the compression ratio for text files was higher than for
other file types, and reports the time required to insert the compressed file com-
pletely, while the other reported results are similar operations to those explained
for Table 2.

Table 3. Test 2, case 1: Dropbox performance.

File
Type

Original file
size (MB)

Compressed file
size (MB)

Compressed
ratio (%)

Insert new
compressed file (ms)

No update
(ms)

Insert new
sub-file (ms)

Update
sub-file (ms)

Delete
sub-file (ms)

1) Text 22.866 0.368 62.14 5547 4620 5865 5819 5973

2) Text 91.464 1.471 62.18 18,082 16,384 18,907 17,171 15,964

3) Text 548.789 8.824 62.19 96,671 91,745 95,875 90,451 89,881

4) Image 6.453 5.969 1.08 73,150 62,517 65,426 65,161 63,401

5) Image 12.757 11.793 1.08 144,400 126,933 136,131 127,689 125,989

6) Image 16.856 15.623 1.08 170,872 165,042 168,775 167,931 164,182

7) Audio 0.789 0.77 1.02 10,639 8692 16,339 11,940 9001

8) Audio 8.21 8.197 1.00 89,009 87,143 102,964 103,520 87,446

9) Audio 11.801 10.961 1.08 118,074 114,280 115,088 116,505 112,339

10) Video 9.157 9.126 1.00 113,512 106,765 111,954 112,978 105,092

11) Video 11.272 11.243 1.00 122,445 121,639 123,645 135,750 119,542

12) Video 18.313 18.289 1.00 196,396 191,153 200,863 209,934 190,158

13) Mixed 7.81 7.62 1.02 95,149 89,694 93,207 93,805 90,117

14) Mixed 15.421 7.981 1.93 100,791 88,043 107,824 103,753 99,635

15) Mixed 33.675 12.366 2.72 129,351 127,173 136,935 139,762 128,964

R. M. H. Al-Sayyed et al.

71

It can be seen that the Dropbox application did not reduce the synchroniza-
tion time when any change occurred during the synchronization process for all
file sizes and types as the whole compressed file had to be re-synchronized. The
slight change in time between the different cases (e.g., Table 3 columns 5
through 9) were expected and could be attributed to the load on the Internet or
the bandwidth of the network hosting the mobile.

We applied our proposed algorithm to the same dataset used in the Dropbox
experiment (Test 2, Case 1) and recorded the results in Table 4; we called this
experiment Test 2, Case 2.

In Table 4, it can be seen that the time needed to perform the same operation
was reduced by a great magnitude when applying our proposed algorithm com-
pared to the time required by the Dropbox application reported in Table 3.

The changes we applied to the sub-files for each row of Table 3 and Table 4 are
recorded in Table 5. These changes were applied for Case 1 and Case 2 of Test 2.

Table 6 contains the performance gain achieved by our algorithm and shows
only the performance gain percentage (PGP) for clear and useful comparison.
We calculated the PGP as shown in Equation (2):

()
100%,

DbxT PrT
PGP

DbxT
−

= × (2)

where DbxT is the time required by the Dropbox application and PrT is the time
required by our proposed algorithm.

Table 6 shows the PGP we achieved by applying our proposed algorithm to
the different cases. When no update occurred at all, the performance gain was
slightly higher than 99.5% while the lowest reported performance gain was for
the text files. On average, the performance gain for inserting the compressed text

Table 4. Test 2, case 2: proposed algorithm performance.

File Type
Original file

size (MB)
Compressed file

size (MB)
Compressed

ratio (%)
Insert new

compressed file (ms)
No update

(ms)
Insert new

sub-file (ms)
Update

sub-file (ms)
Delete

sub-file (ms)

1) Text 22.866 0.368 62.14 2955 206 874 737 658

2) Text 91.464 1.471 62.18 6066 51 1891 1816 1735

3) Text 548.789 8.824 62.19 36,780 84 9150 9113 9058

4) Image 6.453 5.969 1.08 2500 72 1163 1064 983

5) Image 12.757 11.793 1.08 4769 96 3126 1689 1686

6) Image 16.856 15.623 1.08 6066 112 2638 2956 2304

7) Audio 0.789 0.77 1.02 332 53 339 569 352

8) Audio 8.21 8.197 1.00 1324 82 910 1188 699

9) Audio 11.801 10.961 1.08 1439 92 865 932 838

10) Video 9.157 9.126 1.00 634 86 521 483 421

11) Video 11.272 11.243 1.00 853 94 573 697 517

12) Video 18.313 18.289 1.00 1180 145 961 956 679

13) Mixed 7.81 7.62 1.02 645 74 473 454 384

14) Mixed 15.421 7.981 1.93 1516 82 747 985 668

15) Mixed 33.675 12.366 2.72 2732 99 1489 1559 1117

R. M. H. Al-Sayyed et al.

72

Table 5. Changes applied to all sub-files.

