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ABSTRACT 

It is of great importance to develop a systematic framework to integrate and coordinate software components to effec- 
tively and efficiently accomplish complex hydrological modeling tasks. In this paper, we examine the state-of-art in- 
formation technologies including service-oriented architecture, and propose a systematic approach based on service- 
oriented architecture and scientific workflow to investigate the general model coupling problems. A prototype system, 
MoteWS, based on web services for publishing field measurement data from wireless sensor networks is developed to 
preliminarily explore and test our proposed architecture. Results and lessons learned are discussed and future recom- 
mendations in this direction are provided. 
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1. Introduction 

The study of hydrological processes and their associated 
extreme events (e.g., floods and droughts) is of para- 
mount importance to human lives, global climate change, 
a healthy and sustainable ecological environment, and 
the national/international economy. In today’s scientific 
modeling for such very complex hydrological and envi- 
ronmental systems, coupling between different hydro- 
logical models and/or among hydrological models and 
climate models becomes a common practice.  

A desirable framework for these models’ coupling 
should support modularity, flexibility and interoperabil- 
ity, in the sense that individual models’ development and 
implementation are independent with each other and 
have their own integrity and autonomy. Such a model 
coupling framework can not only greatly facilitate and fit 
in interdisciplinary and collaborative scientific work en- 
vironment, but also dramatically increase the efficiency 
and flexibility of model couplings in research and opera- 
tional practices. 

In general, integration of hydrological models can be 
either a single point-to-point connection with a unique 
one-way interaction, or a multiple point interactive and 
coordinated set of collaborative activities. The former 
can be referred to as a simple coupling problem whereas 
the latter as a sophisticated coupling problem. In hydro- 
logical, environmental and climate fields, models, either 
physically-based or data-driven, are usually realized and 

simulated in terms of software systems. Due to the in- 
creasing complexity and heterogeneity of software pack- 
ages employed and hardware and operating systems plat- 
forms used for individual models’ development, we seek 
to develop a systematic approach and framework to fa- 
cilitate such complex model coupling and integration. 
Service-Oriented Architecture (SOA) and scientific work- 
flow have great potential to achieve our goal. Following 
the SOA approach, our idea is to encapsulate each indi- 
vidual model’s functionality in services in addressing the 
needs of modularity, flexibility, autonomy, and interop-
erability of individual models in the coupling frame- 
work. As services can be distributed over Internet and 
reused, SOA can indeed promote remote collaborative 
and interdisciplinary team work and make different tar- 
geted models/systems’ integrations efficient. On the 
other hand, SOA alone is not adequate to address the 
problem of automating coordinated set of collaborative 
interactions among models for sophisticated couplings. 
This leads to scientific workflow. The rest of the paper is 
organized as follows. Section 2 reviews and discusses 
how SOA, scientific workflow and other potential tech- 
niques could be used to integrate and coordinate systems 
that represent scientific models. Major advantages and 
disadvantages of these techniques, found in the scientific 
and commercial computing fields, are discussed. In Sec- 
tion 3, we propose a general architecture for model cou-
plings based on SOA and scientific workflow. Section 4 
describes MoteWS, a prototype web services-based sys-
tem developed to publish field measurement data from *Theory recompilation, analysis and practical application. 
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wireless sensor networks to illustrate and test preliminar-
ily the main SOA component of our proposed architec-
ture for model/system couplings. Finally, in Section 5, 
our learned lessons during our prototype development are 
discussed, recommendations and our future work along 
this research direction is provided. 

2. Reviews and Analyses 

2.1. Related Work 

Some work dealing with the challenges of connecting 
collaborative hydrological models exists (e.g., [1,2]). For 
example, a theory-based analysis (e.g., [3]) is presented 
to show some solutions that can meet the needs of model 
integration. Some proofs-of-concept of scientific work-
flow or SOA architecture work, including [4-9], also 
exists. In [10], a scientific workflow analysis goes even 
further to find systematic ways to study results and to 
improve the design. One of the main goals of this paper 
is to show, in a condensed but easy-to-read manner, why 
SOA and scientific workflow are a better solution com-
pared to other alternative techniques in order to couple, 
coordinate, collaborate and evolve hydrologic models in 
the process of hydrologic studies. While these reasons 
appear to be assumptions in other work, we believe it is 
important to establish them explicitly rather than implic-
itly to provide insights, and to pave the way to our pro-
posal of a general architecture for hydrologic model cou-
pling in the next section. In the following, our analyses 
are given regarding potential techniques for model cou-
pling in a comprehensive manner, which is not avail- 
able all together in the previous work. 

