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Abstract 
 
The numerical world is under a fast development generating facilities and threats. The recommended solu-
tions are especially the protection of information in all its states. The levels of protection show a discrepancy 
from an application to another; governmental, commercial or even cybercriminal. The infrastructure used in 
modern cryptography is based on public key cryptosystem. The problem is how to make safe the private key 
and to memorize it without difficulties and damages. This paper introduces a biometric solution of owner 
signature generating an encryption of the key using the iris recognition kept in a smart card. Several precau-
tions were taken to guarantee the safety and the availability of the use of the private key. They are two essen-
tial goals to attest: the quality of the service and the robustness of suggested safety. Being the quality of the 
service, the used iris recognition is based on a new emerging method founded on Flexible-ICA algorithm. 
This method offers a better Equal Error rate compared to other methods previously used. This quality of 
recognition was also reinforced by an encoding of error using a flag and finally Reed Solomon encoder. For 
recommended safety, a scheme based on block encryption is used. The proposed scheme is Propagating Ci-
pher Block chaining which offers a very propagation of a high level of confusion and diffusion. Indeed, the 
robustness of this cryptographic process was studied by setting up strict criteria of safety. 
 
Keywords: Image Processing, Cryptosystem, Public Key, Iris Recognition, Code Reed Solomon,  

Independent Component Analysis (ICA) 

1. Introduction 
 
The current world of the data security lived a very im-
portant jump. The scopes of application are the crucial 
factors requiring of the complex, robust and especially 
owners schemes.  

Nowadays, the E-commerce, E-banking, E-voting, and 
so on became part of the daily people’s life. However, 
the kind of cryptographic system used is of public keye.g. 
RSA [1,2].The problematic of the human being is di-
vided in two parts. The first part is the robustness of the 
private key. The second part is the manner of storage. In 
the first part, the requirement implies that not only the 
private key satisfy the criteria’s security of the concep-
tion of the public key cryptosystem, but also the length 
of the key. As example of RSA, a public key of 2048 bits, 
generated from the big primer numbers, is strongly rec-
ommended [3]. In the second part, some problems are 

born following the realization of the first part. Indeed, 
how could a human being remember such a large key e.g. 
2048 bits? 

Secure storage solutions have been proposed. The sub-
scription in a file easily accessible was avoided [4]. Also, 
the passwords, that are typically short, are breakable and 
susceptible to the dictionaries attacks [4] in which the 
attacker tried several passwords lists to decrypt the cryp-
togram containing the private key. 

In order to thwart these problems, we propose a bio-
metric signature method using the irises. This will achieve 
three goals: Avoid the memorization of a short password. 
By the way, the owner confidentiality and the authenti-
cation of the users are assured by a specific system to 
each person. Finally, the no repudiation is related to the 
user’s biometric features. No one can deny to have used 
his or her specific biometric mean [5]. 

In the literature, several considerable approaches of 
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security using the biometric data were proposed. There 
are those that generate key’s encryption directly from the 
biometric measures as Tomko et al. [6] using the finger-
prints. Gohand Ngo [7] used a random projection of 
user’s face as source of keys generation. In 2001 Mon-
roses et al. [8] propose a combination of password with 
the user’s voice. This last method has been compromised 
by the small entropy of the biometric key which is about 
46 bits [8]. An approach using the irises was proposed by 
Hao et al. [9]. They used the smart card and a coding 
chain achieved around the Reed Solomon and Hamming 
encoder in order to procure a key of 140 bits. 

Otherwise, the biometric systems have their own prob-
lems. For example the iris’s features scan of the same 
person is almost always different e.g. from 10% to 20% 
according to [10]. The second problem is the irrevocabil-
ity of the biometric signatures. Indeed, no one can store 
the biometric features in the free spaces. This proves to 
be dangerous because the attacker or the robber can take 
the complete user’s identity. 

In this work, we propose some solutions to these con-
straints. For the first constraint, we will use a new man-
ner of recognition of iris. It is Flexible-ICA algorithm for 
reliable iris recognition. This method carried out recently 
by giving a FFR (False Features rejection) which tends 
towards zero.  

Many researchers have worked on iris recognition in-
cluding image databases, and human iris authentication 
process basically consists of four steps as follows: 1) iris 
segmentation, where the iris is localized and isolated 
from the noise due to sclera, pupil, eyelids and eyelashes; 
2) normalization, where iris is mapped from rectangular 
representation to domain polar representation; 3) feature 
extraction, where a feature vector is formed which con-
sists of the ordered sequence of the features extracted 
from the various representation of the iris images; 4) and 
matching, where the feature vectors are classified through 
different techniques such as Hamming Distance, weight 
vector and winner selection, dissimilarity function, etc. 
In our work, we first use Canny edge detection and 
Hough transform for iris localization. Then, the extracted 
iris region is normalized into a rectangular block with 
constant dimensions to account for imaging inconsisten-
cies of Daugman’s model. We apply Flexible-ICA algo-
rithm to extract efficient feature vectors. Then, each iris 
feature vector is encoded into an iris code. Finally, a 
Hamming distance is used, for the matching process. We 
demonstrate our experimental results using two different 
subsets of CASIA-V3 iris image database and some 
mathematical criteria, in order to compare this technique 
against some other existing methods in order to assess its 
usefulness.  

