
Int. J. Communications, Network and System Sciences, 2012, 5, 724-735
http://dx.doi.org/10.4236/ijcns.2012.511076 Published Online November 2012 (http://www.SciRP.org/journal/ijcns)

Global Electronic Dominance with Spatial Grasp

Peter Simon Sapaty
Institute of Mathematical Machines and Systems, National Academy of Sciences,

Kiev, Ukraine
Email: peter.sapaty@gmail.com

Received July 1, 2012; revised September 20, 2012; accepted September 28, 2012

ABSTRACT

A high-level control technology will be revealed that can dynamically establish overwhelming dominance over distrib-
uted networked systems with embedded electronic devices and any communications between them. It is based on im-
planting of universal control modules (that may be concealed) into key system points which collectively interpret com-
plex but compact mission scenarios in a special high-level Distributed Scenario language (DSL). Self-evolving and
self-spreading in networks, matching them in a super-virus mode, DSL scenarios can analyze their structures and states
and set up any behavior needed, including creation of benign or elimination of unwanted infrastructures. The scalable
technology allows us to convert any distributed networked systems into a sort of integral spatial brain capable of ana-
lyzing and withstanding unpredictable situations in a variety of important domains.

Keywords: Electronic Dominance; Distributed Dynamic Worlds; Asymmetric Situations and Threats; Spatial Grasp

Technology; Distributed Scenario Language; Parallel Networked Interpretation; Global Awareness;
Multi-Robot Systems

1. Introduction

In our modern dynamic world we are constantly meeting
numerous irregular situations and threats where proper
reaction on them could save lives and wealth and protect
critical infrastructures. For example, it is no secret that
large and powerful traditional world armies, having most
sophisticated weapons, are often losing to terrorists, in-
surgents or piracy with primitive gadgets but very smart
and flexible structures making them hard to detect and
fight. And delayed reaction on environmental crises like
earthquakes, tsunamis or forest fires with their severe
consequences can also be the result of inadequacy of
existing organizational structures for dealing with emer-
gency situations.

The current paper just deals with these system organ-
izational features where a novel system philosophy and
supporting high-level networking technology are de-
scribed which, using any available electronic communi-
cation and data processing means, can quickly react on
asymmetric situations, establish dominance over distrib-
uted systems, and quickly organize available human and
technical resources into operable systems.

The approach, based on a holistic spatial grasp vision
resembling in some sense the work of a human brain,
allows us at runtime, on the fly, formulate top semantics
of the needed reaction on asymmetric events in a special
Distributed Scenario Language (DSL) while shifting tra-

ditional organizational routines to automated up to fully
automatic implementation. Contrary (and in supplement)
to traditional interoperability principles of organization
of large distributed systems, in military domain including,
the technology offered establishes a higher supervisory,
or overoperability [1,2] layer guaranteeing global aware-
ness, pursuit of both local and global goals, and self-
recovery from indiscriminate damages.

In this paper we will outline the basics of this Spatial
Grasp Technology, details of its implementation in dy-
namic networked systems, as well as present and explain
exemplary scenarios in DSL from different domains
where global electronic dominance can be the key to so-
lutions of most urgent and complex tasks.

2. The Spatial Grasp Model

2.1. Parallel Spatial Grasp of Distributed Worlds

The theoretical model and the resulted Spatial Grasp
Technology (SGT) are based on formalized wavelike
seamless navigation, coverage or grasping of distributed
physical and virtual spaces, as symbolically shown in
Figures 1(a) and (b).

This mode of high-level system vision, based on holis-
tic and gestalt principles [3-6] rather than cooperating
parts or agents [7], has strong psychological and phi-
losophical background, reflecting, for example, how hu-
mans (especially top commanders) mentally plan, com-

Copyright © 2012 SciRes. IJCNS

P. S. SAPATY 725

(a)

(b)

Figure 1. Incremental integral grasp of distributed worlds:
(a) Virtual interpretation; (b) Symbolic physical analogy.

prehend and control complex operations in distributed
environments.

Traditional systems are based on design and creation
of their multi-component structures first, with global
system function and overall behavior being a result of
operation of the predefined structure. Such systems are
often clumsy and static, prone to failures in dynamic and
asymmetric situations. If the initial goals change, the
whole system may have to be partially or even com-
pletely redesigned and reassembled. Adjusting the al-
ready existing system to new goals may result in a con-
siderable loss of system’s integrity and performance.

The presented spatial grasp approach largely starts
from the opposite-from global goal and top semantics of
the needed overall behavior, expressed in a special DSL
formalism, making the system structure and its internal
organization runtime dependent on (changing) mission
goals and states of the environment in which the mission
evolves. This may provide highest possible flexibility of
runtime system organization, especially in responses to
asymmetric events, offering also enhanced possibilities
for automated up to fully automatic (unmanned) solu-
tions.

