
Int. J. Communications, Network and System Sciences, 2012, 5, 343-352
http://dx.doi.org/10.4236/ijcns.2012.56045 Published Online June 2012 (http://www.SciRP.org/journal/ijcns)

A Systematic Approach for Hydrological Model Couplings*

Daniel Salas1, Xu Liang1, Yao Liang2
1Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, USA

2Department of Computer and Information Science, Indiana University-Purdue University Indianapolis, Indianapolis, USA
Email: {das140, xuliang}@pitt.edu, yaoliang@iupui.edu

Received September 30, 2011; revised April 30, 2012; accepted May 10, 2012

ABSTRACT

It is of great importance to develop a systematic framework to integrate and coordinate software components to effec-
tively and efficiently accomplish complex hydrological modeling tasks. In this paper, we examine the state-of-art in-
formation technologies including service-oriented architecture, and propose a systematic approach based on service-
oriented architecture and scientific workflow to investigate the general model coupling problems. A prototype system,
MoteWS, based on web services for publishing field measurement data from wireless sensor networks is developed to
preliminarily explore and test our proposed architecture. Results and lessons learned are discussed and future recom-
mendations in this direction are provided.

Keywords: Service-Oriented Architecture; Scientific Workflow; Web Services; Wireless Sensor Network; Data

Retrieval

1. Introduction

The study of hydrological processes and their associated
extreme events (e.g., floods and droughts) is of para-
mount importance to human lives, global climate change,
a healthy and sustainable ecological environment, and
the national/international economy. In today’s scientific
modeling for such very complex hydrological and envi-
ronmental systems, coupling between different hydro-
logical models and/or among hydrological models and
climate models becomes a common practice.

A desirable framework for these models’ coupling
should support modularity, flexibility and interoperabil-
ity, in the sense that individual models’ development and
implementation are independent with each other and
have their own integrity and autonomy. Such a model
coupling framework can not only greatly facilitate and fit
in interdisciplinary and collaborative scientific work en-
vironment, but also dramatically increase the efficiency
and flexibility of model couplings in research and opera-
tional practices.

In general, integration of hydrological models can be
either a single point-to-point connection with a unique
one-way interaction, or a multiple point interactive and
coordinated set of collaborative activities. The former
can be referred to as a simple coupling problem whereas
the latter as a sophisticated coupling problem. In hydro-
logical, environmental and climate fields, models, either
physically-based or data-driven, are usually realized and

simulated in terms of software systems. Due to the in-
creasing complexity and heterogeneity of software pack-
ages employed and hardware and operating systems plat-
forms used for individual models’ development, we seek
to develop a systematic approach and framework to fa-
cilitate such complex model coupling and integration.
Service-Oriented Architecture (SOA) and scientific work-
flow have great potential to achieve our goal. Following
the SOA approach, our idea is to encapsulate each indi-
vidual model’s functionality in services in addressing the
needs of modularity, flexibility, autonomy, and interop-
erability of individual models in the coupling frame-
work. As services can be distributed over Internet and
reused, SOA can indeed promote remote collaborative
and interdisciplinary team work and make different tar-
geted models/systems’ integrations efficient. On the
other hand, SOA alone is not adequate to address the
problem of automating coordinated set of collaborative
interactions among models for sophisticated couplings.
This leads to scientific workflow. The rest of the paper is
organized as follows. Section 2 reviews and discusses
how SOA, scientific workflow and other potential tech-
niques could be used to integrate and coordinate systems
that represent scientific models. Major advantages and
disadvantages of these techniques, found in the scientific
and commercial computing fields, are discussed. In Sec-
tion 3, we propose a general architecture for model cou-
plings based on SOA and scientific workflow. Section 4
describes MoteWS, a prototype web services-based sys-
tem developed to publish field measurement data from *Theory recompilation, analysis and practical application.

Copyright © 2012 SciRes. IJCNS

D. SALAS ET AL. 344

wireless sensor networks to illustrate and test preliminar-
ily the main SOA component of our proposed architec-
ture for model/system couplings. Finally, in Section 5,
our learned lessons during our prototype development are
discussed, recommendations and our future work along
this research direction is provided.