For the second constraint, we propose to use a joint 

solution. The first one was proposed in [11]. It is sum-
marized in the creation of a flag vector to correct the 
features’ iris. The use of the flag will be distinctly more 
efficient compared to the gotten results in [11]. In the 
previous works one used the Daugman’s method [10] 
having a bigger FFR in relation to the Flexible-ICA 
method used in this paper. Also the complexity in the 
works of Sheikh Ziauddin and Matthew N. Dailey [11] is 
of 9600 bits for the features and 9600 bits for the masks. 
In this paper the proposed method based on the Flexible- 
ICA algorithm gives a FRR about 4% for a complexity 
of 960 bits for the features. These results reduce strongly 
the rejected bits by the vector flag. Thus, there will be an 
effective features vector of about 960 bits on the one 
hand and on the other hand a low FRR. Indeed, in the 
jointed solution we propose to use an Error Encoder 
Correction (EEC) of Reed Solomon to correct the errors. 
With the good performances acquired by using Flexible- 
ICA and the flag we will have an effective correction of 
error at 100%. 

To summarize the security of the private key, the user 
enrolls himself to create his own public data, namely: a 
vector flag and EEC code. These data will be store in a 
smart card. The same smart card will contain the en-
crypted private key with a cipher block cryptosystem 
using features of the iris like key encryption. The cipher 
block cryptosystem used is Propagating Cipher Block 
Chaining (PCBC). This mode of encryption was used in 
Kerberos protocol conceived by MIT (Massachusetts 
Institute of Technology) [12] which has given a strong 
authentication client/server. In this paper we will show 
the use of this mode PCBC assembled around standard 
AES with 256 bits key for encrypting the user’s private 
key. 
 
2. Flexible-ICA for Features Extraction 
 
2.1. Image Pre-Processing 
 
The iris is an annular part between the pupil (inner 
boundary) and the sclera (outer boundary). Therefore, a 
captured image cannot be expected to have only the iris 
part, it contains some non-useful part e.g. sclera, eyelid 
and pupil, therefore the iris region should be located in 
captured eye image, and normalized to polar array. 
 
2.2. Iris Localization 
 
Iris localization by definition means to isolate the actual 
iris region in a digital eye image by detecting the inner 
and outer boundaries of the iris. The eyelids and eye-
lashes normally occlude the upper and lower parts of the 
iris region. To detect the iris and pupil boundaries,  
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Hough transform is used by involving Canny edge detec-
tion to generate an edge map. The gradients are biased in 
the vertical direction for the outer iris/sclera boundary 
while the vertical and horizontal ones are weightede-
qually for the inner iris/pupil boundary, as suggested in 
[13] and [14].  

The Hough transform locates contours in an n-dimen- 
sional parameter space by examining whether they lie on 
curves of a specified shape. For the iris outer or pupillary 
boundaries and a set of recovered edge points  
 , 1i ix y i n  , a Hough transform is defined by 

  1
, , , , , ,

n

c c i i c ci H x y r h x y x y r


         (1) 

where  , ,c c H x y r
, ,c c

 shows a circle through a point, the 
coordinates x y r  define a circle by the following 
equation 

2 2 2 0c cx y r                 (2) 

In the case of edge detection for iris boundaries, the 
above equation becomes 

   2 2 2 0i c i cx x y y r             (3) 

The eyelids are then isolated by first fitting a line to 
the upper and lower eyelid parts using a linear Hough 
transform. A second horizontal line is then drawn, which 
intersects with the first line at the iris edge that is closest 
to the pupil. The second horizontal line allows a maxi-
mum isolation of eyelid regions while a threes holding 
operation is used to isolate eyelashes. 
 
2.3. Iris Normalization 
 
Normalization refers to preparing a localized iris image 
for the feature extraction process. The process involves 
unwrapping iris image and converting it into its polar 
equivalent. It is carried out by using Daugman’s Rubber 
sheet model [15,16] as shown in Figure 1. The center of 
the pupil is considered as the reference point and a re-
mapping formula is used to convert the points on the 
Cartesian scale to the polar scale. 