2.2. Distributed Scenario Interpretation

The approach in practice works as follows. A network of
universal control modules U, embedded into key system
points, collectively interprets mission scenarios expressed
in DSL, as shown in Figure 2. The scenarios, based on
the spatial grasp idea (capable of representing any paral-
lel and distributed algorithms, spatial cycles and loops

Figure 2. Collective scenario execution in dynamic envi-
ronments.

including), can start from any node, subsequently cover-
ing the whole system or its parts needed at runtime.

DSL scenarios are often very compact and can be cre-
ated on the fly. Different scenarios can cooperate or
compete in a networked space (depending on live control
or distributed simulation mode) as overlapping fields of
solutions. Self-spreading scenarios can also create run-
time knowledge infrastructures distributed between sys-
tem components (humans, robots, smart sensors). These
infrastructures can effectively support distributed data-
bases, advanced command and control, global situation
awareness, autonomous decisions, as well as any other
computational or control models.

More details on the SGT, its core language DSL, and
its distributed interpreter can be found elsewhere [8-14],
with some key features necessary for explanation of the
chosen here applications briefed in the following sec-
tions.

3. Distributed Scenario Language

DSL differs radically from traditional programming lan-
guages. It allows us to directly move through, observe,
and make any actions and decisions in fully distributed
environments.

3.1. The DSL Worlds

DSL directly operates with:
 Virtual World (VW), which is finite and discrete,

consisting of nodes and semantic links between them.
 Physical World (PW), infinite and continuous, where

each point can be identified and accessed by physical
coordinates with certain precision.

 Virtual-Physical World (VPW), finite and discrete,
similar to VW, but associating some or all virtual
nodes with certain PW coordinates.

3.2. DSL Basic Features

Any sequential or parallel, centralized or distributed, sta-
tionary or mobile algorithm operating with information
and/or physical matter can be written in DSL at any lev-

Copyright © 2012 SciRes. IJCNS

P. S. SAPATY 726

els, including the highest semantic ones. Its top level
recursive structure is shown in Figure 3.

DSL main features may be summarized as follows:
 A DSL scenario develops as parallel transition be-

tween sets of progress points (props).
 Starting from a prop, an action may result in other

props (which may be multiple) or remain in the same
one.

 Each prop has a resulting value and resulting state.
 Different actions may evolve independently or inter-

dependently from the same prop.
 Actions may also spatially succeed each other, with

new ones applied sequentially or in parallel from all
or some props reached by the previous actions.

 Elementary operations may directly use states and
values of props obtained from other actions whatever
complex and remote.

 Any prop can associate with a node in VW or a posi-
tion in PW, or both-when dealing with VPW.

 Any number of props can be simultaneously linked
with the same points of the worlds, sharing local in-
formation at them.

 Staying with world points, it is possible to directly
access and impact local world parameters, whether
virtual or physical.

3.3. DSL Rules

The basic construct, rule, of the language may represent
any action or decision and can, for example, be as fol-
lows:
 Elementary arithmetic, string or logic operation.
 Hop in a physical, virtual, or combined space.
 Hierarchical fusion and return of (remote) data.
 Distributed control, both sequential and parallel.
 A variety of special contexts for navigation in space

influencing embraced operations and decisions.
 Type or sense of a value or its chosen usage, guiding

Figure 3. DSL top level recursive syntax.

automatic interpretation.
 Creation or removal of nodes and links in distributed

knowledge networks.

3.4. Spatial Variables in DSL

Working in fully distributed physical or virtual environ-
ments, DSL has different types of variables, called spa-
tial, effectively serving multiple cooperative processes:
 Heritable variables—these are starting in a prop and

serving all subsequent props, which can share them in
both read & write operations.

 Frontal variables—are an individual and exclusive
prop’s property (not shared with other props), being
transferred between the consecutive props and repli-
cated if from a single prop a number of other props
emerge.

 Environmental variables—are accessing different ele-
ments of physical and virtual words when navigating
them, also a variety of parameters of the internal
world of DSL interpreter.

 Nodal variables—allow us to attach an individual
temporary property to VW and VPW nodes, accessed
and shared by all activities currently associated with
these nodes.

These four types of variables, especially when used
together, allow us to create spatial algorithms working in
between components of distributed systems rather than in
them, allowing for flexible, robust and potentially self-
recovery solutions, even though different components
may fail indiscriminately. Such algorithms can freely
move, replicate and spread in distributed processing en-
vironments (partially or as an organized whole), always
preserving global integrity and overall control.

Traditional to existing programming languages abbre-
viations of operations and delimiters can be used too,
substituting certain rules as in the examples throughout
this text, in order to shorten and simplify DSL programs.
The latter, however, are obeying the general syntactic
structure shown in Figure 3.

