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ABSTRACT 

A fractal model containing n-series of spheres and ellipses with corresponding radii, and surrounded by a thin film of 
adsorbed water has been developed. This model is more suitable to real sedimentary rocks because it not only allows for 
varying grain sizes and number of fractions, but also takes into consideration the influence of double electrical layers on 
the physical properties of sediments. Ellipsoid fractal models provide mathematical proof of the phenomenon of super-
capillary conductivity observed in laboratory measurements. Using the parameters of the fractal models several petro-
physical parameters can be calculated, namely resistivity porosity, and permeability. In a case study, layers with differ-
ent resistivity were identified on a section taken from a TDEM survey, and porosity and salinity of water bearing layers 
were estimated using the fractal model. Estimated permeability using the fractal model showed good agreement with 
other methods. 
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1. Introduction 

For many years determining the resistivity of layers was 
deemed a significant result of applied EM geophysics. 
However, problems intended to be solved by geophysics 
have become more complex. Now electromagnetic me- 
thods are aimed at defining other petrophysical parame-
ters such as porosity, permeability, polarization parame-
ters, oil and gas saturation etc. Therefore a new model 
for mathematical modeling of petrophysical parameters 
is required. 

There are a number of factors that must be taken into 
account when creating this model. It is well known that 
resistivity decreases with increasing porosity of sedi-
ments. However, components filling the pore spaces of 
rocks considerably influence the petrophysical parame-
ters of rocks. In addition, rocks/sediments can be re-
garded as two component aggregates, i.e. matrix and 
fluid, where fluid can be water, gas and/or a mixture of 
them. Rocks or sediments can also be composed of three 
component aggregates (matrix-clay-fluid/gas). Moreover, 
for many cases the influence of double electrical layers 
(DEL) surrounding grains of sediments must be taken 
into account when calculating resistivity. 

There are numerous experimental works looking at the 

interdependence of porosity and resistivity of sediments 
of different kinds and different ages. However, there is 
insufficient application of these theoretical considera- 
tions to the interpretation of electromagnetic data and 
physical modelling of data. Traditionally for many years 
the empirical Archie’s law [1] has been used for inter-
preting EM data. It allows for the estimation of the po-
rosity of sediments if the dependence between resistivity 
and porosity (at least the structural index of porosity) is 
known. Nearly two thirds of a century has passed since 
this law was formulated, and our knowledge of the sedi-
ment structure has improved, however, the empirical 
Archie’s law is still widely used, and other considera- 
tions have seldom been applied for interpreting EM and 
laboratory measurement data. It should be noted that the 
geometrical factor of Archie’s law is based on the spe-
cific kind of sediments in question: 

P mP                   (1)  

where   is a coefficient that is dependent on the kind 
of sediments and can be in the range 0.4 -> 1, φ is the po- 
rosity of sediments (dimensionless unit) and m is an in- 
dex of tortuosity of the pore channels which can be in the 
range 1.3 - 2.2 or greater [2]. The structures of pores 
which make up solids are very complex and are unique 
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for each kind of sediment. Obviously, if there is no 
trustworthy data for the resistivity of sediments in a study 
area, the interpretation becomes a gamble. The problem 
becomes underdetermined, with one resistivity value and 
three unknown parameters (α, φ and m). Moreover 
Archie’s model also does not take into account the influ- 
ence of double electrical layers, although it has been 
shown (as shown by [3]) that for specific cases the elec- 
trical resistivity of clay can be twice as low as when wa-
ter fills the pore space of the clay. It is also known that 
the DEL are responsible for different kinds of induced 
polarization effects that arise in sediments due to applied 
electrical currents and also influence the measured resis- 
tivity. 

Another way to calculate resistivity that shall be used 
for this study is by way of mathematical modelling of 
petrophysical properties using matrix (fractal) models. It 
appears that the first person to introduce the fractal model 
in petrophysics in 1948 was A. S. Semenov [4], with 
furtherpositive results being obtained by Pape et al. [5]. 
Following this author a matrix (fractal) model has been 
proposed for this study. A fractal modelcontaining n-ser- 
ies of spheres and ellipses with corresponding radii and 
surrounded by a thin film of adsorbed water (DEL) has 
been used. This model is more suitable for real sedimen- 
tary rocks. Using the parameters of the fractal model se- 
veral petrophysical parameters can be calculated namely: 
resistivity, total and effective porosity and permeability. 

2. Matrix Model of Sediments 

Usually the solid part of sediments consists of a mixture 
of polymineral grains. They are naturally dielectric with 
high resistivity values reaching up to 10−11 Ωm and more 
(ρ1). The second component of sediments is fluid or a 
mixture of material filling the pore spaces, such as fluid 
and clay (ρ2). More seldom (in the case of ore) the sec- 
ond component is presented by conductors or semi-con- 
ductors with very low resistivity. It follows then that the 
resistivity of sediments/rocks (ρ1,2) depends on the values 
of ρ1 and ρ2; on the relative volume of components V1 
and V2, whereV2 = (1 − V1); and on the form and distri- 
bution of dielectrics and conductors in the solid. The 
dependence of ρ1,2 on ρ1 and ρ2can be presented as [6]: 

1,2 2 ,PP                    (2) 

where PP is a parameter of porosity (or structural factor) 
which is the ratio of the resistivity of the sediment to the 
resistivity of the material filling the pore spaces. 

