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ABSTRACT 

Diffuse optical tomography (DOT) using near-infrared (NIR) light is a promising tool for noninvasive imaging of deep 
tissue. The approach is capable of reconstructing the quantitative optical parameters (absorption coefficient and scatter-
ing coefficient) of a soft tissue. The motivation for reconstructing the optical property variation is that it and, in particu-
lar, the absorption coefficient variation, can be used to diagnose different metabolic and disease states of tissue. In DOT, 
like any other medical imaging modality, the aim is to produce a reconstruction with good spatial resolution and in con-
trast with noisy measurements. The parameter recovery known as inverse problem in highly scattering biological tissues 
is a nonlinear and ill-posed problem and is generally solved through iterative methods. The algorithm uses a forward 
model to arrive at a prediction flux density at the tissue boundary. The forward model uses light transport models such 
as stochastic Monte Carlo simulation or deterministic methods such as radioactive transfer equation (RTE) or a simpli-
fied version of RTE namely the diffusion equation (DE). The finite element method (FEM) is used for discretizing the 
diffusion equation. The frequently used algorithm for solving the inverse problem is Newton-based Model based Itera-
tive Image Reconstruction (N-MoBIIR). Many Variants of Gauss-Newton approaches are proposed for DOT recon-
struction. The focuses of such developments are 1) to reduce the computational complexity; 2) to improve spatial re-
covery; and 3) to improve contrast recovery. These algorithms are 1) Hessian based MoBIIR; 2) Broyden-based Mo-
BIIR; 3) adjoint Broyden-based MoBIIR; and 4) pseudo-dynamic approaches. 
 
Keywords: Diffuse Optical Tomography; Gauss Newton Methods; Broyden and Adjoint Broyden Approaches; 

Pseudo-Dynamic Method 

1. Introduction 

Diffuse Optical Tomography (DOT) provides an ap-
proach to probing highly scattering media such as tissue 
using low-energy near infra-red light (NIR) using the 
boundary measurements to reconstruct images of the 
optical parameter map of the media. Low power (1 - 10 
milliwatt) NIR laser light, modulated by 100 MHz sinu-
soidal signal is passed through a tissue, and the existing 
light intensity and phase are measured on the boundary. 
The predominant effects are the optical absorption and 
scattering. The transport of photons through a biological 
tissue is well established through diffusion equation [1-6] 
which models the propagation of light through the highly 
scattering turbid media. 

The forward model frequently uses light transport 

models such as stochastic Monte Carlo simulation [7] or 
deterministic methods such as radiative transfer equation 
(RTE) [8]. Under certain conditions such as  a s  , 
the light transport problem can be simplified by the dif-
fusion equation (DE) [9]. The RTE is the most appropri-
ate model for light transport through an inhomogeneous 
material. The RTE has many advantages which include 
the possibility of modelling the light transport through an 
irregular tissue medium. However, it is computationally 
very expensive. So the DOT systems use the diffusion 
based approach. Gauss-Newton Method [2]is most fre-
quently used for solving the DOT problem. The methods 
based on Monte-Carlo are perturbation reconstruction 
methods [10-12]. The numerical methods used for dis-
cretizing the DE are the finite difference method (FDM) 
[13], and the finite element method (FEM) [2]. Hybrid 
FEM models with RTE for locations close to the source *Corresponding author. 
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and DE for others regions have also been considered [14]. 
The FEM discretization scheme considers that the solu-
tion region comprises many small interconnected tiny 
subregions and gives a piece wise approximation to the 
governing equation; i.e. the complex partial differential 
equation is reduced to a set of linear or non-linear simul-
taneous equations. Thus the reconstruction problem is a 
nonlinear optimization problem where the objective 
function defined as the norm of the difference between 
the model predicted flux and the actual measurement 
data for a given set of optical parameters is minimized. 
One method of overcoming the ill-posedness is to incor-
porate a regularization parameter. Regularization meth-
ods replace the original ill-posed problem with a better 
conditioned but related one in order to diminish the ef-
fects of noise in data and produce a regularized solution 
to the original problem. 