The remapping of iris image  ,x yI  from raw Carte-
sian coordinates to polar coordinates  ,r   can be rep-
resented as 
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θ 
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Figure 1. Daugman’s rubber sheet model. 

     , , , , I x r y r I r              (4) 

where r is on the interval [0, 1] and θ is angle [0, 2π], 
with 
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where 

      
      
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And 

      
      
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sin

I I I
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  
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

 
         (7) 

The centre of the pupil is denoted by  ,P pOx Oy  and 
 ,I IOx Oy  is the center of the iris; rP is the radius of 
the pupil and Ir  is the radius of the iris; and  ,P px y  
and  ,I Ix y  are the coordinates of points bordering the 
pupil’s radius and iris’ radius respectively along the di-
rection  . 
 
2.4. Feature Extraction by ICA  
 
The iris has an interesting structure and presents rich 
texture information. The distinctive spatial characteris-
tics of the human iris are available at a variety of scales 
[17]. As such, a well-known subspace analysis technique 
such as Independent Component Analysis (ICA) is used 
to capture local distinctive information in an iris and cre-
ates a set of compact features for an effective recognition 
task. 
 
2.4.1. Independent Component Analysis  
ICA represents a novel and powerful statistical method 
for subspace analysis, with applications in computational 
neuroscience and engineering. It consists of automati-
cally identifying the underlying components in a given 
data set. It requires that at least as many simultaneously 
recorded mixtures as there are components and each 
mixture is a combination of components that are inde-
pendent and nongaussian. However, like all methods, the 
success of ICA in a given application depends on the 
validity of the assumptions on which ICA is based and 
the results should be treated with caution. So, much 
theoretical work remains to be done on precisely how 
ICA fails when its assumptions, i.e. linear mixing and 
statistical independence, are severely violated [18,19]. 

Generally, the most popular noising—free linear mo- 
del of ICA is expressed as follows  

X AS                    (8) 
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where X is a vector variable, of dimension N, in which 
each variable is an observed signal mixture and S is a 
vector variable, of dimension M, in which each variable 
is a source signal. We assume that N > M. The mixing 
matrix A defines a linear transformation on S, which can 
usually be reversed in order to recover an estimate U of S 
from X, i.e. 

S y WX                    (9) 

where the separating matrix  is the inverse of 
A. However, A is an unknown matrix and cannot there-
fore be used to find W. Instead, many iterative algorithms 
are used to approximate W in order to optimize inde-
pendence of S. In this paper, the Flexible-ICA algorithm 
[20] is deployed. 

1W A

Since mutual information is the natural informa-
tion-theoretic measure of the independence of random 
variables, it could be used as the criterion for finding the 
ICA transform. In this approach, which is an alternative 
to the model estimation approach, the ICA of a random 
vector X is defined as an invertible transformation as in 
(9), where the matrix W is determined so that the mutual 
information of the transformed components of S is 
minimized.  

Mutual information is a natural measure of the de-
pendence between random variables. It can be inter-
preted by using the concept of differential entropy H of a 
random vector y with density (.)f  as follows [21] 

     log dH y f y f y  y

i

          (10) 

Entropy is considered as the coding length of the ran-
dom variable . In fact, it is defined as  , 1iy i N 

     log i ii
H y P y P  y          (11) 

However, mutual information I between the N (scalar) 
random variables  [22,23], is defined as , 1iy i N 

     1 2, , ,
N

N ii
I y y y H y H y      (12) 

Using the invertible linear transformation presented in 
(9). Mutual information [22], [21] is given by 

     1 2, , , log detN ii
I y y y H y H x W    (13) 

To search space of separating matrix or Stiefelmani-
fold W, let us consider that yi have been uncorrelated and 
have unit variance. This means 

T T TE yy WE xx W I       

T

        (14) 

which implies 

det 1 det det det detT T TI WE xx W W E xx W          

(15) 

This implies that (det W) must be constant. In this case, 
the minimization of mutual information leads to the fol-

lowing loss function 

   log i iL W p y            (16) 

The gradian of loss function (16) is given by 

      TL W
L W y x

W



  


      (17) 

where 

     1 1 , ,
T

N Ny y y           (18) 

and 

   dlog 

d
i i

i
i

p y
y

y
               (19) 

The natural Reimannian gradient in Stiefel Manifold 
was calculated by [24] and it can be written as follows   

     
   

T

T T

L W L W W L W W

y x y y W 

      
 

    (20) 

With this, the learning algorithm for W takes the form 
[25,26] 

     T TW L W y y W y x             (21) 

where η is a learning rate (small positive constant) and 
 y  is non-linear function, noted by  

    1
1

1
log coshy

a
  a y

2

         (22) 

where 11 a   is some suitable constant. 
In the learning process, the increment  should 

satisfy the constraint 
W

0T TWW W W               (23) 