The dependence of ρ1,2 on ρ1 and ρ2 were studied both 
experimentally and theoretically for different kinds of 
rocks/sediments. For the theoretical investigation, the 
solids were presented as simplified matrix models. The 
matrix models can be regarded as uniformly distributed 
packages of identical sizes or different sizes. The pack- 

ages can be spheres, cubes, ellipsoids, cuboectaedres, re- 
ctangles, planes and other geometrical figures. The pore 
space is filled by a second component, such as water, 
clay, water/clay, or metal. Table 1 shows some of the 
equations used for calculating ρ1,2 using different matrix 
models. 

2.1. Double Electrical Layers 

It must be noted that only the model introduced by Se- 
menov take into account different sizes of solid particles. 
However even this model does not take note of the exis- 
tence of double electrical layers (DEL), which are known 
to be associated with the interface between minerals and 
pore fluids. Figure 1 is a schematic representation of 
Stern-Gouy’s model of DEL. 

The DEL can be regarded as consisting of two regions, 
namely an inner region or dense part where ions are ad-
sorbed onto the solid surface through electrostatic and 
Van der Waal’s forces (the Stern layer); and an outer or 
diffuse region where ions are under the combined influ- 
ence of the ordering electrical and disordering thermal 
forces (the Gouy layer). Therefore, two planes can be 
distinguished in the DEL, namely an inner plane, which 
is the surface of the solid, and an outer diffuse plane. 

The thickness of the dense part of the DEL is ap- 
proximately σ0del = 10−9 [7]. The thickness of the diffuse 
layer depends on the concentration of the electrolyte. If 
the thickness of the diffuse layer is less than σ0del then the  

electrolyte is concentrated. Otherwise if 0 1del
del

del


  


 

1

 
Table 1. Equations that allow for the calculation of ρ1,2 us- 
ing different two component matrix models, assuming 

 2 and   is low (after Kobranova, 1984, [2]). 

Model of solid 
Equation used to  
determine ρ1,2 

Author 

Packing of  
identical spheres

2
1,2 2 2

2

3

2 PP


 



     M. A. Maxwell 

Packing of  
identical cubes  

1,2 2 22
3

2

1

1 1
PP   


 

 
 

V. N. Dakhnov 

Packing of  
identicalel  
lipsoids of  
rotation* 

 2

1,2 2 2

2

1
Z Pz

k
P

k


 



      

 

 

2

1,2 1,2 2

2

2 2

1
X Y

Px PY

l

l

P P


  


 

    

   

 
I. K. Ovchinni-kov

n-series of  
spheres of  
different sizes 

0lg lg

2
1,2 2

2

3

2

 





 
  
 

 , 

where φ0 is an initial  
porosity,φ is porosity of  
sediment 

A. S. Semenov 

*where k and l are coefficients of form, which change from k → 0 and l 
→  for avery oplate ellipsoid of rotation, up to k →  and k → −1 for 
avery prolate ellipsoid of rotation. For spherical grains k = l = −2. 


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Figure 1. A schematic representation of Stern-Gouy model 
of double electric layer. 
 
the electrolyte is regarded as diluted. For a 1:1 valence 
electrolyte the boundary between concentrated and di-
luted is accepted as C = 0.1 N. In the case of concen-
trated electrolytes the electrokinetic phenomena is sup-
pressed. A characteristic thickness of the diffusion part of 
the DEL σdel can be described as [7] 

1 2

0
2 2 ,

2

RT

z F C

 
 
 

                (3) 

where ε is dielectric permeability, ε0 is the electrical con- 
stant, R is the gas constant, T is the absolute temperature, 
F is the Faraday number, z is the valence of the ions and 
C is the concentration of electrolyte (mol). Note the 
thickness of the DEL σdel indicates the distance where the 
transfer number of cations Cc and anions Ca are noticea- 
bly different. The thickness of the DEL ranges from a 
few nanometres up to hundreds of micrometres. If the 
concentration of the electrolyte NaCl is 0.01 N (0.56 g/l), 
the thickness of the DEL is equal to 3e−9 m. If the con- 
centration of the electrolyte NaCl is 0.001 N the thick-
ness of the DEL is equal to 1e−8 m. 