2.2. Potential Techniques for Integration 

The techniques can be classified into the following cate- 
gories. 

1) Data integration: The models or systems use a shar- 
ed repository of data. Each system puts information in 
the repository, where others can find it and read it. The 
receiver can poll the repository continuously until it finds 
a message, or, the repository can provide an event-alert 
system. Advantages: Usually easy to implement. Disad- 
vantages: Affects independence of each application. The 
integration is easily lost if any of the applications evo- 
lves. 

2) Business integration: In this type of communication, 
one system sends a message from a core component (or a 
logic component) and the other system receives it in a 
core component (or a logic component). The business 
integration can be made using special sub-layer in the 
logic layer designed to process the messages (see Figure 
1). Advantages: Each application keeps its independence. 
Disadvantages: Requires more work because some ser-  

 

Figure 1. Illustration of different types of integration. 
 
vice is required to be developed. This service will con- 
tain the code to access the other layers, data, etc. 

3) Presentation integration: The GUI of one system 
allows the user to access the GUI of another system. 
Advantages: Allows the end user to visually perceive the 
integration. Disadvantages: Most times it creates strong 
dependences between applications. 

For the task of integration between hydrological mod- 
els, the type of integration that best fits the requirements 
is the business integration because: 

1) It makes it easier to keep models independent. 
2) It makes it easier to keep low coupling1 between 

systems. 
3) Transparent to end users. 
4) It is independent of data storage implementation. 
To offer functionality to other systems, each system 

can publish: 
1) An API2: This allows the client to access all objects, 

send, receive and update objects, and use services of 
these objects. 

2) Services: The logic layer can publish independent 
services that are not part of the objects. It leads to Ser- 
vice Oriented Architecture (SOA). 

For hydrological models’ integration, the SOA archi- 
tecture is chosen because the services keep things inde- 
pendent and allow lower coupling between systems. Also 
it helps to keep the systems transparent to the other side 
of the system developers in the sense that the developers 
in one system do not need to know the implementation 
details and the objects’ structures of the other system. 

The task of hydrological model integration requires a 
large amount of information coming in from multiple 
data sources and different models in a coordinated and 
collaborated way to obtain a solution. Thus, such a com- 
plex task leads to a next one, the flow control task (Co- 
ordination of activities). 

1In computer science, coupling or dependency is the degree to which 
each program module relies on each one of the other modules. 
2Application Program Interface. 

Copyright © 2012 SciRes.                                                                                IJCNS 



D. SALAS  ET  AL. 345

2.3. Potential Techniques for Coordination of 
Activities 

The techniques can be classified into the following cate- 
gories. 

2.3.1. By Design 
 Description: In this technique, each model can send 

or receive messages following the rules established in 
the flow-design. The flow of activities can be cen- 
tralized or decentralized without a real (automated) 
restriction. Then, in maintenance time, these systems 
tend to become decentralized, it means that each model 
will send and receive messages from another model. 

 Problems: 
◦ If a developer breaks the rule and sends a message 

back to the original sender and this message asks 
to re-do computations, it can produce a dead-lock. 

◦ Each system must be able to implement communi- 
cation protocols to any other system to be con- 
nected. For example: 
- System “A” in language C++ running on Win- 

dows. 
- System “B” running PHP on Linux. 
- System “D” running Java on Solaris. 
- System “E” running Pascal on Windows. 
- All systems need the code to communicate to 

each other’s languages and operating systems. 
◦ The whole-integrated system works fine only if all 

the developers of each single system agree the flow- 
design paper and respect it always, though in real- 
ity, nothing ensures that. 

◦ If the flow-design changes, all the systems and in- 
teractions must be changed. It puts integrity in risk 
for all the individual systems. 

◦ Updating and improvement of the integrated sys- 
tem are expensive, risky and restricted. 

 Advantages: 
◦ Requires no invest in any control tools. 

 Where the control is: There is not automated control. 
There is only paper control. 