 
2.4.2. Feature Extraction 
Image representations are often based on discrete linear 
transformations of the observed data. Consider a black- 
and-white image whose gray-scale value at the pixel in-
dexed by x and y, denoted by  ,I x y . Many basic mod-
els in image processing express the image  ,I x y  as a 
linear superposition of some features or basis functions 

 ,ia x y , that is 

   1
,

M

ii
, iI x y a x y s


           (24) 

where is  are feature coefficients. These basis functions, 
 y,ia x , are able to capture the inherent structure of the 

iris texture. This, particularity allows us to apply ICA 
and thus create a set of compact features for an effective 
recognition task. Alternatively, we can just collect all the 
pixel values in a single vector X, in which case we can 
express the representation as in (8) for ICA model. We 
assume here that the number of transformed components 
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is equal to the number of observed variables. This type of 
a linear superposition model gives a useful description 
on a low level support where we can ignore such higher- 
level nonlinear phenomena such as occlusions. For the 
sake of simplicity, let us restrict ourselves here to the 
simple case where the variables  form an in-
vertible linear system, that is, the matrix A is square. 
Then we can invert the system as: 

 ,ia x y

 , ,
,i ix y

s w x y  I x y           (25) 

where the wi denote the inverse filters of ICA. 
In practice, we cannot model a whole image using the 

model in (24). Rather, we apply it on image patches or 
windows [18]. Thus we partition the image into patches 
of n × n pixels and model the patches with the model in 
(24). However, care must then be taken to avoid border 
effects. 

Before extracting the iris features, we note that the 
ICA application is greatly simplified if the vector X of all 
iris images is first whitened or sphered. There are two 
common pre-processing steps. The first step is to center 
the images as,  X X E X   in order to make their 
local mean equal 0. The next step is to apply a whitening 
transform B to the data such that 

1 2 TB D E                (26) 

with E corresponds to the eigenvectors of the covariance 
matrix of X and the diagonal matrix D contains the re-
lated eigenvalues. The whitening process helps to uncor-
relate the data so that Principal Component Analysis 
(PCA) can work with a unit variance. The whitened data 
are used as the input for the Flexible-ICA algorithm [20], 
demonstrated above, which computes a set of basis vec-
tor, wi from a set of iris images, and the images are pro-
jected into the compressed subspace to obtain a set of 
coefficients, si. New test images are then matched to 
these known coefficients by projecting them onto the 
basis vectors and finding the closest coefficients in the 
subspace. 
 
2.5. Matching 
 
It is very important to present the obtained feature vector 
in a binary code because it is easier to determine the dif-
ference between two binary code-words than between 
two number vectors. In fact, Boolean vectors are always 
easier to compare and to manipulate. We have applied a 
Hamming Distance matching algorithm for the recogni-
tion of two samples. It is basically an exclusive OR (XOR) 
function between two bit patterns. Hamming Distance is 
a measure, which delineates the differences of iris codes. 
Every bit of a presented iris code is compared to the 
every bit of referenced iris code, if the two bits are the 

same, e.g. two 1’s or two 0’s, the system assigns a value 
“0” to that comparison and if the two bits are different, 
the system assigns a value “1” to that comparison. The 
formula for iris matching is shown as follows 

1
i iHD P

N
Q              (27) 

where N is the dimension of feature vector, Pi is theith-

component of the presented feature vector, while Qi is 
the ith component of the referenced feature vector. 
 
3. Biometric Signature of Private Key  

Process 
 
3.1. User Enrollment  
 
In this section one exposes the enrollment phase of the 
owner user data. The data are: the flag vector, the EEC 
code resulting from Reed Solomon encoding of the reli-
able iris features. The Figure 2 shows this enrollment 
phase and the flag creation learning. 

We note that the public key, mentioned in this figure, 
is delivered to a certificate authority in order to generate 
the certificate that contains their relative data. This part 
won’t be studied in this paper. Our goal is to secure the 
private key with an owner signature. 
 
3.1.1. Vector Flag Generation 
In practice, some iris areas of the same person are reli-
able than others. This is due to the pupil-irises boundary 
and the irises-sclera boundary. The imperfection of de-
tection is present in the inner and outer circles. Because 
of these difficulties, a user, wanting to be enrolled, pre-
sents n iris scan. In our case of experimentation n = 3. 

For each iris scan one generates a template of 960 bits 
of features. To create a single unify iris template T, the 
flag is used. Indeed, to create the flag we detect in the 
template iris scan the reliable bits which correspond to 
the identical bits along n templates. To these positions 
one assigns the value “1” for the vector flag if not the 
assigned value is “0”. In this way the vector flag F was 
build with 960 bits.  