A discretized version of diffusion equation is solved 
using finite element method (FEM) for providing the 
forward model for photon transport. The solution of the 
forward problem is used for computing the Jacobian and 
the simultaneous equation is solved using conjugate gra-
dient search. 

In this study, we look at many approaches used for 
solving the DOT problem. In DOT, the number of un-
knowns far exceeds the number of measurements. An 
accurate and reliable reconstruction procedure is essen-
tial to make DOT a practically relevant diagnostic tool. 
The iterative methods are often used for solving this type 
of both nonlinear and ill-posed problems based on 
nonlinear optimization in order to minimize a data-model 
misfit functional. The algorithm comprises a two-step 
procedure. The first step involves propagation of light to 
generate the so-called ‘forward data’ or prediction data 
and an update procedure that uses the difference between 
the prediction data and measurement data for the incre-
mental parameter distribution. For the parameter update, 
one often uses a variation of Newton’s method in the 
hope of producing the parameter update in the right di-
rection leading to the minimization of the error func-
tional. This involves the computation of the Jacobian of 
the forward light propagation equation in each iteration. 
The approach is termed as model based iterative image 
reconstruction (MoBIIR). 

The DOT involves an intense computational block that 
iteratively recovers unknown discretized parameter vec-
tors from partial and noisy boundary measurement data. 
Being ill-posed, the reconstruction problem often re-
quires regularization to yield meaningful results. To keep 
the dimension of the unknown parameters vector within 
reasonable limits and thus ensure the inversion procedure 
less ill-posed and tractable, the DOT usually attempts to 
solve only 2-D problems, recovering 2-D cross-sections 
with which 3-D images could be built-up by stacking 

multiple 2-D planes. The most formidable difficulty in 
crossing over a full-blown 3D problem is the dispropor-
tionate increase in the parameter vector dimension (a 
typical tenfold increase) compared to the data dimension 
where one cannot expect an increase beyond 2 - 3 folds. 
This makes the reconstruction problem more severely 
ill-posed to the extent that the iterations are rendered 
intractably owing to larger null-spaces for the (discre-
tized) system matrices. As the iteration progresses, the 
mismatch ( M , the difference between the computed 
and measurement value) decreases. 

The main drawback of a Newton based MoBIIR algo-
rithm (N-MoBIIR) is the computational complexity of 
the algorithm. The Jacobian computation in each itera-
tion is the root cause of the high computation time. The 
Broyden approach is proposed to reduce the computation 
time by an order of magnitude. In the Broyden-based 
approach, Jacobian is calculated only once with uniform 
distribution of optical parameters to start with and then in 
each iteration. It is updated over the region of interest 
(ROI) only using a rank-1 update procedure.. The idea 
behind the Jacobian (J) update is the step gradient of ad-
joint operator at ROI that localizes the inhomogeneities. 
The other difficulty with MoBIIR is that it requires regu-
larization to ease the ill-posedness of the problem. How-
ever, the selection of a regularization parameter is arbi-
trary. An alternative route to the above iterative solution 
is through introducing an artificial dynamics in the sys-
tem and treating the steady-state response of the artifi-
cially evolving dynamical system as a solution. This al-
ternative also avoids an explicit inversion of the lin-
earized operator as in the Gauss-Newton update equation 
and thus helps to get away with the regularization. 

2. Algorithms 

2.1. Newton-Based Approach 

The light diffusion equation in frequency domain is, 

     

    0 0

,a

dc ac

j
k r r r

c

A A r



r

  

     

          
     

      (1) 

where  r  is the photon flux,  is the diffusion 
coefficient and is given by 

 k r

      1
3 a sk r r r 

                (2) 

a  and s  are absorption coefficient and reduced 
scattering coefficient  a s   respectively. The in-
put photon is from a source of constant intensity dcA  
located at 0r r . The transmitted output optical signal 
measured by a photomultiplier tube. 

The DOT problem is represented by a non-linear op-
erator given by  F   where F  ves model predicted gi
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data over the domain and M is the computed measurement 
vector obtained from 


  and  ,a k  . 