File Type Sub-file size Update size

1) Text 0.141 MB Adding 5 Characters

2) Text 0.846 MB Adding 20 Characters

3) Text 1.691 MB Deleting 10 Characters

4) Image 0.126 MB Rotating image

5) Image 0.149 MB Rotating and filtering image

6) Image 1.437 MB Rotating 3 images and changing the light of 1 image

7) Audio 0.630 MB Minimizing the same file to 0.212 MB

8) Audio 1.510 MB Enlarging the same file to 1.720 MB

9) Audio 0.186 MB Enlarging the same file to 0.210 MB

10) Video 0.850 MB Enlarging the same file to 0.950 MB

11) Video 0.953 MB Enlarging the same file to 2.139 MB

12) Video 0.815 MB Minimizing the same file to 0.437 MB

13) Mixed Text file 0.141 MB and an audio file 0.815 MB Adding 5 Characters to the new text file and rotating the new image

14) Mixed Text file 0.216 MB and a video file 1.187 MB
Adding 10 Characters to the new text file and minimizing video to

0.753 MB

15) Mixed
Text file 0.216 MB and image file 0.137 MB and an audio file

0.815 MB and a video file 1.187 MB
Adding 5 Characters to the new text file and rotating the new image

and maximizing video to 1.283 MB

Table 6. Percentages of performance gain improvement.

File Type
Original file size

(MB)
Compressed file

size (MB)
Compressed ratio

(%)
Insert new

compressed file (%)
No update

(%)
Insert new

sub-file (%)
Update

sub-file (%)
Delete

sub-file (%)

1) Text 22.866 0.368 62.14 46.728 95.541 85.098 87.335 88.984

2) Text 91.464 1.471 62.18 66.453 99.689 89.998 89.424 89.132

3) Text 548.789 8.824 62.19 61.953 99.908 90.456 89.925 89.922

Average 62.17 58.378 98.379 88.518 88.895 89.346

4) Image 6.453 5.969 1.08 96.582 99.885 98.222 98.367 98.450

5) Image 12.757 11.793 1.08 96.697 99.924 97.704 98.677 98.662

6) Image 16.856 15.623 1.08 96.450 99.932 98.437 98.240 98.597

Average 1.08 96.577 99.914 98.121 98.428 98.569

7) Audio 0.789 0.77 1.02 96.879 99.390 97.925 95.235 96.089

8) Audio 8.21 8.197 1.00 98.513 99.906 99.116 98.852 99.201

9) Audio 11.801 10.961 1.08 98.781 99.919 99.248 99.200 99.254

Average 1.03 98.058 99.739 98.763 97.762 98.181

10) Video 9.157 9.126 1.00 99.441 99.919 99.535 99.572 99.599

11) Video 11.272 11.243 1.00 99.303 99.923 99.537 99.487 99.568

12) Video 18.313 18.289 1.00 99.399 99.924 99.522 99.545 99.643

Average 1.00 99.381 99.922 99.531 99.535 99.603

13) Mixed 7.81 7.62 1.02 99.322 99.917 99.493 99.516 99.574

14) Mixed 15.421 7.981 1.93 98.496 99.907 99.307 99.051 99.330

15) Mixed 33.675 12.366 2.72 97.888 99.922 98.913 98.885 99.134

Average 1.89 98.569 99.916 99.237 99.150 99.346

rand Average 13.436 90.192 99.574 96.834 96.754 97.009

R. M. H. Al-Sayyed et al.

73

files was only 58%. Even though this value was lower than that for the other file
types, it still remains a significantly high performance gain. The performance
gain for inserting a compressed file was greater than 96% for all other file types.
A possible reason for the relatively low performance gain reported for text files
might be the high compression ratio compared to other file types. However, the
problem of inspecting the details of this variability is not in the scope of this pa-
per and requires future research.

7. Conclusion and Future Work

In the present study, we proposed a new algorithm based on Delta synchroniza-
tion that greatly improved the synchronization process and solved the problem
of synchronizing compressed files. Two tests to validate the proposed algorithm
were designed that compared the required time for achieving only specific
changes in the compressed file instead of updating the whole file, and that
benchmarked our proposed algorithm by comparing its performance to the
Dropbox application that synchronizes the whole file after any amendment. Our
proposed algorithm proved to work more efficiently than the Dropbox applica-
tion did and demonstrated great potential in the field of cloud synchronization.
However, there is stillroom for improvement, with testing of different scenarios
and benchmarking with various providers required.

References
[1] Kaur, K., Sharma, S. and Arora, M. (2014) Mobile Cloud Computing Techniques: A

Review. International Journal of Advanced Research in Computer Engineering &
Technology, 3, 4.

[2] Dinh, H.T., Lee, C., Niyato, D. and Wang, P. (2013) A Survey of Mobile Cloud
Computing: Architecture, Applications, and Approaches. Wireless Communica-
tions and Mobile Computing, 13, 1587-1611. https://doi.org/10.1002/wcm.1203

[3] Asrani, P. (2013) Mobile Cloud Computing. International Journal of Engineering
and Advanced Technology, 2, 606-609.