On the whole of the reliable bits, we take the first 523 
bits. Finally the vector flag generated F is stored in a 
smart card. The following gives an example for 3 tem-
plates of iris. 

 
 

1010100111010101    The flag vector F is:  

1111011101111110 

1010000101010100    The template unique T is:  

1010001101010 

1010100111010100 
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Figure 2. Biometric signature of private key process.  
 
3.1.2. Template Encoding Using Reed Solomon  

Encoder 
 
3.1.2.1. Reed Solomon Encoder 
Reed Solomon encoder, noted  [27] is a cy-
clic encoder allowing the detection and the correction of 
the errors per payload.This encoder is represented on the 
Galois field of  and consequently it transforms 
a word of N symbols of m bits by adding 

 ,RS N K 

 2mGF
RS N K   

symbols of redundancies. 
The length of the code word checks the following 

equation [28]: 

 2 1  and 3mN   m           (28) 

The capacity of correction Reed Solomon encoder is 
related to the minimal distance within the meaning of 
Hamming. In other word, the smallest distance  

min  between two distinct code words from 
the code.  

1d N K  

This shows that the encoder can correct 
 min 1

2

d
t


  

symbols of m bits. 
 
3.1.2.2. The Template Encoding 
During the enrollment one uses a flag vector that was 
generated to select features of a common template called 
T. This template was the result of the application of the 
flag vector. And finally the first 523 bits were selected. 

In this phase, a Reed code is generated by the encod-
ing T. In order to carry out this process, in Reed Solomon 
encoding, important parameters will be given, namely: N, 

K and t. 
In our experiment, the length of the RS code is like 

that adopted in [29].  
This work followed the results found by Sim et al. [29] 

in the recognition and the reduction of FRR from 26% to 
2,9%. In this paper we propose the use of the Flexible- 
ICAmethod which with its low level competitor FFR 
with all the old methods. Like summary, the parameters 
are: , 2 1 1023 bitsmN    250 bitst  , and  

523 bitsK  . At the end of this phase, the RS code is 
recorded in the smart card. See the Figure 2. 
 
3.2. Private Key Encryption 
 
In this second phase, the user’s smart card will receive 
the essential data that is the encrypted private key. The 
process of the private key encryption follows the scheme 
represented in Figure 3. In this figure one notices that 
the first 512 bits of the template T have been used like 
encryption key. 

The encryption scheme is a Propagating cipher block 
chaining (PCBC) gone up around the standard AES (Ad- 
vanced Encrypted Standard) of 256 bits key [25,26]. In 
our work we use two initialization vectors VI1 and VI2 of 
128 bits each taken from the two first 128 bits of the 
template. As unique key of the blocks, we will use the 
256 bits that follow the initialization vectors. The plain 
text, in our case is the private key, will be shared in 
blocks of 128 bits each for the encryption process.   

The personalization of the PCBC scheme as using two 
initialization vectors is justified as follow: The first VI1 
vector is used classically to initialize the encryption of      
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Figure 3. Private key encryption scheme. 
 
the first plain block of 128 bits. The second initialization 
vector VI2 will be used to increase confusion in the 
propagating phenomena. The introduction of VI2 will 
eliminate all trace on the first plain block aimed for any 
possible attack. It will be added to each exit AES bloc. 

If we note Ci and Pi, respectively cryptogram and plain 
text of the ith block of the PCBC scheme and AES_ENC 
and AES_DEC the encryption and decryption functions 
of the blocks gone up around the AES standard of 256 
bits key, we will have: 

 
 

1 1

2 1

0 0 1

_

_

and

i i i i

i i i

C AES ENC P P C VI

P AES DEC C VI P C

P C VI

 



   
   

 

2

1i


     (29) 

At the end of the encryption process of the private key 
S, we concatenate the exits of every block to carry out 
the final cryptogram. The encrypted private key is noted 
S'. At this moment the user’s smart card will receive S' as 
final data. 
 
3.3. Private Key Decryption and Use 
 
In this section one gives the process to be carried out so 
that a user can exploit his private key. Indeed, with an 
iris scanner, a user allows to be identified. Thus a tem-
plate is taken. The smart card containing the useful in-
formation will be used to extract the encrypted private 
key. The Figure 4 presents an example of the use of the 
smartcard. 

The algorithm of decrypting the cryptogram S' hiding 
the private key S is as follows: 
 Application of the vector flag F, being in the smart 

card, on the template in order to withdraw the reliable 
features T; 

 The features vector T undergoes a correction by the 
code Reed Solomon and the RS codes which is in the 
smart card in order to produce a new vector T'; 

 Selection the first 523 bits from the vector T'; 
 Reconstitution of the initialization vectors VI2 et VI2 

from the two firsts blocks of 128 bits of T', and create 
a 256 bits AES key for decryption from the remaining 
bits of T'; 
Decrypting the cryptogram S' to have the private key 

S. 
 