3.5. The Main DSL Constructs

The list of basic DSL constructs is shown in Figure 4,
where syntactic categories are shown in italics, vertical
bar separates alternatives, the construct in square brack-
ets is optional, and the ones in braces (except boldfaced
ones) indicate zero or more repetitions, whereas the re-
maining symbols and words are the language terminals
(including the boldfaced braces).

4. Distributed DSL Interpreter

4.1. DSL Interpreter Organization

The DSL interpreter [2,7-9] with its internal organization

Copyright © 2012 SciRes. IJCNS

P. S. SAPATY 727

grasp
constant
variable
rule

Information
Matter
movement
creation
echoing

verification

assignment
modification
advancement
branching

transference
timing
granting
type

usage

heritable
frontal
nodal
environmental

special

 constant | variable | [rule] ({grasp,})
 information | matter
 heritable | frontal | environmental | nodal
 movement | creation | echoing | verification |

assignment | modification | advancement |
branching | transference | timing | granting |

type | usage | grasp
 ‘string’ | {string} | number | special
 “string”
 hop | move | shift
 create | linkup | delete | unlink
 state | order | rake | min | max | average |

count | sort | add | subtract | multiply | divide |
degree | separate | unite | attach | append |
common | content | index

 equal | not equal | less | less equal | move |
more equal | empty | nonempty | belongs |
not belongs | intersects | not intersects

 assign | assign peers
 inject | replicate | split
 advance | repeat | synchronize
 parallel | sequence | if | or | and | choose |

cycle | loop | whirl | destination
 run | call | output | input

 sleep | remain
 free | release | quit | none | lift | stay | seize
 nodal | heritable | frontal | environmental |

matter | number | string
 address | name | place | center | range |

time | speed | doer | node | link | unit

 H {alphameric}
 F {alphameric}
 N {alphameric}
 TYPE | CONTENT | ADDRESS |

QUALITIES | WHERE | BACK |
PREVIOUS | DOERS | LINK |
DIRECTION | WHEN | TIME | SPEED |
STATE | VALUE | COLOR

 abort | thru | done | fail | infinite | nil | first |
random | any | all | virtual | physical |
combined | global | local | direct | no back

Figure 4. Main DSL constructs.

shown in Figure 5, where shaded local structures repre-
sent parts of distributed global ones covering the inter-
pretation network, has the following main features:
 It consists of a number of specialized modules work-

ing in parallel and handling & sharing specific data
structures supporting both persistent virtual worlds
and temporary data and hierarchical control mecha-
nisms.

 The whole network of the interpreters can be mobile
and open, changing at runtime the number of nodes
and communication structure between them.

 Copies of the interpreter can be concealed as for act-
ing in hostile systems, allowing us to analyze and
impact the latter properly.

4.2. Spatial Track System

 The “heart and nerve system” of the distributed inter-
preter is its spatial track system with its parts kept in
the Track Forest memory of local interpreters—these
being logically interlinked with such parts in other
interpreter copies, forming altogether global space
control coverage.

 This forest-like distributed track structure enables
hierarchical command and control as well as remote
data and code access, with high integrity of emerging
parallel and distributed solutions, without any cen-
tralized resources.

 The dynamically crated track trees (generally: forests),
spanning the systems in which DSL scenarios evolve,
are used for supporting spatial variables and echoing
& merging different types of control states and re-
mote data, being self-optimized in the parallel echo
processes (providing automatically of what is usually
called (adaptive) command and control, or C2).

 They also route further grasps to the positions in
physical, virtual or combined spaces reached by the
previous grasps, uniting them with the frontal vari-
ables left there by the preceding grasps.

The dynamically networked DSL interpreters are ef-
fectively forming a sort of a universal and parallel spa-
tial machine (“machine” rather than computer as it oper-
ates with physical matter too, and can move partially or
as a whole in physical space too) capable of solving any
problems in a fully distributed mode, without any special
central resources.

5. Creation, Activation, and Management of
a Distributed World

We provide here a simple interactive example of a num-
ber of DSL and SPT possibilities in dealing with distrib-
uted interconnected systems, from their creation and ac-
tivation to management and supervision.

5.1. Distributed World Creation

An exemplary networked virtual world with named nodes
and links may be the one shown in Figure 6.

This (so far) passive world can be created and arbitrar-
ily distributed between computers (from all nodes in the
same computer to each node on a separate one) by the
following DSL program based on parallel depth-first tree
creative template (see also Figure 7), to be initially ap-
plied to the empty space:

create (# 1; c # 4; e # 5; (b # 2; a ## 1, d ## 4),
 (i # 6; j # 3; f ## 1, g ## 4))
The stages of how this creative template evolves,

gradually creating nodes and links connecting them, are
shown in Figures 8(a)-(f) (starting in full, then losing
worked parts unless becoming empty).