2.2. Structure of Sediments as a Fractal 

For this study, the most applicable model for clastic sedi- 
ments is the model introduced by A. S. Semenov. This 
model contains n-series of spheres of different sizes. Let 
us assume the resistivity of the matrix is very high and 
the second component of the model is water with resis- 
tivity ρf. Following [4] let us also assume that the first 
volume fraction is represented by the biggest grains oc-
cupying volume V0 and the rest of the volume φ0 = (1 ‒ 
V0) is occupied by a series of smaller grains. The second 
fraction of smaller grains will occupy a volume (1 ‒ V0)· 
V0. The third fraction of even smaller grains will occupy 
a volume (1 ‒ V0)

2·V0, etc. The rest of the volume (1 ‒ 

V0)
n will be equal to the porosity coefficient of the sedi-

mentφ. Obviously the coefficient of porosity φ will be 
determined by the fraction of spherical grains n. The re-
sistivity of this model is equal to: 

0lg lg

2

2

3
,

2

 


f 


 
  
 

             (4) 

Let us consider the case for one unit of the medium - a 
cube with size L = 1, and include into this cube a sphere 
with radius r1 = L/2 = 0.5 (Figure 2(a)). The volume of 
this sphere is V1. This sphere will be regarded as a main 
grain (grain of the first fraction). The rest of the volume 
(porosity coefficient) will then be equal to  

 1 0.4764V   

 2
1 0.1188.V V V   

0 0 . (The most widely used physical 
unit of porosity is percent; however it can also be pre- 
sented as a dimensionless unit. Therefore, the dimen-
sionless unit can refer both to porosity and the coefficient 
of porosity). This model is very often used for descrip-
tion of sediments structure although the porosity of a 
package of identically sized spheres described by Max-
well’s formula (Table 1) is equal to 0.4764. This model 
containing the fracture of only one size is suitable to de-
scribing well sorted sands and bioherm and limestones 
only. 

The third fraction occupies the volume  

3 1 1  Grains of this fractionare 
located on the corners of the cubes which include the 
grains of the second fraction (Figure 2(b)). The radius of 
the grains of the third fraction r3 = 0.1503. It follows then 
that the total volume of the solid is equal to V1+2+3 = 
0.8918 and the volume of the pore space is equal to φ = 
0.1082. 

Continuing in this way, we obtain the parameters of 
the fractal model which are presented in Table 2. 

The table shows the dependence of the porosity coef- 
ficient (porosity) on the number of fractions of different 
size (in the solid. When these calculations are applied to 
a model containing grains of such a size such that the 
thickness of the DEL is negligible compared to the radii 
of all spheres, the effective and dynamic porosity of the 
sediment will equal the total porosity. 

 

L   

2

main grain1

3 
 

(a)                              (b) 

Figure 2. Fractal model of clastic sediments. 
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Table 2. Parameters of fractal model. 

No. 
fraction 

Number of  
grains in each 
fraction (law) 

Relative volume 
of each  

fraction Vi 

Total  
volume of 
solid VΣ 

Coefficient 
of porosity φ

1 1 0.5236 0.5236 0.4764 

2 80 0.2494 0.7730 0.227 

3 81 0.1188 0.8918 0.1082 

4 82 0.0566 0.9484 0.0516 

5 83 0.027 0.9754 0.0246 

6 84 0.0129 0.9882 0.0118 

7 85 0.0061 0.9944 0.0056 

 
However, all spheres are surrounded by planes of dou-

ble electric layers. The number of fractals composing the 
solid can be reduced if the size of the first grade becomes 
smaller. In this case the volume of the double electrical 
layers will be more considerable. It is easy to calculate 
the volume of the DEL as the difference between the 
volume of the solid surrounded by films of adsorbed wa-
ter and the volume of the pure solid. The thickness of 
adsorbed water τaw for a salinity of 0.1 mol/l (0.56 g/l) 
has been accepted as 10−8 m (1e−5 mm) [8]. Obviously 
the total porosity of the model includes free water, and 
DEL does not depend on the particle size. However dy-
namic porosity (the maximal volume of free electrolyte 
in the pores) depends on the amount of DEL in rocks. 
Figure 3 demonstrates the influence of DEL on the dy-
namic porosity of sediments composed by grains of dif-
ferent sizes and number of fractions. Obviously if the 
sediments are composed of fine grains the number of 
fractions is limited because the radii of the spheres and 
the thickness of the DEL are comparable and therefore a 
considerable part of the pore space is occupied by DEL. 

Figure 4 demonstrates the relative amount of DEL in 
pores for different sizes of first fractals and number of 
fractals. 

The influence of the DEL increases with the amount of 
clay particles (radius of clay particle is defined as 0.05 
mm and less). 

2.3. Porosity Parameter 

Using (2) and (3) as the equation below describes the 
porosity parameter PP for a fractal model composed of 
spheres of different sizes as [6]: 

0lg lg

0

0

,
2

 



 
 
 

3
PP                (5) 

where φ0 is an initial porosity, meaning the porosity of 
the matrix created by the main sediment grains only and 
φ is the volume of the sediment. Figure 5 demonstrates 
the dependence of porosity on a models φ0 initial poros-  
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Figure 3. Total and dynamic porosity versus radii of the 
main grain. Numbers in the figure indicate the number of 
fractions in the model. Numbers on the right indicate the 
porosity of the model containing the displayed number of 
fractions. Closed and open circles indicate the total porosity 
and dynamic porosity respectively. 
 