4. Experimental Results: Evaluation and 

Discussion 
 
This section deals with the proposed biometric signature 
for private key, by evaluating the performance of Flexi-
ble-ICA algorithms for features extraction and their 
computation complexities and costs.  

In order to compare the performance and accuracy of 
the used method against the iris recognition methods used 
in the literature relative to security by iris. So the evalua-
tion focused two goals: quality of service and security 
level. In the first one, we studded the better level of the 
recognition given by the Flexible-ICA algorithm com-
pared to the others methods. In the second one, we stud-
ded the security level of the encryption process. Then we 
showed how the encryption scheme are given a strong 
protection to the private key and taken solution from iris 
recognition algorithm. 

To perform these experiences we used CASIA-IrisV3  
 

 

Figure 4. Theuse of smart card and decrypt the encrypted 
private key.  
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
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includes three subsets which are labelled as CASIA- 
IrisV3-Interval, CASIA-IrisV3-Lamp, and CASIA-IrisV3- 
Twins [30]. All of the algorithms are implemented in 
MATLAB 7.4 and executed on the same computer (Intel® 
Pentium® T2080 Dual-Core 1.73 GHZ CPU, 1024 M RAM). 
All of the experiments are completed under the same con- 
ditions and environment. 
 
4.1. Quality of Service Evaluation 
 
4.1.1. Features Extraction Experience 
To extract and evaluate results obtained with flexible- 
ICA algorithm, we have used an ensemble of pre-proc- 
essed image simples of size of 32 × 240. Each iris image 
should be localised by detecting its inner and outer 
boundary and its eyelids and eyelashes, unwrapped and 
converted into its polar equivalent where a number of 
data points are selected along each radial line and this is 
defined as the radial resolution and the number of radial 
lines going around the iris region is defined as the angu-
lar resolution. Then a histogram stretching method was 
used to obtain a well distributed iris images. Figure 5 
gives an example of an iris sample of each subset with its 
pre-processing steps.  

This ensemble contain1530respectively of CASIA- 
IrisV3-Interval and CASIA-IrisV3-Lamp used features 
extraction process which consists of determining  and 

 represented in (25). See Figure 6. 
iS

 ,iw x y
In this experience based on the Flexible-ICA, we use 

capture of class i.e. 306 or 228 images. These images 
were partitioned into 10,000 patches of n × n pixels ran-
domly taken from the pre-processed images and then 
normalized to columns of n2 × 1 and finally held into 
matrix of size n2 × 10,000. 

To calculate the separated matrix W, X was projected 
in stifled manifold  in order to obtain fea-
tures vector S. The encoding method of iris in binary 
format is to assign values “0” and “1” like 

 2W R n

 
1 if 0

0 if 0
i

i
i

S
Q S

S


  

             (30) 

Finally, to compare irises, the Hamming distance was 
used. 
 
4.1.1.1. Evaluation Criteria 
To evaluate the features extraction based on Flexible- 
ICA and compare it to others methods, we have used the 
ROC (Receiver Operating Characteristics’) curve and 
EER (Equal Error Rate). 

The ROC curve is the false acceptance rate (FAR) 
versus false rejection rate (FRR). The first one is the 
probability of accepting an imposter as an authorized 
subject.  

    
(a) 

 

    
(b) 

 

    
(c) 

 

    
(d) 

 

    
(e) 

 

    
(f) 

Figure 5. Irisimage pre-processing steps of a sample of each 
subset of CASIA Iris database, CASIA V3-Interval and 
CASIA V3-Lamp (left and right), (a) original iris; (b) iris 
localization; (c) eyelash and eyelids detection; (d) unwrapped 
iris with a radial resolution of 32 pixels and angular resolu-
tion of 240 pixels; (e) normalized; and (f) enhanced iris. 
 

The second one is the probability that an authorized 
subject being incorrectly rejected. The deal FAR versus 
FRR curve is a horizontally straight line with zero false 
rejection rates. So, the EER is the point were FRR equal 
to FAR in value. The smaller EER is the better the algo-
rithm. 

These criteria were used to prove the level of quality 
of service given by the method based on Flexible-ICA 
compared to the others. Also the accuracy, features vector     
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X

X̂

 

Figure 6. Block diagram of feature extraction process. 
 

Table 1. Performance evaluation according to numbers of 
independent component and image patches sizes of CASIA 
V3-Interval and CASIA V3-Lamp. 

size and complexity are given in the next section. 
 
4.1.1.2. Results Study  
For assess of the Flexible-ICA algorithm in its recogni-
tion, each iris is compared to all other irises at intra or 
inter class of CASIA used subset. A total of 49,725 and 
34,086 comparisons were executed respectively in CA-
SIA-V3-Interval and CASIA-V3-Lamp.  