Copyright © 2012 SciRes. IJCNS

P. S. SAPATY

Copyright © 2012 SciRes. IJCNS

728

Figure 5. Organization of DSL interpreter.

Figure 6. A virtual world to be created.

Figure 7. Applying dept-first creative formula.

The networked DSL interpreter may distribute nodes
randomly between available computers (as in Figure 9).
The particular computers to be used in this process may
be named explicitly, as follows:
DOERS = (Computer1, Computer2, Computer3);
create (# 1; c # 4; e # 5; (b # 2; a ## 1, d ## 4),
 (i # 6; j # 3; f ## 1, g ##4))

We may also appoint exact computer for each node:
create (# (1, Computer1); c # (4, Computer2);
 e # (5, Computer3); (b # (2, Computer1);
 a ## 1, d ## 4), (i # (6, Computer3);
 j # (3, Computer2); f ## 1, g ##4))

5.2. World’s Invasion with Mobile Objects

Invading the world created with nameless active mobile

objects (agents) randomly moving between nodes, as
shown in Figure 10, may be done by the following DSL
program (starting, say, from nodes 1, 4 and 5 where the
agents should start their existence):
hop (1, 4, 5); repeat (sleep (60); hop (random, all
links))

Giving personal identity (names) to these mobile ob-
jects and allowing them see each other at nodes (by
self-registering in shared nodal variables Stay), as in
Figure 11, with locally reporting the fact of this seeing,
may be accomplished by:
(ID = Peter; hop (1)), (ID = Simon; hop (4)),
(ID = John; hop (5));
repeat (if (nonempty (Stay), output (ID, ‘sees’,
Stay));
 append (Stay, ID); sleep (60); remove (Stay,
ID);
 hop (random, all links))

5.3. Adding Nodal Activity

Adding permanent personal activity to all nodes allowing
them, for example, to regularly inform all neighbors on
the objects currently staying at them (see Figure 12) as a
possible alarm for certain applications, may be done by:
hop (all nodes);
loop (nonempty (Stay); (hop (all links); OUT) =
 ‘seen at:’ & NAME & Stay; sleep (30))

5.4. Adding Global Supervision and Inspection

Adding regular global inspection with collecting names
of all objects currently staying at nodes, in a dynamic
breadth-first spanning tree mode starting from a certain
point (here node 4), as shown in Figure 13, may be done
by the following DSL program:
hop (4); loop (output (repeat (free (NAME & Stay),
 hop (first, all links))))

P. S. SAPATY 729

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8. Gradual world creation by self-evolving template.

Figure 9. Possible distribution of network nodes between
computers.

Figure 10. Invading the world with nameless active mobile
objects.

Figure 11. Allowing named mobile objects see each other at
nodes.

Figure 12. Adding nodal activity informing neighbors on
objects seen.

5.5. Runtime Restructuring of the Active
Distributed World

And any restructuring of this active distributed system
can be done at runtime too. For example, removing node
1 with all adjacent links and, in parallel, adding link w

Copyright © 2012 SciRes. IJCNS

P. S. SAPATY 730

Figure 13. Adding global regular inspection of all mobile
objects.

between nodes 2 and 3 (as in Figure 14) can be done by
the following program:
remove (hop(1); all links #), (hop (3); linkup (w, 2))

The modified distributed system will remain active
and operational under the changed configuration, same as
before.

6. Analyzing and Impacting Network
Structures in Distributed Systems

Of considerable importance in dealing with distributed
systems may be finding weak (or weakest) and strong (or
strongest) parts in them, whether these systems being
civil or military (say, battlefields in the latter case), and
friendly or hostile. Solution of other problems may relate
to finding certain substructures in distributed organiza-
tions by their proper descriptions, or patterns. In the ex-
amples below we formulate and solve some of these
tasks on colored graphs where each graph node may be
located in a separate computer and links can connect
nodes in the same or in different computers.

6.1. Finding Weakest Points

To find the weakest nodes in a graph like articulation
points (see Figure 15), which when removed split it into
disjoint parts, the following program suffices (resulting
in node d which is chosen to be physically removed for a
certain application).
nodal (Mark);
hop (all nodes); COLOR = NAME; Mark = 1;
and ((hop (random, all links);
 repeat (grasp (Mark == nil; Mark = 1);
 hop (all links))),
 (hop (all links); Mark == nil),
 remove (CONTENT))

This program works in the following steps.
 Starting in each node with personal color, marking it.
 Parallel marking all accessible subnetwork with per-

sonal color from a randomly chosen neighbor, ex-
cluding itself from the marking process.

 Checking if the current node solely connects parts of
network.

Figure 14. Runtime restructuring of the active system.