0.0

0.2

0.4

0.6

0.8

1.0

Number of fractions

1e-4

5e-3

5e-1

1e-3

1e-1

1e-2

5e-2

R
at

io
 V

de
l/V

po
re

1 2 3 4 5 6 7

 

Figure 4. Ratio of volume occupied by DEL to total pore 
volume Vdel/Vpore depending on the number of fractions 
making up these diments and the pore radius (in mm). 
 
ity. In the first case PP(φ) is presented as the fractal 
model. Obviously, with φ0 = 0.4764 as the maximum 
possible porosity of the matrix represented by a package 
of identical spheres. For a hexagonal package or a pack- 
age of identical cubes the initial porosity φ0 will be less. 
Figure 5 also demonstrates what happens to PP(φ) when 
φ0 = 0.6. In this case the grains are not packed densely 
and the mixture is presented as a colloid, however both 
curves are located very close to each other. 

It is therefore possible to use the fractal model to cal-
culate the porosity parameter PP. In the case where the 
pores have two components (matrix-fluid/gas, non-clay 
sediments) and the amount of DEL is negligible, the re-
sistivity can be calculated using (2) and (4): 

1 1 ,f g f g                (6)  

where ρf+g is the resistivity of the material filling the pore 
space (fluid and gas), ξ is the ratio of water occupying 
the pore spaces of the sediment, and σf is the specific 
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Figure 5. Parameter of porosity PP versus porosity φ for 
sediments with different initial porosities φ0. 
 
conductivity of the fluid. If the pore space is occupied by 
a mixture of water, gas and hydrocarbons, the resistivity 
of the material filling the pore space can be calculated as 
follows:  

 1 21 ,w h  w g h              (7) 

where ξ1 and ξ2 are the ratio of water and hydrocarbons 
occupying the pore spaces of the sediment respectively. 
However, if the DEL can not be neglected the resistivity 
of rocks can be calculated using (2), but taking note: 

 2 21 1   free ,del 

 

         (8) 

where σfree is the specific conductance of the free solution 
(or mixture of components filling the pore spaces) and 
σdel is the specific conductance of DEL. 

2.4. Specific Conductivity of the DEL 

The specific conductivity of the DEL can be calculated 
using the Poisson-Boltzman distribution. The density of 
charges for a symmetrical binary electrolyte is defined by 
the difference between the concentration of anions and 
cations [7]: 

    02a cr zF C C zFC sh    Φ ,zF r RT     (9) 

where C0 is the salinity of the electrolyte in free solution, 
Cc and Cc are the salinities of the cations and anions, z is 
the valence of the ions, and r is the distance from the 
centre of a pore to its wall. Function Φ(r) is the psi-po- 
tential and is described by the Poisson-Boltzman equa-
tion. In the inner plane of the DEL Φ(r1) = Φ1, (see Fig-
ure 1), where r1 is the coordinate of the outer plane, and 
the centre of cylindrical coordinates is located in the cen-
tre of the pore. Note that the value of Φ1 is very close to 
the ζ(zeta) potential, and is constant for specific kinds of 
sediments and must be given a priori. Experiments to 
measure psi-potentials exist, and the values of Φ2 can be 
calculated theoretically. Studying ceramic diaphragms, 
Fridrikh-sberg and Barkovskaya [9] noted that Φ2~170 - 
195 mV so we use a value of 180 mV (and consequently 

Φ1 ≈ ζ ≈ 100 mV). For carboniferous sediments (lime-
stones) numerous experiments showed that ζ~30 - 40 mV 
and the influence of the DEL will in this case be much 
smaller. 

Numerical integration of the Poisson-Boltzman equa- 
tion is a very difficult procedure. However as was shown 
by Kormiltsev [8] there exists an analytical solution: in 
the case of relatively large pores, Φ(r1) increases very 
fast with distance from the wall of the solid. Therefore, 
for large pores the potential distribution in the diffuse 
part of the DEL can be found using the equation: 

2

2 sh 0,
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The solution of (10) is: 
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14arctg cth exp
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    (11) 

The average conductance of an electrolyte-filled pore 
is the ratio of conductivity of a pore to its surface area 
[8]: 

 
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Figure 6 demonstrates the average resistivity of an 
electrolyte (C0 = 0.01 and 0.005 mol/l, ρf = 23.5 and 11.2 
Ohmm accordingly), with filled pores of difference size 
and taking into account the DEL. Porediameters in ther- 
ange of 1e−4 - 2e−6 mm are common for natural ad- 
sorbents such as clays, clayish limestone, a shed tuffs etc. 
[2]. The influence of the DEL becomes more significant 
as the pore radius decreases. The conductivity of the 
DEL can be found using: 

 
1

1

2
d

r

del r
r r r

r r
  

  .           (13) 

The calculated specific resistivity of DEL ρdel = 1/σdel 
can be accepted as 2.45 - 2.5 Ohmm and 4.90 - 4.95 
Ohmm (Figure 7) (for electrolyte salinity C0 = 0.01 and 
0.005 mol/l accordingly). 