Database CASIA-V3-Interval CASIA-V3-Lamp 

Win. size 8 × 8 16 × 16 8 × 8 16 × 16

56 0.10% 0.03% 15.69% 12.48%

40 0.03% 0.10% 16.89% 12.34%

32 0.16% 0.03% 16.88% 15.54%

24 0.10% 0.34% 16.22% 13.62%

20 0.14% 0.86% 16.19% 18.09%

16 0.04% 0.45% 16.82% 17.08%

12 0.16% 3.95% 19.93% 20.83%

10 0.13% 3.72% 16.76% 19.28%

ICs 

8 0.13% 2.25% 18.34% 23.96%

Figure 7 shows the large distribution of the distance 
between the intra and inter class. Figure 7 reveals the 
variation of visible illumination makes the distribution of 
distance of CASIA-V3-Lamp is larger than the intra 
class distance distribution of CASIA-V3-interal. This is 
caused by bad results of phase localization and normali-
zation. 

To evaluate the EERs, Table 1 shows results for R = 
{56, 40, 32, 24, 20, 16, 12, 10, 8} and image patches size 
of 16 × 16 or 8 × 8 pixels. We see that CASIA-V3-interval 
gives EERs lower than 0.2%because of its good quality 
resulting in extremely clear iris textures details. Like 
general remark, we see that ERRs increase when ICA 
coefficients decrease but when the information is strongly 
affected by noise according some coefficients the per-
formance does not always decrease with reduction of 
ICA coefficients.  

 
features. These methods are: Daugman [16,31], Ma et al. 
[32] and Tan et al. [33] using the CASIA-V3-interval iris 
image database [30]. So, we only analyze and compare 
the accuracy, efficiency and computational complexity. 

Daugman represent the local shape of the iris details 
by phase information and projected each small local re-
gion onto bank of Gabor filters, then he quantize the re-
sulting phase, denoted by complex valued coefficients, to 
one of the four quadrants in the complex plane. The di-
mensionality of the features vector is 2048 components.  

This observation is studded by results obtained with 
CASIA-V3-Lamp. This is the same remark like accuracy 
showed in Figure 6. To compare our results to others in 
the next section we take the better value in Table 1. 
 

Ma et al. method [32] constructs a set of intensity sig-
nals to contain the most important details of the iris and 
makes use of stable and reliable local variations of the  

4.1.1.3. Quality Service Study  
In this section we present a comparison between three 
methods, used in the literature, like security based on iris  
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(a) 

 

 
(b) 

Figure 7. Results of intra-class and inter-class distributions 
of (a) CASIA V3-Interval and (b) CASIA V3-Lamp. 
 
intensity signals as features, their method contains about 
660 components, this is because that their method only 
records the position of local sharp variations as features 
and contains less redundant information. 

In [33], Tan et al. utilize multichannel spatial filters to 
extract texture features of the iris within a wider fre-
quency range, this indicates that the extracted features 
are more discriminating, they extract local characteristics 
of the iris from the viewpoint of texture analysis, and the 
dimensionality of the feature vector is 1600 components. 
Figure 8 give the ROC curve of such verification algo-
rithm.  

From the results shown in Figure 8, we can see that 
the flexible-ICA method has the best performance, fol-
lowed by both Ma et al. and Daugman methods which 
are slightly better than the method of Tan et al. So, this 
method is based on flexible-ICA algorithm which ex-
tracts global features in pre-processing step that reduces 

dimensions for obtaining ICA components for iris; ICA 
explores independent components of fine iris features. 
These components of ICA are statistically independent, 
which reflect iris detail information (such as freckles, 
coronas, strips, furrows, crypts, and so on) change, whose 
distribution indicates iris individual difference for each 
class. So, the local basis images obtained with ICA can 
lead to more precise representations. 

Since ICA reduces significantly the size of iris code, 
this leads to decrease of processing time. Table 2 shows 
that our method consumes less time than others, followed 
by both Tan and Ma methods which are based on 1-D 
signal analysis. However, Daugman method involves 
2-D mathematical operation.  

These comparisons indicate that the used algorithm 
has an effective and emerging performance in iris recog-
nition. This remark is all in concordance with the quality 
of service including the best recognition. In security field 
it is not be able to accept any mistakes in the user recog-
nition because the transaction or the use of the private 
key was corrupted. 
 
4.2. Security Analysis 
 
In this section we study how strong is our scheme to 
protect any private key stored in smart card. 
 

Table 2. Performance comparison of the algorithms. 