2.3.2. By Central Control 
 Description: In this technique, one model (or system) 

is named Controller. This Controller sends requests to 
other models, but the other models do not send mes- 
sages between them. The Controller has the code to 
control the flow of information and activities that the 
other models perform. It can become decentralized in 
maintenance time. 

 Problems: 
◦ It works okay only if the other models never send 

messages between each other. 
◦ It works okay only if the Controller implements a 

flow-design without mixing the flow code and the 
business (e.g., hydrology) code. Nothing ensures 
that. 

◦ The Controller must be able to implement com- 
munication protocols to any other system to be 
connected. This gives additional responsibilities to 
a system made for the hydrological modeling.  

◦ Updating and improvement of the system are very 
expensive and restricted. 

 Advantages: 
◦ If the flow needs to change, only the Controller 

application must be reviewed and changed. 
 Where the control is: The control is always imple- 

mented in the code of the Controller model. 

2.3.3. By Message Broker 
 Description: All the involved systems send the mes- 

sages to a component designed to intermediate com- 
munications only. The systems publish their services 
in the broker. Other systems can subscribe to the pub- 
lished services and then consume them. See Figure 2. 

 Problems: 
◦ The flow control is embedded in the publish/sub- 

scribe design, in the implicit flow-design and in 
the connections that each system performs to the 
broker. Thus, the flow control becomes difficult to 
understand, maintain and change. 

◦ If a system does not respect the flow-design se- 
mantics, it could create an infinite loop. 

 Advantages: 
◦ Models can send messages between them with al- 

most no restrictions. 
◦ If there are infinite loops or errors, debugging is 

much easier than without the broker. 
◦ Models keep a high level of independency and 

low coupling. Thus, the capacity of each model to 
evolve is not affected, as is for the previous tech- 
niques. 

◦ Each system must be able to implement only one 
communication protocol: The one between its own 
language/platform and the broker.  

◦ In the category of central control, one of the mo- 
dels (i.e., Controller model) was required to have 
code to communicate with all of the other systems. 
Here, the broker only establishes some communi- 
cation protocols for some standard platforms (or 
maybe only one) and the others need to adapt to it. 

◦ The whole integrated system is ordered, traceable, 
repeatable. The flow-control is difficult to modify 
but is easier to analyze and debug. 

 Where is the control: Mostly in the publish/subscribe 
protocol in the broker, but also in the flow-design 
semantics and some parts are in the models. See Fig- 
ure 3. 
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Figure 2. Integration using a message broker. 
 

 

Figure 3. Flow definition in P/S protocols. 

2.3.4. By Workflow 
 Description: The flow controller is a component call- 

ed workflow. This dedicated component has the full 
responsibility of controlling and coordinating all the 
processes required to complete the computations. 
Each time that the workflow requires to run specific 
models, it will call them. The workflow component 
can act also as either a broker or not. In this case we 
will assume the workflow is also a broker to achieve 
all the advantages described in both message broker 
control and workflow control. 

 Problems: 
◦ It requires developers to have skills in workflow 

theory and integration. 
◦ It requires a thorough flow design. 
◦ It requires standards for processes, communication, 

units and composition of data. 
 Advantages: 

◦ Each model can communicate to anyone else. Bet- 
ter yet, in this technique, each model does not 
need to communicate directly to others; the work- 
flow component will send request to the other 
models and receive their responses. 

◦ Integration loops are controlled by only one com- 
ponent. Thus, infinite loops and dead-locks occur 
less and are easier to correct. 

◦ Each system keeps as much independency as pos-
sible with a lower coupling. 

◦ Each system must implement one communication 

protocol: The one between its own language and 
the workflow. 

◦ The flow-control code and the hydrological code 
are completely separated. 

◦ The whole integrated system is ordered, traceable, 
repeatable and the flow-control is much easier to 
understand, modify and debug. 

 Where is the control: In the workflow component. 

3. Models Coupling Architecture 

We propose a general architecture for the hydrological 
model coupling, in which the selected communication 
technique is web services and the selected flow-control 
technique is workflow. 