Figure 15. Finding weakest points.

 Removing the node.

6.2. Finding Strongest Parts

Cliques (or maximum fully connected sub-graphs of a
graph, as in Figure 16), on the contrary, may be consid-
ered as strongest parts of a system. They all can be found
in parallel by the following simple program resulting for
Figure 15 in cliques: (a, b, c, d), (c, d, e), and (d, e, f).
These cliques are then chosen to be printed locally rather
than removed, as in the previous case.
frontal (Clique); hop (all nodes); Clique = NAME;
repeat (
 hop (all links); not belong (NAME, Clique);
 if (and parallel (hop (any links, Clique)),
 if (BACK > NAME, Clique &= NAME, done),
fail));
if (length (Clique) >= 3, output (Clique))

The program operates in the following steps:
 Starting in each node.
 Growing potential clique in a unique node order until

possible.
 Printing the clique grown, with threshold size given.

6.3. Finding Arbitrary Structures by Parallel
Pattern Matching

Any structures in distributed networked systems can be
found by describing them in DSL, like the one in Figure
17, which can be applied from any network node, evolv-
ing subsequently in a parallel replication and pattern-
matching mode. The following DSL program, reflecting
the search pattern (template) of Figure 16 (with variable

Copyright © 2012 SciRes. IJCNS

P. S. SAPATY

Copyright © 2012 SciRes. IJCNS

731

(X1, X2, X3, X4, X5, X6)
(J, V, C, N, B, D), (M, A, N, Q, P, E), (R, W, Q, Z, Y,
O)

More on parallel and distributed operations on general
graph may be found in [12,13], where the DSL’s prede-
cessor called WAVE was used [13].

7. Providing Global Awareness & Targeting

Establishing global electronic supervision over any dis-
tributed systems, SGT effectively provides global aware-
ness of complex situations in them, for example, for dis-
covering, collecting and distributing hostile targets see-
ing locally from their different points, as shown in Fig-
ure 18, and by the following DSL program.

Figure 16. Finding strongest parts.

loop (
frontal (Seen) =
 repeat (free (detect (targets)), hop first (infra));
 repeat (free (select_shoot (Seen)), hop first (in-
fra)))

This constantly looping, self-evolving and self-spread-
ing distributed program, providing global collection of
possible targets throughout the region of concern and
their subsequent distribution back to local units (the latter
selecting which targets to shoot individually), can start
from any component of the system having DSL inter-
preter installed (communication links between the inter-
preters, which can be dynamic and casual, are called in-
fra in Figure 18).

Figure 17. Finding arbitrary structures in arbitrary net-
works.

nodes X1 to X6), is based on a path through all tem-
plate’s nodes.
frontal (Match); hop (all nodes);
(repeat, 5) (append (Match, NAME); all links #; 8. Fighting Viruses in Distributed Networks
 not belong (NAME, Match));
if (and (any link # Match [2, 3]), SGT can also allow us to find independently and in par-

allel potential nodes from which viruses flooding a net-
work might have originated, by backward tracing their
spread until their footprints remain in the nodes passed,
as shown in Figure 19.

 (append (Match, NAME); all links # Match [1];
 if (any link # Match [5], OUT = Match)))

Three substructures have been found by the template
in Figure 17, with template variables matching the fol-
lowing network node tuples: All virus sources finding program in DSL may be as

Figure 18. Providing overall awareness and global targeting in a distributed space.

P. S. SAPATY 732

Figure 19. Finding probable virus sources in parallel.

follows, where the probable virus sources are lifted, sorted,
and output in the order of their likelihood.
nodal (Trace);
sequence (
 (hop (all nodes); nonempty (check (viruses));
 repeat (increment (Trace); nonempty (Prede-
cessor =
 where from (viruses)); hop (Predecessor))),
output (sort (hop (all nodes); empty (Predecessor);
 nonempty (Trace); Trace & ADDRESS)))

This DSL program, spreading itself as a computer vi-
rus too, may be symbolically considered as a sort of
“biological” weapon for fighting another, malicious vi-
ruses in a computer network. Having, however, an ad-
vantage over usual viruses as reflecting a powerful glob-
ally controlled spatial algorithm, dynamically interlinked
in space as an integral global goal oriented unit.

9. Coastal Waters Unmanned Patrol
Example

This example relates to a physical world, with physical
movement of equipment with orientation on mobile ro-
botics (like unmanned underwater vehicles, or UUV), as
shown in Figure 20 (for simplicity, we consider here
only a two-dimensional example).