Methods  
Feature vector 
size (bit/image)

Performance (%) 
Computational 

Complexity (ms)

Daugman [9] 2048 0.08 285 

Ma et al. [16] 660 0.07 95 

Tan et al. [15] 1600 0.48 80.3 

Proposed ICA 960 0.04 31.2 

 

 

Figure 8. Comparison of ROC curves. 
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4.2.1. Iris Key Space Analysis 
If an attacker try to break our key used in encryption of 
private key, he would be systematically search the 523 
bits key space for the correct iris code. So, we see that as 
long as, the iris code is kipped private and the brute force 
or more sophistical attack on the cryptosystem used the 
iris code is the best an attacker can do. In this focus, we 
consider that the powerful attacker who has complete 
knowledge on the correlation present between iris tem-
plate space as well as complete knowledge of the Reed 
Solomon codeword space. 

In the literature Daugman [10] has estimated the de-
gree of freedom in iris template to be 249 bits. It means 
that these 249 bits are sufficient to reconstruct a valid iris 
template for one person, and likewise, are capable of rep- 
resenting the eyes of more than 2249 unique individuals. 

In our case, if an attacker has complete knowledge of 
the structure of the iris template space, he could simply 
search 249 bits iris code. At each time a valid iris tem-
plate for an individual is checked the correctness from 
Reed Solomon codeword. So this codeword can, in the 
worse correction, recovery 250 bits or the iris code used 
by the cryptosystem is equal to 523 bits. Then the at-
tacker by all that, he has to complete 24 bits.  

To estimate the complexity attack time we assumed 
that the time recovery of any code bit search is about 1 
second then we have 

 249 24Time BFA 2 Time RS seconds      (31) 

where, Time BFA is the time brute force attack and Time 
RS the time Reed Solomon recovery. Well, it is long 
time to do a best attack like this! 
 
4.2.2. Avalanche Effect 
The avalanche effect is the desirable property of crypto-
system. It means that if an input changed slightly e.g. 
flipping a single bit, the out put changes significantly e.g. 
a half of out bits flip. So, in our work, we use an AES- 
256 bit like a bloc cipher system, then the avalanche ef-
fect is obtained from the security of this standard [34].  

Since we use a Propagating Cipher bloc Chaining 
(PCBC), if a bit changed in ith bloc all flowed block 
changed for more than half of bits. It could arrive to 
change completely. For example at i = 1 (first block), if 
the private key S, subject to encryption, changed at any 
bit from the first bloc of 128 bits the encrypted form of S' 
would change at most completely. This property is guar-
anteed by the propagating phenomena and this change 
from bloc to other gives a best avalanche effect. 
 
4.2.3. Confusion and Diffusion 
Like avalanche effect, these two properties guaranteed a 
statistical security means. Indeed, confusion is to avoid 

any relationship between key and cipher text and diffu-
sion is to illuminate any redundancy in the plain text by 
dissipate it in the statistic of cipher text. 

At each bloc, of the used PCBC, the confusion and 
diffusion are guaranteed systematically by AES-256 bit 
in first. Then each block of 128 bits of private key S un-
dergone if own appropriate transformations. However, 
our PCBC is mad by using two initialization vector vec-
tors VI1 and VI2. The first one mad a complete transfor-
mation in the first block of S before the encryption proc-
ess. Also the second block, of S, accepts its own com-
plete transformation by the second initialization vector 
VI2 and the XOR of the first block and its encryption 
form.  

The phenomena of propagating use for the rest of 
block a transformation of their block of S the XOR of the 
plain and its encryption form of the previous block. All 
those give transformed plain bloc to each block of used 
AES. This is a guaranty of higher confusion and diffu-
sion mad in the private key before and after the encryp-
tion process. 
 
5. Conclusions and Future Works 
 
In this paper we have given a complete system for en-
crypt and secure the private key of any public key infra-
structure. Our contribution is to avoid any weak secure 
scheme previously proposed to a secure storage of pri-
vate key. Our scheme is based on the use of biometric 
signature by reliable iris recognition. The originality is in 
the use of the Flexible-ICA for feature extraction with 
partition of iris images into patches, and hamming dis-
tance for matching. Two iris image subsets of CASIA 
iris V3 database have been used to evaluate the per-
formance of our system. Flexible-ICA algorithm, which 
improves the quality of separation introducing a better 
density matching and allows a faster learning, has been 
adopted for computing the ICs. 

Best results have been obtained. In the first, the quality 
of recognition, given by the way a high quality of service 
to recovery the private key without any error in the key 
encryption. To eliminate any probability of error, a joint 
flag and Reed Solomon encoder have used. Secondly, the 
proposed scheme has been evaluated to prove its robust-
ness.  

Like future works, we propose to use the Noisy-ICA 
algorithm for features extraction. This method avoids 
any problems made by the multiplicative and additive 
noise in iris scan. 
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