The driven criteria to choose the integration and flow- 
control technique is the maintainability. In commercial 
software, the maintenance cost represents between 60% 
and 80% of the cost of the life cycle. In scientific soft- 
ware, the maintenance (or evolution) is even more inten- 
sive due to the constant change of the concepts and ideas 
during ongoing research. One of the keys for maintain- 
ability is loose coupling because it implies that modify- 
ing one component does not affect others, reducing the 
complexity of the software system evolution. The com- 
munication technique that better fits these criteria is the 
business integration (see 0). It could be implemented 
through an API or services. Usually the use of an API 
would be more efficient but implies that the client com- 
ponent requires knowing the object structure of the host 
component, whereas the implementation in terms of ser- 
vices would be more transparent although a little bit 
more overheads. Those services also will be web ser- 
vices because: 1) The models are remotely reachable 
through a network; 2) This is a kind of services well 
known and very mature; 3) This is a standard and well 
defined way of interoperation; 4) The models are de- 
ployed on machines capable to communicate by SOAP 
on http servers. 

The flow-control technique that better fits the main- 
tainability criteria is by workflow because it keeps cou- 
pling as low as possible (see 0). The proposed architect- 
ture supports the requirement that models do not com-
municate to each other in any predefined way. Each 
model publishes some functionalities through services 
that are independent from other models. Moreover, each 
service uses WSDL to publish the metadata that allow 
others to find and use them. In that way the architecture 
fits the SOA paradigm. Nevertheless, SOA alone is not 
sufficient in the hydrological model coupling. This is 
because the publish/subscribe protocols that are typi- 
cally used in SOA would define an implicit order for the 
model coupling interactions. Figure 3 shows an example 
of a configuration in a publish/subscribe broker. It can be  
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seen clearly from Figure 3 that Model 3 will first con- 
sume Model 1’s service before it publishes its service to 
Model 4. Thus, it implicitly defines the service sequence. 

However, implicit design tends to obscure operational 
logic and flow control among services and thus is not 
always adequate, especially for a complex model cou- 
pling system. For example, in Figure 3 the sequence 
from the subscription to the publishing of Model 3 (i.e., 
Arrow 2-Model 3-Arrow 3) is defined outside the flow de- 
finition. Implicit definition is insufficient and error-prone 
also if the problem is complex or flow-control changes 
permanently. Scientific workflow solves this requirement 
through explicit definition of the interaction flow. 

The workflow component uses the functionality that is 
already published by the models as services. 

It can be located in a separate machine, so that its per- 
formance will not be affected by individual model runs. 
The workflow component will have the control of the 
process and will be responsible for using the models as 
required. It is possible to use a model multiple times or 
establish loops with recurrent calling to models (time- 
steps). The models will have no direct communication. 
Models will only response to requests made by the work- 
flow. The models will publish their services as web ser- 
vices. Our proposed architecture is illustrated in Figure 
4. 

Models located in different facilities can work together 
through remote connections. The interaction starts when 
the controlling machine starts a computation (see LO- 
CATION 2 in Figure 4). The workflow residing at LO- 
CATION 2 knows which and how the activities should 
be made. For example, this workflow can execute some 
activities and after that it determines the next execution 
offered by Model 1. 
 

 

Figure 4. General architecture proposed. 

At this point, the workflow will establish a connection 
with, for example, web service 2 (WS2) of Model 1. The 
workflow will call this web service to send required pa-
rameters and will receive a response from Model 1. 
Model 1 will then use the parameters received to exe- 
cute hydrological computations and obtain results. 

Responses from Model 1 can be used for decision 
making, or can be used as parameters for sending to an- 
other model, say, Model 2. For example, assume the re-
sponse from Model 1’s WS2 will be used as parameters 
for Model 2’s WS3. In this case, the work-flow will es-
tablish a connection to web service 3 of Model 2. After 
having a response from Model 2, the workflow can finish 
its work or can start a new iteration calling again the 
models as many times as required, and so on. 

As the models and workflow illustrated in Figure 4 
will be available through Internet, they will become part 
of the Cyber-infrastructure. We adopt the following sim- 
ple definition for Cyber-infrastructure: The set of all the 
services and resources available through a network to 
work in a scientific-collaborative way. 

For example, as illustrated in Figure 4, for people 
working on Model 1, cyber-infrastructure is the cloud 
that helps them work with a workflow and the collabo- 
rating model—Model 2. On the other hand, for people 
working on Model 2, cyber-infrastructure is the cloud 
that helps them work with a workflow and the collabo- 
rating model—Model 1. 