[4] Rajan, A.P. (2013) Evolution of Cloud Storage as Cloud Computing Infrastructure
Service.

[5] Wu, J., Ping, L., Ge, X., Wang, Y. and Fu, J. (2010) Cloud Storage as the Infrastruc-
ture of Cloud Computing. International Conference on Intelligent Computing and
Cognitive Informatics, Kuala Lumpur, 22-23 June 2010, 380-383.

[6] Kaur Saggi, M. and Singh Bhatia, A. (2015) A Review on Mobile Cloud Computing:
Issues, Challenges and Solutions. International Journal of Advanced Research in
Computer and Communication Engineering, 4, 29-34.

[7] Li, Z., Wilson, C., Jiang, Z., Liu, Y., Zhao, B.Y., Jin, C., Zhang, Z. and Dai, Y. (2013)
Efficient Batched Synchronization in Dropbox-Like Cloud Storage Services.
ACM/IFIP/USENIX International Conference on Distributed Systems Platforms
and Open Distributed Processing, Beijing, 9-13 December 2013, 307-327.
https://doi.org/10.1007/978-3-642-45065-5_16

[8] Lee, G., Ko, H. and Pack, S. (2014) Proxy-Based Aggregated Synchronization
Scheme in Mobile Cloud Computing. IEEE Conference on Computer Communica-
tions Workshops, Toronto, 27 April-2 May 2014, 187-188.
https://doi.org/10.1109/infcomw.2014.6849218

https://doi.org/10.1002/wcm.1203
https://doi.org/10.1007/978-3-642-45065-5_16
https://doi.org/10.1109/infcomw.2014.6849218

R. M. H. Al-Sayyed et al.

74

[9] Lee, G., Ko, H., Pack, S. and Kang, C.H. (2014) Efficient Delta Synchronization Al-
gorithm in Mobile Cloud Networks. 3rd International Conference on Cloud Net-
working, Luxembourg, 8-10 October 2014, 455-460.
https://doi.org/10.1109/cloudnet.2014.6969037

[10] Min, H. and Heo, J. (2015) Response Time Analysis Considering Sensing Data
Synchronization in Mobile Cloud Applications. The Journal of the Institute of In-
ternet, Broadcasting and Communication, 15, 137-141.
https://doi.org/10.7236/JIIBC.2015.15.3.137

[11] Domingos, J., Simões, N., Pereira, P., Silva, C. and Marcelino, L. (2014) Database
Synchronization Model for Mobile Devices. 9th Iberian Conference on Information
Systems and Technologies, Barcelona, 18-21 June 2014, 1-7.

[12] Balakumar, V. and Sakthidevi, I. (2012) An Efficient Database Synchronization Al-
gorithm for Mobile Devices Based on Secured Message Digest. International Con-
ference on Computing, Electronics and Electrical Technologies, Nagercoil, 21-22
March 2012, 937-942.

[13] McCormick, Z. and Schmidt, D.C. (2012) Data Synchronization Patterns in Mobile
Application Design. Proceedings of the 19th Conference on Pattern Languages of
Programs, Tuscon, 19-21 October 2012, 12.

[14] ktacket (2015) The Complete Synchronization Process—Part 4: Delta/Full Im-
port/Synchronization Explained.
https://blogs.msdn.microsoft.com/connector_space/2015/09/28/the-complete-synch
ronization-process-part-4-deltafull-importsynchronization-explained/

[15] Dropbox, Inc., Headquartered in San Francisco, California, USA.

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact ijcns@scirp.org

https://doi.org/10.1109/cloudnet.2014.6969037
https://doi.org/10.7236/JIIBC.2015.15.3.137
https://blogs.msdn.microsoft.com/connector_space/2015/09/28/the-complete-synchronization-process-part-4-deltafull-importsynchronization-explained/
https://blogs.msdn.microsoft.com/connector_space/2015/09/28/the-complete-synchronization-process-part-4-deltafull-importsynchronization-explained/
https://blogs.msdn.microsoft.com/connector_space/2015/09/28/the-complete-synchronization-process-part-4-deltafull-importsynchronization-explained/
https://blogs.msdn.microsoft.com/connector_space/2015/09/28/the-complete-synchronization-process-part-4-deltafull-importsynchronization-explained/
http://papersubmission.scirp.org/
mailto:ijcns@scirp.org

	New Synchronization Algorithm Based on Delta Synchronization for Compressed Files in the Mobile Cloud Environment
	Abstract
	Keywords
	1. Introduction
	2. Literature Review
	3. Delta Synchronization
	3.1. Description
	3.2. Solution
	3.3. Motivation

	4. Proposed Method
	5. Experimental Design
	6. Results and Discussion
	7. Conclusion and Future Work
	References