At the beginning we should create a coastal waypoint
map in the form of a semantic network, as follows.
create(# x1_y1; +r # x2_y2; + r # x3_y3; ... ,+r #
x9_y9)

The two-vehicle parallel solution may be achieved by
the following program searching the water space for
alien objects to the depth available by vehicle’s sensors,
with vehicles moving forward and backward independ-
ently, according to the coastal map, assuming each capa-
ble of avoiding collisions when on opposite courses:
(move(hop(x1_y1)); R = +r), (move(hop(x9_y9)); R =
-r);
repeat(repeat(move_avoid(hop(R));
check_report(depth));
 invert(R))

Figure 20. Coastal zone patrol by unmanned vehicles.

Another solution may be when each vehicle turns back
if discovers another patrol vehicle on its way (as a con-
firmation that the way ahead has already been serached),
checking for this its vicinity by depth2), as follows.
(move (hop(x1_y1)); R = +r), (move (hop(x9_y9)); R
= -r);
repeat (repeat(none(depth2); move(hop(R));
 check_report(depth)); invert(R))

For the both cases, the whole coastline will always be
searched in full if at least one vehicle remains operational.
The case can be easily extended to any number of patrol
vehicles searching the same coastline simultaneously.

10. Expressing Battlefield Scenarios

Formalization of Command Intent (CI) and Command
and Control (C2) in general, are among the most urgent
and challenging problems on the way to creation of ef-
fective multinational forces, integration of simulations
with live control, and natural transition to robotized ar-
mies. Specialized languages for unambiguous expression
of CI and C2 (like BML and its deriavtives C-BML,
JBML, geoBML, etc.) [15,16] are not programming lan-
guages themselves, needing therefore integration with
other linguistic facilities and organizational levels to
provide required system parameters.

On the contrary, working directly with both physical
and virtual worlds, DSL allows for effective and univer-
sal expression of any battlefield scenarios and orders in
parallel and fully distributed manner, also allowing for
straightforward implementation in robotized up to fully
robotic systems. DSL scenarios are also much shorter
and simpler, as in the following example taken from [16],
both (simplified) Figure 21 and the BML code.

The task is to be performed by two armoured squad-
rons BN-661 Coy1, and BN-661 Coy3, which are or-
dered to cooperate in coordination. The operation is di-
vided into four time phases: from TP0 to TP1, from TP1
to TP2, from TP2 to TP3, and from TP3 to TP4, to fi-
nally secure objective Lion, and on the way to it, object-
tive Dog. Their coordinated advancement should be
achieved by passing Denver, Boston, Austin, Atlanta,
and Ruby lines, while fixing and destroying enemy units
Red-1-182, Red-2-194, Red-2-196, and Red-2-191.

Tasks assigned to Coy1 are written in BML as follows:

Copyright © 2012 SciRes. IJCNS

P. S. SAPATY 733

Figure 21. Coordinated advancement in physical space.

deploy BN-661 Coy1 at Denver end before TP0
in-order-to enable label-o11 label-o10;
advance BN-661 Coy1 from Denver to Boston start
at TP0
in-order-to enable label-o12 label-o11;
fix BN-661 Coy1 Red-1-182 at Boston end nlt TP1
in-order-to enable label-o33 label-o12;
advance BN-661 Coy1 to Austin start at TP1
in-order-to enable label-o14 label-o13;
fix BN-661 Coy1 Red-2-194 at Dog end nlt TP2
in-order-to enable label-o35 label-o14;
advance BN-661 Coy1 to Atlanta start at TP2
in-order-to enable label-o16 label-o15;
fix BN-661 Coy1 Red-2-196 at Atlanta end nlt TP3
in-order-to enable label-o37 label-o16;
advance BN-661 Coy1 to Ruby start at TP3
in-order-to enable label-o18 label-o17;
fix BN-661 Coy1 Red-2-191 at Lion end nlt TP4
in-order-to enable label-o39 label-o18;
seize BN-661 Coy1 Lion at Lion end nlt TP4
in-order-to cause label-ci1 label-o19;
Tasks assigned to Coy3 in BML:
deploy BN-661 Coy3 at Denver end before TP0
in-order-to enable label-o32 label-o30;
support BN-661 Coy3 Coy1 at Troy start at TP0 end
at TP4 label-031;
attspt BN-661 Coy3 Red-1-182 from Denver to
Boston start at TP0 end nlt TP1
in-order-to enable label-o12 label-o32;
destroy BN-661 Coy3 Red-1-182 at Boston end nlt
TP1
in-order-to enable label-o13 label-o33;
attspt BN-661 Coy3 Red-2-194 from Boston to Dog
start at TP1 end nlt TP2
in-order-to enable label-o14 label-o34;
destroy BN-661 Coy3 Red-2-194 at Dog end nlt TP2
in-order-to enable label-o15 label-o35;
attspt BN-661 Coy3 Red-2-196 from Dog to Atlanta

start at TP2 end nlt TP3
in-order-to enable label-o16 label-o36;
destroy BN-661 Coy3 Red-2-196 at Atlanta end nlt
TP3
in-order-to enable label-o17 label-o37;
attspt BN-661 Coy3 Red-2-191 from Atlanta to Lion
start at TP3 end nlt TP4
in-order-to enable label-o18 label-o38;
destroy BN-661 Coy3 Red-2-191 at Lion end nlt TP3
in-order-to enable label-o19 label-o39;

The following same mission description, but now in
DSL, is much shorter; it can be created and modified on
the fly and executed by manned, mixed, or fully robotic
forces (with most of command and control hidden and
shifted to automatic internal DSL interpretation level).