It should be noted that Equation (11) only applies for 
relatively large pores, however, the resistivity of the DEL 
of a very thin pore does not differ more than 10% com- 
pared to the value obtained for large pores. 

2.5. Fractals Containing N-Ellipsoids of Different 
Size 

A fractal can be composed not only of spheres but also of 
ellipsoids, which is important for clays and shields as 
they are characterized by planar structures (Figure 8). 
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Figure 6. Average resistivity of electrolyte filled pores (wa- 
ter and DEL) versus pore radius. 
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Figure 7. Calculated resistivity of DEL. The curve indices 
shows the salinity of the electrolyte (C0 = 0.01 mol/l, 0.056 
g/l and C0 = 0.005 mol/l, 0.025 g/l). 
 

 
(a)                              (b) 

Figure 8. Sediments composed of clays with planar struc-
ture, vertical view (a) and top view (b). 

In this case the resistivity of packages of identical el- 
lipsoids of rotation can be calculated using the following 
equation proposed by I. K. Ovichinnikov [2] (Table 1): 

 0
_

0
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f Pell l f

l
P

l


 


               (14) 

 _ 0 0Pell l 1P l lwhere      

 

   is the parameter of 
porosity of a model containing oblate ellipsoids of one 
size, and l is a coefficient of form. Based on previous 
assumptions, we can construct a fractal model contains n 
series of rotated ellipsoids of different sizes (Figure 9). 

As described above, the first fraction is represented by 
the biggest grains occupying volume V0, with the rest of 
the volume φ0 = (1 ‒ V0) occupied by a series of smaller 
grains. The second fraction of smaller grains will occupy 
a volume (1 ‒ V0)·V0, etc. The resistivity of the fractal 
ellipsoid model is then equal to: 

0lg lg

0
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f Pell l f
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 
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 
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    (16) 

 where 
0lg lg

1P l l
 

0_ 0Pell l        is the para- 
meter of porosity. Figure 9 illustrates the parameter of 
porosity PPell_l for different coefficients l. PP for the 
spherical fractal model is also shown. 

In Figure 10, it can be seen that the porosity parameter 
decreases with increasing oblateness (flattening) of the 
ellipsoids. The parameter of porosity for the fractal 
model composed of spheres is also plotted in the figure. 
This figure shows that the resistivity of sediments de-
pends not only on its porosity and pore sizes, but also on 
the shape of the sediments. Note that the pore sizes of the 
ellipsoid fractal model are narrower than the spheroid 
fractal model, however, the resistivity of sediments with 
plated structures are lower. 

Note that the amount of DELs in the ellipsoid fractal 
model is higher than in the spheroid fractal model, as one 
unit of sediments contains considerably more oblate el-
lipsoids than spheres. 

Lithological classification determines the size of clay 
particles to be approximately 10 µm or less in diameter. 
Figure 11 demonstrates the relative amount of DEL ver- 
sus the number of fractions contained in the model for 

 
2

main grain 

1
 3

Figure 9. Fractal model containing n-oblate ellipsoids of 
different size. 
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Figure 10. Parameter of porosity for spherical and elliptical 
fractal models. Indices indicate the coefficient of form l. For 
spherical particles l = ‒2. 
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Figure 11. The relative amount of DEL versus the number 
of fraction containing on the model for different elongated 
diameter of main ellipse. The curve indices are the coeffi- 
cients of form l indicating the degree of flattening. 
 
different diameters of the main ellipse of 0.002 mm and 
0.02 mm. It can be seen in Figure 10 that the amount of 
DEL increases considerably as the diameters of the pla- 
nar clay particles decrease, and decreases with the degree 
of flattening l. Moreover, if the diameter of plated clay 

particles is about 0.01 mm or less, the amount of DEL in 
the pores can dominate over the amount of free water, 
resulting in the phenomenon of capillary superconductiv- 
ity. This phenomenon was discovered in Saint Petersburg 
State University and discussed in [3]. Equation (2) can be 
presented as: 

,p P f del P fP P          (17)        

where 1  f f del     is a coefficient showing the 
influence of a DEL on the resistivity of the pore space 
filling. Equation (17) can be written as: 

.p P

f

P
                 (18) 






The resistivity of sediment ρ increases with increas- 
ing PP but decreases with increasing α. For a specific 
structural construction of grains (planes) making up 
sediments it can happen that α > PP. Then the resistivity 
of the sediment becomes lower than when water saturates 
the pore spaces. The ellipsoid fractal model shows the 
conditions when α > PP

4.4 2.5 11.0 Ohmm.P

 will be satisfied. For example, 
consider a case where the diameter of clay particles is 
about 0.002 mm and the sediment contains particles of 
two sizes. The porosity is equal to 0.227, water salinity is 
0.01 mol/l and all pores are filled by DEL with resistivity 
2.5 Ohmm (Figures 4 and 11). The calculated resistivity 
of the clay is cl Pell del       
The resistivity of water is 11.6 Ohmm, therefore the re- 
sistivity calculated for the clay in this example is lower 
than the resistivity of free water. 