2. Reviews and Analyses

2.1. Related Work

Some work dealing with the challenges of connecting
collaborative hydrological models exists (e.g., [1,2]). For
example, a theory-based analysis (e.g., [3]) is presented
to show some solutions that can meet the needs of model
integration. Some proofs-of-concept of scientific work-
flow or SOA architecture work, including [4-9], also
exists. In [10], a scientific workflow analysis goes even
further to find systematic ways to study results and to
improve the design. One of the main goals of this paper
is to show, in a condensed but easy-to-read manner, why
SOA and scientific workflow are a better solution com-
pared to other alternative techniques in order to couple,
coordinate, collaborate and evolve hydrologic models in
the process of hydrologic studies. While these reasons
appear to be assumptions in other work, we believe it is
important to establish them explicitly rather than implic-
itly to provide insights, and to pave the way to our pro-
posal of a general architecture for hydrologic model cou-
pling in the next section. In the following, our analyses
are given regarding potential techniques for model cou-
pling in a comprehensive manner, which is not avail-
able all together in the previous work.

2.2. Potential Techniques for Integration

The techniques can be classified into the following cate-
gories.

1) Data integration: The models or systems use a shar-
ed repository of data. Each system puts information in
the repository, where others can find it and read it. The
receiver can poll the repository continuously until it finds
a message, or, the repository can provide an event-alert
system. Advantages: Usually easy to implement. Disad-
vantages: Affects independence of each application. The
integration is easily lost if any of the applications evo-
lves.

2) Business integration: In this type of communication,
one system sends a message from a core component (or a
logic component) and the other system receives it in a
core component (or a logic component). The business
integration can be made using special sub-layer in the
logic layer designed to process the messages (see Figure
1). Advantages: Each application keeps its independence.
Disadvantages: Requires more work because some ser-

Figure 1. Illustration of different types of integration.

vice is required to be developed. This service will con-
tain the code to access the other layers, data, etc.

3) Presentation integration: The GUI of one system
allows the user to access the GUI of another system.
Advantages: Allows the end user to visually perceive the
integration. Disadvantages: Most times it creates strong
dependences between applications.

For the task of integration between hydrological mod-
els, the type of integration that best fits the requirements
is the business integration because:

1) It makes it easier to keep models independent.
2) It makes it easier to keep low coupling1 between

systems.
3) Transparent to end users.
4) It is independent of data storage implementation.
To offer functionality to other systems, each system

can publish:
1) An API2: This allows the client to access all objects,

send, receive and update objects, and use services of
these objects.

2) Services: The logic layer can publish independent
services that are not part of the objects. It leads to Ser-
vice Oriented Architecture (SOA).

For hydrological models’ integration, the SOA archi-
tecture is chosen because the services keep things inde-
pendent and allow lower coupling between systems. Also
it helps to keep the systems transparent to the other side
of the system developers in the sense that the developers
in one system do not need to know the implementation
details and the objects’ structures of the other system.

The task of hydrological model integration requires a
large amount of information coming in from multiple
data sources and different models in a coordinated and
collaborated way to obtain a solution. Thus, such a com-
plex task leads to a next one, the flow control task (Co-
ordination of activities).

1In computer science, coupling or dependency is the degree to which
each program module relies on each one of the other modules.
2Application Program Interface.

Copyright © 2012 SciRes. IJCNS

D. SALAS ET AL. 345

2.3. Potential Techniques for Coordination of
Activities

The techniques can be classified into the following cate-
gories.

2.3.1. By Design
 Description: In this technique, each model can send

or receive messages following the rules established in
the flow-design. The flow of activities can be cen-
tralized or decentralized without a real (automated)
restriction. Then, in maintenance time, these systems
tend to become decentralized, it means that each model
will send and receive messages from another model.

 Problems:
◦ If a developer breaks the rule and sends a message

back to the original sender and this message asks
to re-do computations, it can produce a dead-lock.

◦ Each system must be able to implement communi-
cation protocols to any other system to be con-
nected. For example:
- System “A” in language C++ running on Win-

dows.
- System “B” running PHP on Linux.
- System “D” running Java on Solaris.
- System “E” running Pascal on Windows.
- All systems need the code to communicate to

each other’s languages and operating systems.
◦ The whole-integrated system works fine only if all

the developers of each single system agree the flow-
design paper and respect it always, though in real-
ity, nothing ensures that.