 F M                   (3) 

The image reconstruction pro
lu

blem seeks to find a so-
tion   ,k r  such that the difference between the 

model pre  ,a

a

dicted F k  and the experimental meas-
urement  EM  i m. To minimize the error, the 
cost func  ,a

s
tional 

 minimu
    is minimized and the cost 

functional is define  

 

d as [1];

  ,, arg min ,
a

E
a kk M F  a k        (4) 

where .  is  norm. Through Gauss-Newton and 
erg

      (5) 

where 

2L
quaLevenb -Mar rdt [1,15,16] algorithms, the mini-

mized form of the above equation is given as, 

 
1

, T T
     a k J J I J M    

M  
CM

is the difference between model predicted 
data  F     and experimental measurement data  




EM e Jacobian matrix which has been  , and J is th

evaluated at each iteration of MoBIIR algorithm (Figure 
1). The above equation is the parameter update expres-
sion. In Equation 5, I is the identity matrix whose dimen-
sion is equal to the dimension of J T J.   is regulariza-
tion parameter and the order of magnitu  of de  I should 
be near to that of J T J. The impact of noise a  nd   on 
the reconstruction i discussed in results section The 
Figure 1 gives a flow chart of the approach based on 
Gauss Newton. 
 

s . 

Start, μi = 1 = μ0 

Stop

ME

Yes 

No 

J(μi), MC = F(μi) 

μi + 1 =μi + ∆μ 

∆M = MC - ME 

if 
∆M < ϵ 

[JTJ + λI]∆μ = JT∆M 

∆μ = [JTJ + λI]-1JT∆M 
 

2.2. Hessian Based Approach 

Figure 1. Flowchart for image reconstruction by Newton
method based MoBIIR algorithm. 

thm recovers an ap-

’s 

The iterative reconstruction algori
proximation to   from the set of boundary measure-
ments eM . By directly Taylor expanding Equation 3, 
and using a quadratic term involving Hessian, the per-
turbation equation can be written as, 

     1i i if f F i

 T
i i iF

       

    
           (6) 

where F   is the Hessian corresponding to 
. Fo  

T

the meas-
urement r d number of detectors, the above equation
can be rewritten as, 

d
T

1

.i i
i

F F  F M F


    M     
       (7) 

The Equation 7 is the update equation obt
the 

ained from 
quadratic perturbation equation. The term F M  is 

often observed to be diagonally dominant and can be 
denoted by ii , neglecting the off diagonal terms. Thus, 
through the incorporation of the second derivative term, 
the update equation has a generalized form with a physi-
cally consistent regularization term. 

2.3. Broyden Approaches 

The major constraint of Newton’s method is the compu-
 tationally expensive Jacobian evaluation [17,18]. The

quasi-Newton methods provide an approximate Jacobian 
[19]. Samir et al [5] has developed an algorithm making 
use of Broyden’s method [17,18,20] to improve the 
Jacobian update operation, which happens to be the ma-
jor computational bottleneck of Newton-based MoBIIR. 
Broyden’s method approximates the Newton direction by 
using an approximation of the Jacobian which is updated 
as iteration progresses. Broyden method uses the current 
estimate of the Jacobian 1iJ   and improves it by taking 
the solution of the secant equation that is a minimal 
modification to 1iJ  . For this purpose one may apply 
rank-one updates. We have assumed that we have a non-
singular matrix  iJ   and we wish to produce an ap-
proximate  1iJ    through rank-1 updates [21]. The 
forward solution be expressed in terms of derivatives 
of the forward solution using Taylor expansion as, 

can 

     1 1 1 .i i i i iF F J               (8) 

The Broyden’s Jacobian update equation becomes 

1 [ ]

i i iT
iM J

J Ji i i i

         
   

1 where .
i i

i

i i i i i i

M J
J J J J

iT 

 

         
   