3. Equations for Petrophysical Parameters 

3.1. Resistivity of Three Component Sediments 

The theoretical value of the resistivity of sediments com- 
posed of three components (water, clay and solid matrix) 
can be calculated using equation [2]: 

 

 1 1 ,

P Ps Av f cl
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 

     (19)   
     

  

 

where PP Ps+Av is parameter of the porosity of the solid 
matrix (psammito-aleuritic fraction) (Equation (5)), ρcl is 
the resistivity of clay, φPs+Av is the porosity of the solid 
(psammito-aleuritic fraction), kVcl is the volume of the 
clay in the unit volume of sediments. 

The resistivity of clay can be calculated using the fol- 
lowing equation: 

,
1

Pcl
cl f Pcl

del free

P
P 

  
        (20) 

   


where, ξ is the volume of pores occupied by free electro- 
lyte, (1 ‒ ξ) is the volume of pores occupied by the DEL 
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(for fractal model see Table 1), and PPcl is the porosity of 
clay that can be determined using the fractal model. 

del can be determine using (13). 

3.2. Dependence of Permeability on Porosity 
Using the Fractal Model 

The dependence of permeability on porosity for simple 
matrix models is well known [2]. Referring to our model, 
the permeability of cubic and rhombic packing of one 
grain size can be given as: 

 2 24 32,kdπ 32P kk d   

and 
2 4sinP kk d  2 27.7,kd         (21) 

where dk is the diameter of spherical pores, and φ = π/4 
for cubic packing and θ = 60˚ for rhombic packing (θ is 
the angle between the centre of the grains for different 
levels). Equation (21) demonstrates the dependence of 
permeability kP on the type of capillary packing, and that 
the permeability kP is proportional to the pore diameter 
(to the power of two) and porosity of the model φ. 

Let us consider a more complex model, such as a cy- 
lindrical sample with a surface area S and length l (Fig- 
ure 12). This sample can be sheared on n elements with 
surface areas ωi, and length l. One filtering channel is 
located inside each unit. The surface area of each fil- 
tering channel ωki within the unit is changeable and the 
length of the filtering channel is equal to lki. 

This is a classical Karman-Kozeny model. In this case, 
the permeability kP of the model is equal to [2]: 

3 2 2 ,P eff FV HS T fk               (22) 

where φeff is the coefficient of effective (dynamic) po- 
rosity, SFV is the surface of the specific filtering channel 
in the unit, TH = lk.av/l is the hydraulic tortuosity, f is the 
Kozeny constant which falls in between 2 and 3 and is 
usually close to 2.5. The Karman-Kozeny model is re- 
garded as a model closer to real sediments. In this model 

 

l 

ωi ωki 

lki 

   

 

Figure 12. Karman-Kozeny model [6]. 

the permeability kP is proportional to the cube of the ef- 
fective (dynamic) porosity φeff, and inversely propor- 
tional to the specific surface of a filtering channel and the 
hydraulic tortuosity, both to the power of two, as well as 
the Kozeny constant f, which is characterized by the form 
of the pore channels. 

The pore channels are filled with free water and ad-
sorbed water. The DEL occupies a volume φdel, and the 
thickness of the film of adsorbed water is τav. The final 
equation for permeability in the Karman-Kozeni model is 
equal to [2]: 

23 2 2 21 .p del av del H del
k T f            (23) 

Since f ≈ const, TH = const, τav ≈ const for each sedi-
ment type, kP depends on φ and φdel. The dependences φ 
and φdel for a fractal model was shown in Figure 13 (τav 
= 1e−5 mm). An increasing amount of adsorbed water 
leads to a decreasing permeability for the sediment. The 
sediments with permeability less than kP < 0.01 μm2 
(<0.01 D) are impermeable. Therefore rocks for which 
the size of the main grain is less than 1e−5 - 5e−5 m (5 - 
10 micron) (clays) are impermeable. However, there is 
not direct relation between porosity and permeability as 
the amount of DEL governs the permeability of rocks. 
Whereas on the other hand, the amount of DEL depends 
on grain size of rocks. 