◦ If the flow-design changes, all the systems and in-
teractions must be changed. It puts integrity in risk
for all the individual systems.

◦ Updating and improvement of the integrated sys-
tem are expensive, risky and restricted.

 Advantages:
◦ Requires no invest in any control tools.

 Where the control is: There is not automated control.
There is only paper control.

2.3.2. By Central Control
 Description: In this technique, one model (or system)

is named Controller. This Controller sends requests to
other models, but the other models do not send mes-
sages between them. The Controller has the code to
control the flow of information and activities that the
other models perform. It can become decentralized in
maintenance time.

 Problems:
◦ It works okay only if the other models never send

messages between each other.
◦ It works okay only if the Controller implements a

flow-design without mixing the flow code and the
business (e.g., hydrology) code. Nothing ensures
that.

◦ The Controller must be able to implement com-
munication protocols to any other system to be
connected. This gives additional responsibilities to
a system made for the hydrological modeling.

◦ Updating and improvement of the system are very
expensive and restricted.

 Advantages:
◦ If the flow needs to change, only the Controller

application must be reviewed and changed.
 Where the control is: The control is always imple-

mented in the code of the Controller model.

2.3.3. By Message Broker
 Description: All the involved systems send the mes-

sages to a component designed to intermediate com-
munications only. The systems publish their services
in the broker. Other systems can subscribe to the pub-
lished services and then consume them. See Figure 2.

 Problems:
◦ The flow control is embedded in the publish/sub-

scribe design, in the implicit flow-design and in
the connections that each system performs to the
broker. Thus, the flow control becomes difficult to
understand, maintain and change.

◦ If a system does not respect the flow-design se-
mantics, it could create an infinite loop.

 Advantages:
◦ Models can send messages between them with al-

most no restrictions.
◦ If there are infinite loops or errors, debugging is

much easier than without the broker.
◦ Models keep a high level of independency and

low coupling. Thus, the capacity of each model to
evolve is not affected, as is for the previous tech-
niques.

◦ Each system must be able to implement only one
communication protocol: The one between its own
language/platform and the broker.

◦ In the category of central control, one of the mo-
dels (i.e., Controller model) was required to have
code to communicate with all of the other systems.
Here, the broker only establishes some communi-
cation protocols for some standard platforms (or
maybe only one) and the others need to adapt to it.

◦ The whole integrated system is ordered, traceable,
repeatable. The flow-control is difficult to modify
but is easier to analyze and debug.

 Where is the control: Mostly in the publish/subscribe
protocol in the broker, but also in the flow-design
semantics and some parts are in the models. See Fig-
ure 3.

Copyright © 2012 SciRes. IJCNS

D. SALAS ET AL. 346

Figure 2. Integration using a message broker.

Figure 3. Flow definition in P/S protocols.

2.3.4. By Workflow
 Description: The flow controller is a component call-

ed workflow. This dedicated component has the full
responsibility of controlling and coordinating all the
processes required to complete the computations.
Each time that the workflow requires to run specific
models, it will call them. The workflow component
can act also as either a broker or not. In this case we
will assume the workflow is also a broker to achieve
all the advantages described in both message broker
control and workflow control.

 Problems:
◦ It requires developers to have skills in workflow

theory and integration.
◦ It requires a thorough flow design.
◦ It requires standards for processes, communication,

units and composition of data.
 Advantages:

◦ Each model can communicate to anyone else. Bet-
ter yet, in this technique, each model does not
need to communicate directly to others; the work-
flow component will send request to the other
models and receive their responses.

◦ Integration loops are controlled by only one com-
ponent. Thus, infinite loops and dead-locks occur
less and are easier to correct.

◦ Each system keeps as much independency as pos-
sible with a lower coupling.

◦ Each system must implement one communication

protocol: The one between its own language and
the workflow.

◦ The flow-control code and the hydrological code
are completely separated.