4. Motews: A Web Services Based Prototype 
System 

To examine and test out proposed architecture, we started 
implementing the communication part—the web ser- 
vices—by developing an online system to publish real- 
world field measurements from wireless sensor network 
in near real-time. 

4.1. Description of the Prototype System 

The field measurements are being collected through a 
wireless sensor network, made up with devices that have 
sensors and transmitters (we call them motes for sim- 
plicity). Each wireless mote transmits all the obser- 
vations to a data sink gateway called the net-bridge. 
There is one net-bridge for each field network in our two 
testbeds. The net-bridge, connecting to both wireless 
base station and Internet, is a gateway with Linux ope- 
rating system and wall power. In addition to collecting 
data from the mote network, the net-bridge is also able to 
publish network services (like web services). That is, a 
web service was deployed in the net-bridge to publish the 
observations collected from the fields. This web service 
will dispatch a tar file including all the files collected  
from a given date. 
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The web service has been also deployed in a central 
data server at the hydrology lab at the University of 
Pittsburgh that collects information from all the net- 
bridges. This central server has client software to poll 
each hour from all of the net-bridges. If new files are 
found, they are added to the data repository. The central 
server publishes the similar web service that the net- 
bridges do. But in this case, the user can send a para- 
meter indicating the source (i.e., site ID) of data to be 
retrieved. The final result is that one can retrieve either 
consolidated data by using the web service provided at 
the central data server with one-hour delay at most, or 
single-site data by using the web service deployed at 
each gateway with little delay. Due to the fact that the 
field measurement data are published through web 
services, other applications, hydrological models, work- 
flows or desktop programs can be easily integrated with 
these sources of data. 

4.2. Design and Implementation 

Figures 5 and 6 show the schematic view of the sensor 
data collection and dissemination through web services, 
respectively. The motes have sensors that take measures 
from the field, and send the observations through the 
multiple hop wireless networks to the net-bridges. The 
net-bridges collect the observations and store them in 
files. Each net-bridge publishes a web service that dis- 
patches these files on demand. The central server uses 
the client software designed to access the web service 
published by the net-bridge and to retrieve the files. The 
central server also publishes a web service of its own that 
can be accessed by users to get the data from multiple 
test bed fields (e.g., two different sites at present). Through 
such web services of sensor data gathering from multiple 
testbeds, the architecture and communications of the 
 

 

Figure 5. A schema of information collection setup from two 
different remote testbeds to the University of Pittsburgh 
campus. 

wireless mote networks themselves do not need to be 
modified. Figure 7 shows the structural view of the web 
services framework. Different kinds of clients access to 
the web services through a framework that offers a 
unique portal at the central server. The framework uses 
part of the URL as a parameter to determine which web 
service will response to a given request. These compo- 
nents (the web services) should implement some func- 
tions with given names and parameters, and can be con- 
nected to form the web services framework. 

In our prototype system, the framework chosen is 
Axis2C, and it provides (among others): 
 Transport of the SOAP messages. 
 Queuing messages in pipes. 
 Locate and dispatch incoming messages to the service 

that will response it. 
 Validate messages. 
 Embeddable in C applications. 

Figure 8 shows a modular view of web service. The 
first group of functionalities has the responsibility of  
 

 

Figure 6. A schema for dispatching information.  
 

 

Figure 7. Schema of the web services framework.  
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Figure 8. Web service modules.  
 
fulfilling certain requirements to be connected with the 
framework. It includes functions to create, delete, receive 
the XML message and respond to an XML message 
among others. 

Several frameworks in different languages are avail- 
able for people to develop, deploy and publish web ser- 
vices. Axis2C was chosen because it is an open source 
tool and it is in C. Most of our computational models are 
written in C. Thus, it would be easier to build web ser- 
vices with them. 

4.3. Detailed Design 

The current prototype is just using an existing framework 
to test the connectivity and performance of C applica- 
tions through webservices, without the workflow part yet. 
Hence, the detailed design will include the following: 1) 
the setup required to make the framework work in the 
specific platforms; 2) the component that defines the 
specific web-service; and 3) the client component that 
connects to the web-service. They are described as fol- 
lows. 