4. Applications 

In 21st century, interpretation of EM data cannot be pre- 
sented asa comparison of resistivity data any more. There 
are many publications where the relation between resis- 
tivity, porosity, resistivity and permeability has been 
found statistically. However, even within one type of 
rocks, the dependence of resistivity on porosity is often 
different. Moreover the relationship between resistivity 
and porosity (or permeability) usually is displayed as a 
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Figure 13. Permeability versus porosity for different amounts 
of absorbed water. 
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large cloud of measured values. Statistical method is 
simply a set of measurements in the laboratory (or bore-
holes data) without “looking inside pore of pores” and 
without taking a note of the grain sizes and amount of 
DEL. A fractal model is a useful tool for the interpreta-
tion of electromagnetic data. It can be used to determine 
porosity, salinity of water, permeability and other elec-
trophysical parameters such as the diffusion coefficient 
CD and volume of D. Below we shall present some ex- 
amples of electromagnetic interpretation using the fractal 
model. 

model has also been used. As the porosity of clay is in 
general approximately 50% and the size of the main 
grains < 10−8 m [7]. The resistivity of water ρf is equal to: 

 

4.1. Search for Fresh Water and an Estimate of 
the Porosity of Water Bearing Sandstone 

Time domain electromagnetic method (TDEM) has been 
used to search for fresh water in the Orenburg region, 
Russia. TDEM soundings were located along several 
profiles. In this area, there are several wells that have 
been electrically logged. Examples of logging diagrams 
are shown in Figure 14. Interpretation of TDEM data has 
been carried out using the software package ERA [10]. 
This software is a mathematical modelling package and 
allows for the identification of several layers with dif- 
ferent resistivities and thicknesses within a section. 

For the calculation of porosity some a prioi parameters 
have to be taken into account, namely the amount of clay 
contain kVcl (25%) and salinity of water (0.03 g/l). Ac- 
cording to the lithological description, the sandstones 
contain 25% - 35% clay material. The salinity of the 
fresh drinking water is recorded as 0.25 - 0.3 g/l. Using 
these parameters in (19) the porosity of sandstone φPs+Av 

has been estimated. The PP Ps+Av is parameter of the po-
rosity of the solid matrix and it has been calculated using 
(5). For calculating theresistivity of clay the fractal 
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Figure 14. Comparison of TDEM and borehole survey data 
for aquifers in Orenburg region. Black curve shows the elec- 
trical resistivity log, red curves shows the resistivity log from 
TDEM data. Visual borehole log is shown on the right. 

1 , ,c azFM C C               (24) 

where F is the Faraday constant [9.64955·10−4 K/mol], z 
is the valence, Μ is the mobility of ions (in m2/Vs) and C 
is the salinity of cations and anions (in mol). Subscripts 
“a” and “k” indicate anions and cations. 

The complete nomogram showing water resistivity’s 
dependence on salinity and temperature is presented by 
Itenberg [11]. Calculated resistivity versus porosity coef- 
ficients of three component sediments (solid matrix 
(fractal), clay (fractal) and water) is displayed in the Fig- 
ure 15. Using this diagram the porosity of the sediments 
was calculated. 

A few layers with different resistivities were identified 
in the cross-section and a comparison with borehole data 
and borehole loggings showed good agreement between 
the logs and TDEM resistivity (Figure 14). The porosity 
of water bearing sandstones estimated for each layer is 
18% - 26% as shown. 

4.2. Search for Fresh Water in Permafrost and 
an Estimate of the Salinity of Water 

The TDEM method has been used to define a fresh water 
aquifer in the polar oil and gas fields of Zapolyarnoe, in 
the Tumen region, Russia [12]. All TDEM signals were 
distorted by induced polarization (IP) effect. Mathe- 
matical modelling has been used for the interpretation of 
TDEM data. The home-made software IRAF allowed us 
to remove the IP effect from the readings, and then the 
data was interpreted using the standard software ERA 
[10]. A low resistive layer (6.5 - 8 Ohmm) was observed 
within the permafrost at a depth of 60 - 70 m. Figure 16 
was used to estimate the salinity of the melt water. As the 
porosity of water bearing sediments can be 20% - 25% and 
more. therefore, the salinity of water has been calculated 
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Figure 15. Calculated resistivity versus porosity coefficient of 
three component sediments. Index of curves is salinity of wa- 
ter (g/l). Volume of clay in unit is 0.25 (25%). 
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Figure 16. Calculated resistivity versus porosity coefficient 
forthree component sediments. Indices of the curves show the 
salinity of the water (g/l). Volume of clay in unit is 0.25 (25%). 
Square indicates the limit of salinity relative to resistivity 6.5 - 
8 Ohmm. 
 
using (19) where the parameter of porosity is presented 
as fractal. The salinity of water with a resistivity 6.5 - 8 
Ohmm was estimated as 2 - 3 g/l (square box in Figure 
16). However, well drilling was recommended and com- 
pleted. 

The geological log from a well is summarized below: 
0 - 45 dark grey loam, frozen with rare layers of pure 

ice; 45 - 75 m layering, loam and sandy loam, the sedi- 
ments are unfrozen within the interval of 62 - 68 m, with 
a layer of water saturated sand; 75 - 80 m dark grey clay, 
frozen. With regards to the ground water, the daily 
pumping rate was 12 - 17 m3/s, and the subsequent che- 
mical analysis resulted in a concentration of 3 g/l. The 
taste of water is slightly salty, and unfortunately this 
ground water does not fit the drinking water standard. 
However, the interpretated TDEM data using (10) and 
the fractal model show a good agreement with drilling 
data. 