◦ The whole integrated system is ordered, traceable,
repeatable and the flow-control is much easier to
understand, modify and debug.

 Where is the control: In the workflow component.

3. Models Coupling Architecture

We propose a general architecture for the hydrological
model coupling, in which the selected communication
technique is web services and the selected flow-control
technique is workflow.

The driven criteria to choose the integration and flow-
control technique is the maintainability. In commercial
software, the maintenance cost represents between 60%
and 80% of the cost of the life cycle. In scientific soft-
ware, the maintenance (or evolution) is even more inten-
sive due to the constant change of the concepts and ideas
during ongoing research. One of the keys for maintain-
ability is loose coupling because it implies that modify-
ing one component does not affect others, reducing the
complexity of the software system evolution. The com-
munication technique that better fits these criteria is the
business integration (see 0). It could be implemented
through an API or services. Usually the use of an API
would be more efficient but implies that the client com-
ponent requires knowing the object structure of the host
component, whereas the implementation in terms of ser-
vices would be more transparent although a little bit
more overheads. Those services also will be web ser-
vices because: 1) The models are remotely reachable
through a network; 2) This is a kind of services well
known and very mature; 3) This is a standard and well
defined way of interoperation; 4) The models are de-
ployed on machines capable to communicate by SOAP
on http servers.

The flow-control technique that better fits the main-
tainability criteria is by workflow because it keeps cou-
pling as low as possible (see 0). The proposed architect-
ture supports the requirement that models do not com-
municate to each other in any predefined way. Each
model publishes some functionalities through services
that are independent from other models. Moreover, each
service uses WSDL to publish the metadata that allow
others to find and use them. In that way the architecture
fits the SOA paradigm. Nevertheless, SOA alone is not
sufficient in the hydrological model coupling. This is
because the publish/subscribe protocols that are typi-
cally used in SOA would define an implicit order for the
model coupling interactions. Figure 3 shows an example
of a configuration in a publish/subscribe broker. It can be

Copyright © 2012 SciRes. IJCNS

D. SALAS ET AL. 347

seen clearly from Figure 3 that Model 3 will first con-
sume Model 1’s service before it publishes its service to
Model 4. Thus, it implicitly defines the service sequence.

However, implicit design tends to obscure operational
logic and flow control among services and thus is not
always adequate, especially for a complex model cou-
pling system. For example, in Figure 3 the sequence
from the subscription to the publishing of Model 3 (i.e.,
Arrow 2-Model 3-Arrow 3) is defined outside the flow de-
finition. Implicit definition is insufficient and error-prone
also if the problem is complex or flow-control changes
permanently. Scientific workflow solves this requirement
through explicit definition of the interaction flow.

The workflow component uses the functionality that is
already published by the models as services.

It can be located in a separate machine, so that its per-
formance will not be affected by individual model runs.
The workflow component will have the control of the
process and will be responsible for using the models as
required. It is possible to use a model multiple times or
establish loops with recurrent calling to models (time-
steps). The models will have no direct communication.
Models will only response to requests made by the work-
flow. The models will publish their services as web ser-
vices. Our proposed architecture is illustrated in Figure
4.

Models located in different facilities can work together
through remote connections. The interaction starts when
the controlling machine starts a computation (see LO-
CATION 2 in Figure 4). The workflow residing at LO-
CATION 2 knows which and how the activities should
be made. For example, this workflow can execute some
activities and after that it determines the next execution
offered by Model 1.

Figure 4. General architecture proposed.

At this point, the workflow will establish a connection
with, for example, web service 2 (WS2) of Model 1. The
workflow will call this web service to send required pa-
rameters and will receive a response from Model 1.
Model 1 will then use the parameters received to exe-
cute hydrological computations and obtain results.

Responses from Model 1 can be used for decision
making, or can be used as parameters for sending to an-
other model, say, Model 2. For example, assume the re-
sponse from Model 1’s WS2 will be used as parameters
for Model 2’s WS3. In this case, the work-flow will es-
tablish a connection to web service 3 of Model 2. After
having a response from Model 2, the workflow can finish
its work or can start a new iteration calling again the
models as many times as required, and so on.