1) Setup at the server: 
a) Install the Axis2C libraries using the usual open 

source commands: configure, make and make install. It 
implies that the framework is compiled IN THE NET- 
BRIGDE. For Windows, the binary files are available. 

b) Ensure that OpenSSL is installed. In Linux it can be 
obtained through automatic package managers. In Win- 
dows it is required to download and install manually. 

Setup at the client: 
a) Connectivity to the server. 
2) Component that defines the specific web-service: 
This component needs to be located in the framework 

folder as a library which offers the following functions: 
 Constructor: It allocates memory for the skeleton, 

which is a container with the framework information 
and the list of names for the rest of functions. 

 Init: It loads the name of the web-service so it is pre-
pared to response requests. 

 Invoke: It receives the information corresponding to a 
specific request, process the information and it is re-  

sponsible for generating a response. For the purposes of 
this prototype, the process is performed in another func-
tion. But, for a real full integration model, the Invoke 
function should call some component of the business 
layer in its host application. 
 OnFault: This function defines the actions taken when 

an error is detected. 
 Free: It releases the memory initially allocated. 

3) Client component: 
It can be developed either using the Axis2C frame- 

work, or just independently following the steps required 
to connect to any web-service. 
 In the former case (i.e., this prototype), the client is 

compiled using the Axis2C headers and libraries. A 
payload object is created and filled with the informa- 
tion to be sent to the server. Then, using the Axis2C 
libraries, the payload is transformed to XML and sent 
to the server through the http. The Axis2C libraries 
help receiving synchronously the response. Then, the 
client extracts the results from the XML and shows 
them to the user. 

 In the latter case, most development tools can extract 
the WSDL by connecting to the web-service through 
the http. The WSDL is the descriptor of the web-ser- 
vice. Once it is obtained, the tools provide APIs to 
create a kind of payload, send the message, receive 
the response and extract the results. 

This specific prototype was developed without a 
WSDL, but following prototypes that will actually con- 
nect to workflow, will also offer a WSDL. 

4.4. Performance Testing 

The MoteWS has been tested manually and automatically 
with both serial load and parallel load. We have con- 
ducted two phases of testing. In the first phase of testing 
(i.e., preliminary test) the unitary test used is a request 
that retrieves all the field measurements for one month of 
data. In the second phase of testing (i.e. detailed test), 
data files with different sizes are retrieved in experiments 
with increasing number of files. 

First group of tests: The serial load test was performed 
to detect memory leaks or other misbehaviors that may 
lead to performance deterioration. Figure 9 shows the 
time required to get the response from the web service 
for each of the 297 requests conducted at the central 
server. The average is 8.6 seconds. The time required in- 
creases slightly on each experiment: About 0.00000003 × 
24 × 60 × 60 = 0.0026 seconds in average. Although it is 
a minor decrease in performance for the purposes of this 
tool, the behavior should be analyzed for a future project 
with a more intensive demand from clients. It is consid- 
ered a successful test. 

The parallel test was made in two parts. The first part 
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was to determine the number of concurrent clients that 
could be accommodated by the web service and how 
critic it would be to increase that number. It was found 
that the web service can accommodate up to 10 concur- 
rent clients. That is an encouraging number given our 
current inexpensive hardware using very limited re- 
sources. If this number increases, for example, up to 11 
concurrent clients, the ratio of fails drops abruptly from 
0% (for 10 clients) to 50% (for 11 clients). The perform- 
ance drops more if more concurrent clients are present. 

The second part in the parallel test was to examine the 
web service performance in terms of response time up to 
10 concurrent clients, and the results are shown in Fig- 
ure 10, the average response time needed per request for 
a given number of concurrent clients. 

As we can see, for the case of 10 concurrent clients, 
each one would observe in average about 55 seconds in 
response delay. It also seems that the exponential regres- 
sion fits better than the linear one. The parallel testing 
was also successful. 

Second phase of testing: Serial tests: The serial tests 
have been run for different file sizes from 60 Kb to 330 

 

 

Figure 9. Serial load results of phase 1 testing.  
 

 

Figure 10. Parallel load results of phase 1 testing. 

Mb. The file is requested, and once it is done, the file is 
downloaded again and stored with a different name. This 
process is repeated several times (1, 2, 5, 10, 20, 50, 100, 
200, 500, 1000 times). 