4.3. Estimation of Permeability 

Lastly we have selected a number of well characterized 
sandstone samples for study, although we focus here on 
measurements made on the Berea, Tennessee, Coconino 
and Island Rust sandstones. Measurements of samples 
and analysis have been provided by Baker [13].The mean 
grain size of each sample has been estimated by Baker 
using the Havriliak-Negami relationship. Below is a de- 
scription of each rock unit: 

Berea sandstone is of Mississippian age, quarried in 
Berea, Ohio. The major components of this sandstone are 
quartz, quartzite lithic fragments and feldspar. The mean 
grain size of 0.3 mm; the porosity of the Berea sandstone 
sample is 19%. Coconino is an Early-Permian age sand- 
stone of windblown origin and comes from one of the 
Grand Canyon formations. The major components of this 
sandstone are quartz, feldspar, and some lithic fragments. 

The sandstone porosity is connected with a 0.5 mm mean 
grainand is equal to 11%. Tennessee Sandstone is of Pen- 
nsylvanian age and is part of the Crab Orchard formation. 
The major components of this sandstone are quartz, 
feldspar, and some litic fragments. The main grain is 0.2 
mm with non-interconnected pore spaces. Porosity is 6%.  

Island Rust sandstone is composed mainly of sur- 
rounded to angular quartz, with a porosity of 14%. The 
main grain size is 0.2 mm with pores that are not well 
connected. 

Pore size distribution and permeability of each sample 
have been measured using the mercury invasion capillary 
pressure method (MICP), which is the most precise 
method for study internal structure of rocks. The perme- 
ability of the investigated samples measured by MICP 
are given in the Table 3 (first column) [13]. 

Another way of predicting permeability was proposed 
by Berg [14] and presented in [13]. The predicted per- 
meability is presented in the second column. 

Zadorozhnaya and Maré [15] proposed a new model of 
membrane polarization and mathematical consideration. 
In laboratory, electrical responses for samples with dif- 
ferent applied currents were measured and then mathe- 
matical modeling of pore structure was carried out. In 
general for mathematical modeling more than 80 differ- 
ent pore sizes have been used. The number of pores of 
each size can be varied to achieve a better correlation 
with measured data. DEL in the walls of the pores has 
also been considered. The estimated pore permeability 
for each sample, using (23), is listed in Table 3 (column 3). 

The main pore radius has been estimated using both 
MICP and mathematical modelling. Pore size distribution 
for Berea, Tennessee and Island samples obtained by 
MICP and MM are very similar and the main radii of 
pores are the same for both method. However, we did not 
obtained a good agreement between MICP and MM for 
the Coconino sample, therefore an estimation of perme- 
ability has been provided for both of these methods. In 
Table 3 MM data is shown with (*). As we can see the 
estimated permeability using the fractal model in Table 3 
is comparable with the well-known and widely accepted 
MICP method, Berg’s relationship and the new method  
 
Table 3. Permeability of samples obtained by four different 
methods. 

 Permeability (in mD) 

Sample MICP Berg [3] Model Fractal 

Pore radius
(in m) 

Berea 2.30e−2 6.9e−2 1.65e−2 2.0e−2 7.5e−6 

Coconino 2.1e−1 7.7e−1 3.1e−1 2.7e−1/1.47* 7e−7/2e−6*

Tennessee 5.2e−1 2.3e−1 3.7e−1 3.7e−1 2.8e−6 

Island Rust 5.0e−1 7.8e−1 2.4e−1 1.0e−1 3e−6 
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which involves the measurement of samples in the labo- 
ratory and mathematical modelling of the pore size dis- 
tribution. 

5. Conclusion 

A fractal model containing n-series of spheres with cor- 
responding radii and surrounded by a thin film of ad- 
sorbed water tested in this study. This model is more 
suitable to sedimentary rocks because it not only allows 
for varying grain sizes and number of fractions, but also 
takes into consideration the influence of the double elec- 
trical layers on the physical properties of sediments. It is 
also shown that if sediments contain plated particles (for 
example clay) the resistivity of these sediments can be 
considerably lower than would be expected, due to a de- 
creasing porosity parameter and more importantly, due to 
the increasing amount of DEL. Ellipsoid fractal models 
provided mathematical proof of the phenomenon of su- 
percapillary conductivity observed by laboratory meas- 
urements. Using the parameters of the fractal model sev- 
eral petrophysical parameters can be calculated, namely 
resistivity porosity, and permeability. Mathematical mo- 
delling of petrophysical properties can be done to en-
hance the interpretation of TDEM data. In a case study, 
layers with different resistivity were identified on a sec- 
tion from a TDEM survey. The results were compared to 
borehole data and borehole loggings and showed good 
agreement between the log and TDEM resistivity. In ad- 
dition, using the given (calculated) resistivity of layers, 
the porosity and salinity of water bearing layers has been 
estimated using the fractal model. Estimated permeability 
calculated using the fractal model showed good agree- 
ment with the additional methods (MICP method, Berg’s 
relationship and mathematical modelling), thus allowing 
permeability to be determined. 
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