As the models and workflow illustrated in Figure 4
will be available through Internet, they will become part
of the Cyber-infrastructure. We adopt the following sim-
ple definition for Cyber-infrastructure: The set of all the
services and resources available through a network to
work in a scientific-collaborative way.

For example, as illustrated in Figure 4, for people
working on Model 1, cyber-infrastructure is the cloud
that helps them work with a workflow and the collabo-
rating model—Model 2. On the other hand, for people
working on Model 2, cyber-infrastructure is the cloud
that helps them work with a workflow and the collabo-
rating model—Model 1.

4. Motews: A Web Services Based Prototype
System

To examine and test out proposed architecture, we started
implementing the communication part—the web ser-
vices—by developing an online system to publish real-
world field measurements from wireless sensor network
in near real-time.

4.1. Description of the Prototype System

The field measurements are being collected through a
wireless sensor network, made up with devices that have
sensors and transmitters (we call them motes for sim-
plicity). Each wireless mote transmits all the obser-
vations to a data sink gateway called the net-bridge.
There is one net-bridge for each field network in our two
testbeds. The net-bridge, connecting to both wireless
base station and Internet, is a gateway with Linux ope-
rating system and wall power. In addition to collecting
data from the mote network, the net-bridge is also able to
publish network services (like web services). That is, a
web service was deployed in the net-bridge to publish the
observations collected from the fields. This web service
will dispatch a tar file including all the files collected
from a given date.

Copyright © 2012 SciRes. IJCNS

D. SALAS ET AL. 348

The web service has been also deployed in a central
data server at the hydrology lab at the University of
Pittsburgh that collects information from all the net-
bridges. This central server has client software to poll
each hour from all of the net-bridges. If new files are
found, they are added to the data repository. The central
server publishes the similar web service that the net-
bridges do. But in this case, the user can send a para-
meter indicating the source (i.e., site ID) of data to be
retrieved. The final result is that one can retrieve either
consolidated data by using the web service provided at
the central data server with one-hour delay at most, or
single-site data by using the web service deployed at
each gateway with little delay. Due to the fact that the
field measurement data are published through web
services, other applications, hydrological models, work-
flows or desktop programs can be easily integrated with
these sources of data.

4.2. Design and Implementation

Figures 5 and 6 show the schematic view of the sensor
data collection and dissemination through web services,
respectively. The motes have sensors that take measures
from the field, and send the observations through the
multiple hop wireless networks to the net-bridges. The
net-bridges collect the observations and store them in
files. Each net-bridge publishes a web service that dis-
patches these files on demand. The central server uses
the client software designed to access the web service
published by the net-bridge and to retrieve the files. The
central server also publishes a web service of its own that
can be accessed by users to get the data from multiple
test bed fields (e.g., two different sites at present). Through
such web services of sensor data gathering from multiple
testbeds, the architecture and communications of the

Figure 5. A schema of information collection setup from two
different remote testbeds to the University of Pittsburgh
campus.

wireless mote networks themselves do not need to be
modified. Figure 7 shows the structural view of the web
services framework. Different kinds of clients access to
the web services through a framework that offers a
unique portal at the central server. The framework uses
part of the URL as a parameter to determine which web
service will response to a given request. These compo-
nents (the web services) should implement some func-
tions with given names and parameters, and can be con-
nected to form the web services framework.

In our prototype system, the framework chosen is
Axis2C, and it provides (among others):
 Transport of the SOAP messages.
 Queuing messages in pipes.
 Locate and dispatch incoming messages to the service

that will response it.
 Validate messages.
 Embeddable in C applications.

Figure 8 shows a modular view of web service. The
first group of functionalities has the responsibility of

Figure 6. A schema for dispatching information.

Figure 7. Schema of the web services framework.

Copyright © 2012 SciRes. IJCNS

D. SALAS ET AL. 349

Figure 8. Web service modules.

fulfilling certain requirements to be connected with the
framework. It includes functions to create, delete, receive
the XML message and respond to an XML message
among others.

Several frameworks in different languages are avail-
able for people to develop, deploy and publish web ser-
vices. Axis2C was chosen because it is an open source
tool and it is in C. Most of our computational models are
written in C. Thus, it would be easier to build web ser-
vices with them.