This can effectively relieve human commanders from a
multitude of traditional explicit C2 routines, allowing
them concentrate on global mission objectives and effi-
ciency instead.
FIXER = BN-661 Coy1;
SUPPORTER_DESTROYER = BN-661 Coy3;
advance_synchronize (
 deploy (Denver, TFIN = TP0),
 move_destroy (
 pl: Boston, target: Red-1-182, TFIN = TP1),
 move_destroy (
 pl: Austin, obj: DOG, target: Red-2-194, TFIN
= TP2),
 move_destroy (
 pl: Atlanta, target: Red-2-196, TFIN = TP3),
 move_destroy (
 pl: Ruby, obj: LION, target: Red-2-191, TFIN =
TP4));
seize (LION, TFIN = TP4)

Many other applications of the spatial grasp paradigm
can be found in [17-25].

11. Conclusions

We have briefed a new type of ideology and resulting
networking technology aimed at establishing global con-
trol and supervision of distributed systems with any elec-
tronic means of communication and data processing em-
bedded.

The paradigm, called overoperability or spatial grasp,
believably resembles of how human brain comprehends
and manages active distributed worlds with integral ge-
stalt-like, non-atomistic world vision. But unlike the
brain operation, this approach has been put on a highly
parallel and fully distributed technological scalable plat-
form giving it advantages in solving problems in very
large and complexly interconnected domains where bio-
logical knowledge processing and intuition may fail.

Within the technology developed, it is possible to de-

Copyright © 2012 SciRes. IJCNS

P. S. SAPATY 734

scribe in a special high-level spatial language any local
and global operations and control in both physical and
virtual worlds and set up and supervise their behavior
needed, including world’s modifications and initial crea-
tion. The approach also allows us penetrate into other
systems and their organizations, both friendly and hostile,
analyze their internal structures and behavior and change
them in the way required, as well as integrate with other
local and global electronic means, establishing overop-
erability layer on top of them.

On the implementation layer, SGT extensively em-
ploys replication and mobile code capability, allowing
mission scenarios spread instructions, data and control in
distributed worlds, spatially linking them with each other
in a super-virus pattern matching mode, effectively con-
fronting other networking technologies, computer viruses
including. And electronic communications between sys-
tem components may be local, limited, unsafe, and
changing at run time, but the self-spreading interpreted
spatial scenarios may always survive and fulfill objec-
tives.

Applications of the technology offered may be nu-
merous and in most diverse fields—from network man-
agement to networked battlefields and future robotized
combat systems. Also, taking into account the over-
whelming world computerization, use of internet, 3 bil-
lion mobile phone users, and its scalability and viruslike
nature, it can help launch and supervise global world
missions in a great variety of areas including environ-
mental protection, education, economy, space research,
security, and defense.

REFERENCES

[1] P. S. Sapaty, “Over-Operability in Distributed Simulation
and Control,” The MSIAC’s M&S Journal Online, Vol. 4,
No. 2, 2002, 8 p.

[2] P. Sapaty, “The Over-Operability Organization of Distrib-
uted Dynamic Systems for Asymmetric Operations,” Pro-
ceedings of IMA Conference on Mathematics in Defence,
Farnborough, 19 November 2009.

[3] M. Wertheimer, “Gestalt Theory,” Erlangen, Berlin, 1925.

[4] P. Sapaty, “Gestalt-Based Ideology and Technology for
Spatial Control of Distributed Dynamic Systems,” Inter-
national Gestalt Theory Congress, 16th Scientific Con-
vention of the GTA, University of Osnabrück, Osnabrück,
26-29 March 2009.

[5] P. Sapaty, “Gestalt-Based Integrity of Distributed Net-
worked Systems,” SPIE Europe Security + Defence, bcc
Berliner Congress Centre, Berlin, 2009.

[6] P. Sapaty, “Grasping the Whole by Spatial Intelligence: A
Higher Level for Distributed Avionics,” Military Avionics,
London, 30 January-1 February 2008.

[7] M. Minsky, “The Society of Mind,” Simon and Schuster,
New York, 1988.