(9) 
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Equation 9 is referred to as Broyden’s update equation. 
In Broyden’s method there is no clue about the in
Jacobian estimate [22]. The initial value of Jacobian 

itial 

 0J  
  is computed through analytical methods based 

on adjoint principles. It is found that since Jacobian up-
date is only approximate, the number of iterations re-
qui  Broyden method for convergence is higher 
than that of gauss-Newton methods. This can be im-
proved by re-calculating Jacobian using adjoint method 
when Jacobian is found to be outside the confidence do-
main (when MSE of the current estimate is less than 
MSE of the previous estimate). If the initial guess 0




red by

  is 
sufficiently close to the actual optical parameter *  
then the  0J   is sufficiently close to  0A   and the 
solution converges q-superlinearly to * . The most no-
table feature of Broyden approach is that it avoids dire  
computati Jacobian, thereby providin ter algo-
rithm for DOT reconstruction. 

2.4. Adjoint Broyden Based MoBIIR 

Least change secant based Adj

 
ct

on of g a fas

oint Broyden [23] update 
method is another approach for updating the system 
Jacobian approximately. 

The direct and adjoint tangent conditions are  

 1
1

i i i
iJ F  
     and  1

1
T T i
i i iJ F   

   

re  spectively. With respect to the Frobenius norm .
Frob

, 
the least change update of a  matrix iJ  to a matrix 1iJ    

satisfies the direct secant onconditi  1
i i

iJ M     and  

the adjoint secant condition 1
T T
i i iJ   , for norm d 

directions i
alize

  and i , and is given s [23]  a

1i i
i iT iT

iJ J r T i iT
i i r         (10)    

where i i i
ir M J

  

    , i T
i i iJ    . The rank-1 

update for e based on adjoint Jacobian updat  method is 
given as [5], 

 1
1 .

T
ii i

i i iT
i i

J J F J
 


     

       (11) 
   

The Adjoint Broyden update is categorized based on 
the choice of i . For simplicity, we conside
direction [23] ch is defined as, 

r only secant 
 whi

   1

1with .

i i i
i i i

i i i
i

F F J    

   





     
  

      (12) 

where i  
 met

is the step size and is estimated through line 
search hod. The above equation has bee
Adjoint Broyden based MoBIIR image reconstruction. 

im

n solved in 

The age reconstruction flowchart using Broyden 
based MoBIIR is shown in Figure 2. The Jacobian is 
updated through Equation 9 and Equation 11 for Broyden 
method and adjoint Broyden method respectively. 

Start, μ1 = μ0 

J(μ1), MC = F(μ1) 

Stop

MECM
C E∆M = M  - M  

if 
∆M < ϵ μi + 1 =μi + ∆μ 

No 

Ji + 1 = Ji + ∆Ji 

∆μ = [JTJ + λI]-1JT∆M 

Yes 

 

Figure 2. Flowchart for image reconstruction by Broyden- 
based MoBIIR (Equation 9) algorithm. 

2.5. Pseudo-Dynamic Approaches 

 used in image re-
n. Several regu-
 in the literature 

Diffuse optical tomographic imaging is an ill-posed 
problem, and a regularization term is
construction to overcome this limitatio
larization schemes have been proposed
[24]. However, choosing the right regularization pa-
rameter is a tedious task. A some what regularization- 
insensitive route to computing the parameter updates 
using the normal equations Equation 5 or Equation 7 is to 
introduce an artificial time variable [25,26]. Such pseudo- 
dynamical systems, typically in the form of ordinary dif-
ferential equations (ODE-s), may then be integrated and 
the updated parameter vector recovered once either a 
pseudo steady-state is reached or a suitable stopping rule 
is applied to the evolving parameter profile (the latter 
being necessary if the measured data are few and noisy). 
Samir et al [5] have used the above approach to arrive at 
a DOT image reconstruction. 