4.3. Detailed Design

The current prototype is just using an existing framework
to test the connectivity and performance of C applica-
tions through webservices, without the workflow part yet.
Hence, the detailed design will include the following: 1)
the setup required to make the framework work in the
specific platforms; 2) the component that defines the
specific web-service; and 3) the client component that
connects to the web-service. They are described as fol-
lows.

1) Setup at the server:
a) Install the Axis2C libraries using the usual open

source commands: configure, make and make install. It
implies that the framework is compiled IN THE NET-
BRIGDE. For Windows, the binary files are available.

b) Ensure that OpenSSL is installed. In Linux it can be
obtained through automatic package managers. In Win-
dows it is required to download and install manually.

Setup at the client:
a) Connectivity to the server.
2) Component that defines the specific web-service:
This component needs to be located in the framework

folder as a library which offers the following functions:
 Constructor: It allocates memory for the skeleton,

which is a container with the framework information
and the list of names for the rest of functions.

 Init: It loads the name of the web-service so it is pre-
pared to response requests.

 Invoke: It receives the information corresponding to a
specific request, process the information and it is re-

sponsible for generating a response. For the purposes of
this prototype, the process is performed in another func-
tion. But, for a real full integration model, the Invoke
function should call some component of the business
layer in its host application.
 OnFault: This function defines the actions taken when

an error is detected.
 Free: It releases the memory initially allocated.

3) Client component:
It can be developed either using the Axis2C frame-

work, or just independently following the steps required
to connect to any web-service.
 In the former case (i.e., this prototype), the client is

compiled using the Axis2C headers and libraries. A
payload object is created and filled with the informa-
tion to be sent to the server. Then, using the Axis2C
libraries, the payload is transformed to XML and sent
to the server through the http. The Axis2C libraries
help receiving synchronously the response. Then, the
client extracts the results from the XML and shows
them to the user.

 In the latter case, most development tools can extract
the WSDL by connecting to the web-service through
the http. The WSDL is the descriptor of the web-ser-
vice. Once it is obtained, the tools provide APIs to
create a kind of payload, send the message, receive
the response and extract the results.

This specific prototype was developed without a
WSDL, but following prototypes that will actually con-
nect to workflow, will also offer a WSDL.

4.4. Performance Testing

The MoteWS has been tested manually and automatically
with both serial load and parallel load. We have con-
ducted two phases of testing. In the first phase of testing
(i.e., preliminary test) the unitary test used is a request
that retrieves all the field measurements for one month of
data. In the second phase of testing (i.e. detailed test),
data files with different sizes are retrieved in experiments
with increasing number of files.

First group of tests: The serial load test was performed
to detect memory leaks or other misbehaviors that may
lead to performance deterioration. Figure 9 shows the
time required to get the response from the web service
for each of the 297 requests conducted at the central
server. The average is 8.6 seconds. The time required in-
creases slightly on each experiment: About 0.00000003 ×
24 × 60 × 60 = 0.0026 seconds in average. Although it is
a minor decrease in performance for the purposes of this
tool, the behavior should be analyzed for a future project
with a more intensive demand from clients. It is consid-
ered a successful test.

The parallel test was made in two parts. The first part

Copyright © 2012 SciRes. IJCNS

D. SALAS ET AL. 350

was to determine the number of concurrent clients that
could be accommodated by the web service and how
critic it would be to increase that number. It was found
that the web service can accommodate up to 10 concur-
rent clients. That is an encouraging number given our
current inexpensive hardware using very limited re-
sources. If this number increases, for example, up to 11
concurrent clients, the ratio of fails drops abruptly from
0% (for 10 clients) to 50% (for 11 clients). The perform-
ance drops more if more concurrent clients are present.

The second part in the parallel test was to examine the
web service performance in terms of response time up to
10 concurrent clients, and the results are shown in Fig-
ure 10, the average response time needed per request for
a given number of concurrent clients.

As we can see, for the case of 10 concurrent clients,
each one would observe in average about 55 seconds in
response delay. It also seems that the exponential regres-
sion fits better than the linear one. The parallel testing
was also successful.