Each test has been given a name according to the size 
of the file (A: 60 Kb, B: 2.6 Mb, C: 8.1 Mb, D: 21 Mb, E: 
330 Mb) and the number of file downloads in series (e.g. 
A1, A500, C5, etc.). Each test trial is also repeated 2 or 3 
times to check consistency of the behavior. A total of 112 
tests trials have been run for a total of 17256 files re- 
trieved. All together accumulate almost 133 Gb. For each 
test, the total time required to download n files of size m 
has been recorded to compute the transmission speed. 

The speed is averaged for each file size and for the 
number of each file’s downloads. The results are shown 
in Figures 11 and 12 for different number of downloads 
and file sizes, respectively. A trend line and its equation 
are shown for each figure. It can be seen that the change 
in the trend for the test range is much smaller than the 
variability of the results. We can conclude that the speed 
is not significantly affected by the continuous use of the 
service (number of file downloads) or the size of the files. 
The number of failures was less than 1% for every test 
trial. 

Parallel tests: The first parallel test was performed 
with a series of 100 files of 60 Kb each. The series was 
run in parallel for 2, 5 and 10 threads. For that size it was 
hard to find a trend in the results (see Figure 13 experi- 
ment A100). 

Figure 12 shows that the optimum speed is obtained 
for files of size 10 Mb. For smaller files, the starting and 
completing processes for each download consume con- 
siderable time, compared to the actual retrieval of the 
files. For larger files, the system may become more 
stressed processing the download. The number of failures 
was below 1%, just as the serial test. For the 2.6 Mb files, 
the average speed was computed for each download 
(Experiment B100). It can be seen in Figure 13 that the 
speed decreases rapidly when parallel threads are added. 
 

 

Figure 11. Serial load results of phase 2 testing for different 
amount of files. 
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Figure 12. Serial load results of phase 2 testing for different 
file sizes. 
 

 

Figure 13. Serial load results of phase 2 testing. 
 
Also, the number of failures increases fast. For 20 
threads, the ratio of failures is almost 10% which is very 
high. A ratio of failures of 5% should be the maximum 
acceptable, and it is obtained between 5 and 10 threads. 
It confirms that, with the given hardware, the system 
should be used to accommodate at most 10 users retriev- 
ing files simultaneously. 

4.5. Discussions 

By publishing the observations from field through web 
services, clients do not need to have direct access to the 
machines. Thus, server’s risk of accidental damage or 
misconfiguration would be reduced. 

The web services can be easily embedded into existing 
model software because they are all written in C. The 
code also can be compiled in Windows or Linux. The 
data can be integrated in processes or iterations managed 
by others, who can access the data through the web ser- 
vices. 

In Axis2C it is possible to define and develop a web 
service starting from a WSDL or not. 

Trying to manually create the WSDL after the web 

service is made can be difficult. Thus, for the future web 
services made in Axis2C, our recommendation is to gen- 
erate the WSDL first with a latest generation develop- 
ment tool. 

After that, scripts offered by Axis2C to generate part 
of the web service skeleton should be used. The rest of 
the development can be proceeded in the same way. 

5. Conclusions 

Web services and workflow provide a standard solution 
for communication and integration of hydrological 
models. They should be made in the business (hydrology) 
layer to provide transparency to end users of each inde- 
pendent model and to ensure independency of the data 
models. The web services also can be deployed to pro- 
vide connectivity to every component that requires to be 
connected to the cyber-infrastructure, like the field mea- 
surement sensor networks where web services provide a 
solution to get automated and remote access to the field 
measurements online in hydrological studies. 

To preliminarily examine and test our proposed gen- 
eral architecture for hydrological model couplings, we 
deployed web services for collecting and publishing field 
measurement data from two wireless sensor networks in 
near real-time. Our ultimate goal is to thoroughly exam- 
ine and test the proposed general architecture for hydro- 
logical model couplings, as shown in Figure 4. In the 
future work, various hydrological model components will 
be equipped with web services, and a central coordinator 
to realize workflow will be developed to control the 
model couplings and iterations within and between insti- 
tutions. It will also make it possible for direct use of the 
observation data from field measurements to the cou- 
pled-modeling system in near real-time. Thus, this work 
can directly lead to and support for a future framework/ 
mission of realizing a real-time online hydrologic moni-
toring, control, and forecast system. 
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