[8] P. S. Sapaty, “Distributed Air & Missile Defense with
Spatial Grasp Technology,” Intelligent Control and Auto-
mation, Vol. 3, No. 2, 2012, pp. 117-131.
doi:10.4236/ica.2012.32014

[9] P. S. Sapaty, “Withstanding Asymmetric Situations in
Distributed Dynamic Worlds,” Proceedings of 17th In-
ternational Symposium on Artificial Life and Robotics,
Oita, 19-21 January 2012.

[10] P. S. Sapaty, “Meeting the World Challenges with Ad-
vanced System Organizations,” Informatics in Control
Automation and Robotics, Lecture Notes in Electrical
Engineering, 1st Edition, Vol. 85, Springer, Berlin, 2011.
doi:10.1007/978-3-642-19730-7_3

[11] P. S. Sapaty, “Distributed Technology for Global Domi-
nance,” In: R. Suresh, Ed., Defense Transformation and
Net-Centric Systems, Proceedings of SPIE, Vol. 6981,
2008, 69810T. doi:10.1117/12.769162

[12] P. S. Sapaty, “Ruling Distributed Dynamic Worlds,” John
Wiley & Sons, New York, 2005.
doi:10.1002/0471656356

[13] P. S. Sapaty, “Mobile Processing in Distributed and Open
Environments,” John Wiley & Sons, New York, 1999.

[14] P. Sapaty, “A Distributed Processing System,” European
Patent No. 0389655, Publ. 10.11.93, European Patent Of-
fice, 1993.

[15] U. Schade and M. R Hieb, “Formalizing Battle Manage-
ment Language: A Grammar for Specifying Orders,”
Spring Simulation Interoperability Workshop, Huntsville,
2-7 April 2006, Paper 06S-SIW-068.

[16] U. Schade, M. R. Hieb, M. Frey and K. Rein, “Command
and Control Lexical Grammar (C2LG) Specification,”
FKIE Technical Report ITF/2010/02, 2010.

[17] P. S. Sapaty, M. J. Corbin and S. Seidensticker, “Mobile
Intelligence in Distributed Simulations,” Proceedings of
14th Workshop on Standards for the Interoperability of
Distributed Simulations, IST UCF, Orlando, 11-15 March
1995.

[18] P. Sapaty, V. Klimenko and M. Sugisaka, “Dynamic Air
Traffic Management Using Distributed Brain Concept,”
Proceedings of 9th International Symposium on Artificial
Life and Robotics, Beppu, 28-30 January 2004.

[19] P. Sapaty and M. Sugisaka, “Optimized Space Search by
Distributed Robotic Teams,” Proceedings of World Sym-
posium Unmanned Systems, Baltimore Convention Center,
Baltimore, 15-17 July 2003.

[20] P. Sapaty, M. Sugisaka, J. Delgado-Frias, J. Filipe and N.
Mirenkov, “Intelligent Management of Distributed Dy-
namic Sensor Networks,” Artificial Life and Robotics,
Vol. 12, No. 1-2, 2008, pp. 1614-7456.
doi:10.1007/s10015-007-0446-8

[21] P. Sapaty, A. Morozov, R. Finkelstein, M. Sugisaka and
D. Lambert, “A New Concept of Flexible Organization
for Distributed Robotized Systems,” Proceedings of 12th
International Symposium on Artificial Life and Robotics,
Beppu, 25-27 January 2007.

[22] P. Sapaty and M. Sugisaka, “Countering Asymmetric
Situations with Distributed Artificial Life and Robotics
Approach,” Proceedings of 15th International Symposium

Copyright © 2012 SciRes. IJCNS

http://dx.doi.org/10.4236/ica.2012.32014
http://dx.doi.org/10.1007/978-3-642-19730-7_3
http://dx.doi.org/10.1117/12.769162
http://dx.doi.org/10.1002/0471656356
http://dx.doi.org/10.1007/s10015-007-0446-8

P. S. SAPATY

Copyright © 2012 SciRes. IJCNS

735

on Artificial Life and Robotics, B-Con Plaza, Oita, 5-7
February 2010.

[23] P. Sapaty, K.-D. Kuhnert, M. Sugisaka and R. Finkelstein,
“Developing High-Level Management Facilities for Dis-
tributed Unmanned Systems,” Proceedings of 14th Inter-
national Symposium on Artificial Life and Robotics,
Beppu, 5-7 February 2009.

[24] P. Sapaty, M. Sugisaka, R. Finkelstein, J. Delgado-Frias

and N. Mirenkov, “Advanced IT Support of Crisis Relief
Missions,” Journal of Emergency Management, Vol. 4,
No. 4, 2006, pp. 29-36.

[25] P. Sapaty, A. Morozov and M. Sugisaka, “DEW in a
Network Enabled Environment,” Proceedings of Interna-
tional Conference Directed Energy Weapons, London, 28
February-1 March 2007.