Second phase of testing: Serial tests: The serial tests
have been run for different file sizes from 60 Kb to 330

Figure 9. Serial load results of phase 1 testing.

Figure 10. Parallel load results of phase 1 testing.

Mb. The file is requested, and once it is done, the file is
downloaded again and stored with a different name. This
process is repeated several times (1, 2, 5, 10, 20, 50, 100,
200, 500, 1000 times).

Each test has been given a name according to the size
of the file (A: 60 Kb, B: 2.6 Mb, C: 8.1 Mb, D: 21 Mb, E:
330 Mb) and the number of file downloads in series (e.g.
A1, A500, C5, etc.). Each test trial is also repeated 2 or 3
times to check consistency of the behavior. A total of 112
tests trials have been run for a total of 17256 files re-
trieved. All together accumulate almost 133 Gb. For each
test, the total time required to download n files of size m
has been recorded to compute the transmission speed.

The speed is averaged for each file size and for the
number of each file’s downloads. The results are shown
in Figures 11 and 12 for different number of downloads
and file sizes, respectively. A trend line and its equation
are shown for each figure. It can be seen that the change
in the trend for the test range is much smaller than the
variability of the results. We can conclude that the speed
is not significantly affected by the continuous use of the
service (number of file downloads) or the size of the files.
The number of failures was less than 1% for every test
trial.

Parallel tests: The first parallel test was performed
with a series of 100 files of 60 Kb each. The series was
run in parallel for 2, 5 and 10 threads. For that size it was
hard to find a trend in the results (see Figure 13 experi-
ment A100).

Figure 12 shows that the optimum speed is obtained
for files of size 10 Mb. For smaller files, the starting and
completing processes for each download consume con-
siderable time, compared to the actual retrieval of the
files. For larger files, the system may become more
stressed processing the download. The number of failures
was below 1%, just as the serial test. For the 2.6 Mb files,
the average speed was computed for each download
(Experiment B100). It can be seen in Figure 13 that the
speed decreases rapidly when parallel threads are added.

Figure 11. Serial load results of phase 2 testing for different
amount of files.

Copyright © 2012 SciRes. IJCNS

D. SALAS ET AL. 351

Figure 12. Serial load results of phase 2 testing for different
file sizes.

Figure 13. Serial load results of phase 2 testing.

Also, the number of failures increases fast. For 20
threads, the ratio of failures is almost 10% which is very
high. A ratio of failures of 5% should be the maximum
acceptable, and it is obtained between 5 and 10 threads.
It confirms that, with the given hardware, the system
should be used to accommodate at most 10 users retriev-
ing files simultaneously.

4.5. Discussions

By publishing the observations from field through web
services, clients do not need to have direct access to the
machines. Thus, server’s risk of accidental damage or
misconfiguration would be reduced.

The web services can be easily embedded into existing
model software because they are all written in C. The
code also can be compiled in Windows or Linux. The
data can be integrated in processes or iterations managed
by others, who can access the data through the web ser-
vices.

In Axis2C it is possible to define and develop a web
service starting from a WSDL or not.

Trying to manually create the WSDL after the web

service is made can be difficult. Thus, for the future web
services made in Axis2C, our recommendation is to gen-
erate the WSDL first with a latest generation develop-
ment tool.

After that, scripts offered by Axis2C to generate part
of the web service skeleton should be used. The rest of
the development can be proceeded in the same way.

5. Conclusions

Web services and workflow provide a standard solution
for communication and integration of hydrological
models. They should be made in the business (hydrology)
layer to provide transparency to end users of each inde-
pendent model and to ensure independency of the data
models. The web services also can be deployed to pro-
vide connectivity to every component that requires to be
connected to the cyber-infrastructure, like the field mea-
surement sensor networks where web services provide a
solution to get automated and remote access to the field
measurements online in hydrological studies.