For the DOT problem, the pseudo-time linearized 
ODE-s for the Gauss-Newton’s normal equation for 

 ,i it t t t    is given by: 

 i  , 0sS t V     i           (13) 

d
:

dt

  ,  :i
it  , where 

    :i T i E i
sV F M F     ,  

and 

     ,i i iS F F I       , 
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when we use Equation 5. For the case where the quad-
ratic perturbation is used (Equation 7), then S is replaced 

is the stopping time) with ˆ N  . 

by 3. Results 
 ,i T T TG F F F F I               (14) 

g the pseudo-time recursion for 

Figure 3 gives the reconstruction results with a single 
embedded inhomogeneity. Figure 3(a) is the phantom 
with one inhomogeneity. The reconstructed images using 
Newton-based MoBIIR, Broyden-based MoBIIR and 
adjoint Broyden-based MoBIIR are given in (b), (c), and 
(d) respectively. 

We first consider the linear case wherein Equation 5 is 
used to arrive at the pseudo-dynamic system. While initi-
atin  ,i it t t t   , the 
initial parameter vector 0  may be
to the background value which is assum
Eq

 taken corr
ed to 

esponding 
be known. 

Figure 4 gives the performance of the algorithm. It is 
seen that adjoint Broyden converges faster compared to 
other algorithms. Figure 4(a) shows that Newton, Broy-
den and adjoint Broyden methods converge at , 

 and 20  iterations respectively. The cross section 
through the center of the inhomogeneities is shown in 
Figure 4(b). 

16th

22th th

uation 13 may be integrated in closed-form leading to 
the following pseudo-time evolution, 

  
     1

1

1

exp ,

exp , di

i

i i i
i

t i
it

S h

S t t f t t

   

 





 

  
   (15) 

where      ,i i i
sf t S V      and i . In 

the ideal data is he 
sequence it poi

 1i ih t t 
 noise-free, t

nt ˆ
 case, when the measured 
 ; 1, 2, ,i i N    has a lim 

Figure 5 gives the reconstruction results with two 
embedded inhomogeneities. Figure 5(a) is the phantom. 
The reconstructed images using Newton-based MoBIIR, 
Broyden-based MoBIIR and adjoint Broyden-based Mo-
BIIR are given in (b), (c), and (d). 

, which 
rio yields the  a pr

where i.e, 
 desired reconstruction. In

 the measured data is noisy, 
actical scena

 E EM M   
with   being a measure of the no

; 1, 2, ,i i N  

ise ‘str this 
case, a stopping rule may have to be imposed so that the 
sequence    is stopped at *

ength’. In 

Nt t  ( *t  

Figure 6 gives the performance of the algorithm with 
two inhomogeneities. MSE of reconstructed images with 
two inhomogeneities is shown in Figure 6(a). Figure 6(b) 
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Figure 5. (a) Original simulated phantom with two inhomogeneities; The a  of the inhomogeneities are 0.02 and 0.015 

and are at (0, −192.2) and ewton; (c) Broyden; (d) adjoint 
n method. 

 
shows that Newton, Broyden and adjoint Broyden meth-
ods converge at  and  iterations respec-
tively. The line plot t r of the inhomoge-
neities is shown in Figure 6(c). 

Figure 7 gives the reconstruction results with two em-
bedded inhomogeneities. Figure 7(a) is the reconstructed 
image by Gauss-Newton method. Figures 7(b) and (c) 
are the reconstructed images by linear pseudo-dynamic 
time marching algorithm and by non-linear (Hessian in-
tegrated) pseudo-dynamic time marching algorithm re-
spectively. 

center of inhomogeneities is shown in Figure 8(a). The 
variation of the Normalized Mean Square Error (MSE) 
with Iteration is shown in Figure 8(b). The blue line 
represents Gauss-Newton’s method and green line repre-
sents pseudo dynamic time matching algorithm. 

4. Conclusion 

In this study, we look at many approaches used for solv-
ing the DOT problem. Like any medical image recon-

 main focus is to reconstruct a 
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Figure 8 analyzes the results. The line plot through the  high resolu n image with good contrast. Since the     
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problem is non-linear and ill-posed, the iterative methods 
are often used for solving this type of problems. We have 
summarized a few studies we undertook towards this. 
They are 1) Gauss-Newton based MoBIIR; 2) Quadratic 
Gauss-Newton, Broyden-based MoBIIR; 3) Adjoint Broy- 
den based MoBIIR, and pseudo-dynamic approaches. 
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