To preliminarily examine and test our proposed gen-
eral architecture for hydrological model couplings, we
deployed web services for collecting and publishing field
measurement data from two wireless sensor networks in
near real-time. Our ultimate goal is to thoroughly exam-
ine and test the proposed general architecture for hydro-
logical model couplings, as shown in Figure 4. In the
future work, various hydrological model components will
be equipped with web services, and a central coordinator
to realize workflow will be developed to control the
model couplings and iterations within and between insti-
tutions. It will also make it possible for direct use of the
observation data from field measurements to the cou-
pled-modeling system in near real-time. Thus, this work
can directly lead to and support for a future framework/
mission of realizing a real-time online hydrologic moni-
toring, control, and forecast system.

6. Acknowledgements

This work was supported in part by NSF grant CNS-
0721474 to the University of Pittsburgh.

REFERENCES
[1] E. Delman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon,

et al., “Examining the Challenges of Scientific Workflows,”
Computer, Vol. 40, No. 12, 2007, pp. 24-32.
doi:10.1109/MC.2007.421

[2] S. M. Guru, M. Kearney, P. Fitch and C. Peters, “Chal-
lenges in Using Scientific Workflow Tools in the Hydrol-
ogy Domain,” The 18th Worlds IMACS MODSIM Con-
gress, Cairns, 13-17 July 2009, pp. 3514-3520.

[3] A. Goderis, C. Brooks, I. Altintas, E. A. Lee and C. Goble,
“Heterogeneous Composition of Models of Computation,”

Copyright © 2012 SciRes. IJCNS

http://dx.doi.org/10.1109%2FMC.2007.421

D. SALAS ET AL.

Copyright © 2012 SciRes. IJCNS

352

Future Generation Computer Systems, Vol. 25, No. 5, 2009,
pp. 552-560. doi:10.1016/j.future.2008.06.014

[4] M. J. Fairman, A. R. Price, G. Xue, M. Molinari, D. A.
Nicole, T. M. Lenton, et al., “Earth System Modeling with
Windows Workflow Foundation,” Future Generation Com-
puter Systems, Vol. 25, No. 5, 2009, pp. 586-597.
doi:10.1016/j.future.2008.06.011

[5] Q. H. Shao, P. Sun and Y. Chen, “Efficiently Discovering
Critical Workflows in Scientific Exploration,” Future Gen-
eration Computer Systems, Vol. 25, No. 5, 2009, pp. 577-
585. doi:10.1016/j.future.2008.06.005

[6] Cyberinfrastructure for Environmental Research and Edu-
cation, “Report from a Workshop Held at the National
Center for Atmospheric Research,” 30 October 2002.

[7] F. C. Delicato, P. F. Pires, L. Pirmez and L. F. Rust da
Costa, “A Flexible Web Service Based Architecture for
Wireless Sensor Networks”, Proceedings of the 23rd In-
ternational Conference on Distributed Computing Sys-

tems, Providence, 19-22 May 2003, pp. 730-835.

[8] P. Taylor, H. Neuhaus, Y. F, Shu, D. Smith and A. Terhorst,
“Hydrological Sensor Web for the South Esk Catchment
in the Tasmanian State of Australia,” Fourth IEEE Inter-
national Conference on eScience, Indianapolis, 7-12 De-
cember 2008, pp. 432-433. doi:10.1109/eScience.2008.89

[9] J. Leguay, M. Lopez-Ramos, K. Jean-Marie and V. Conan,
“An Efficient Service Oriented Architecture for Hetero-
geneous and Dynamic Wireless Sensor Networks,” The
33rd IEEE Conference on Local Computer Networks,
Bonn, 14-17 October 2008, pp. 740-747.
doi:10.1109/LCN.2008.4664275

[10] R. S. Govindaraju, B. Engel, D. Ebert, B. Fossum, M.
Huber, C. Jafvert, et al., “Vision of Cyberinfrastructure
for End-to-End Environmental Explorations,” Journal of
Hydrologic Engineering, Vol. 14, No. 1, 2009, pp. 53-64.
doi:10.1061/(ASCE)1084-0699(2009)14:1(53)

http://dx.doi.org/10.1016%2Fj.future.2008.06.011
http://dx.doi.org/10.1016%2Fj.future.2008.06.005
http://dx.doi.org/10.1109/eScience.2008.89
http://dx.doi.org/10.1109/LCN.2008.4664275
http://dx.doi.org/10.1061/(ASCE)1084-0699(2009)14:1(53)

