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Abstract 
 
Pseudo-Random Number Generators (PRNGs) are required for generating secret keys in cryptographic algo-
rithms, generating sequences of packet in Network simulations (workload generators) and other applications 
in various fields. In this paper we will discuss a list of some requirements for generating a reliable random 
sequence and then will present some PRNG methods which are based on combinational chaotic logistic map. 
In the final section after a brief introduction to two statistical test packets, TestU01 and NIST suite tests, the 
PRNG methods which are presented in the fourth section will be appraised under these test packets and the 
results will be reported. 
 
Keywords: Cryptography, Chaotic Random Bit Generator, NIST Test Suite, TestU01 

1. Introduction 
 

Pseudo-random number generators (PRNGs) are useful 
in many applications such as the crypto-system in net-
work communication [1] also one of the important 
methods in simulation is Mont Carlo [2] which needs to 
generate very high quality pseudo-random sequence and 
calculation of numerical integration which is not solved 
by regular methods [3-5].  

Regarding the threats to the security [3-16], the statisti-
cal quality of PRNGs is becoming more important than 
before. For example a super computer might generate 109 
random numbers per second and the cryptography algo-
rithm needs 1016 random numbers to create a secure chan-
nel in a very important communications, thus small corre-
lation or other weaknesses in the generated sequence could 
easily lead to the critical leak in several network layers. 

The distributions should be prepared based on their 
commercial applications such as “normal”, “exponen-
tial”, “poisson” and so on. But in this paper we consider 
only the generation of uniformly distributed numbers. In 
more details, we will focus on the real number sequence 
which is uniformly distributed on the interval (0…1). 

The basic point in generating pseudo-random number 
is that these generators are deterministic because the 
digital computers are not able to generate truly random 
numbers. So the statistical test needs to be presented and 
the PRNGs should pass a number of important statistical 
tests, before being released for security usage in commu-

nication networks. 
In this paper, in Section 2, overview of using of cha-

otic maps as the reliable PRNG will be presented. Then 
in Section 3 some requirements for generating a high 
quality PRNG will be discussed. In Section 4 some class 
of improving PRNGs will be presented and finally in 
Section 5 two strong statistical test packages (i.e. NIST 
suite tests and TestU01) will be introduced and all PRNG 
methods which are tested by author, will be purposed 
and the results will be reported into various tables. 
 
2. Overview 

Generation random numbers by combinational chaotic 
maps is one of the best methods to improve statistical 
properties. For example, in 2006, Wang et al. proposed a 
pseudorandom number generator based on a z-logistic 
map [4]. In 2007, Ergun and Ozogur proposed the novel 
random bit sequence of a non-autonomous chaotic elec-
tronic circuit [5]. Then, Hu et al. proposed a true random 
number generator by computer mouse movement [6]. In 
2009 Patidar et al. designed a random bit generator based 
on two chaotic logistic maps which is generated by 
comparing the outputs of the both chaotic logistic maps 
[7]. Recently in B. Fechner and A. Osterloh presented a 
meta-level true random number generator [8]. 

3. Generating High Quality PRNG 

In many papers there have been discussions about the 
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requirements for a good PRNG [3-16]. In this section 
these attempts will be summarized and briefly described. 
 
3.1. Uniformity of Distribution 
 
Uniformity of distribution is the main concern in the sta-
tistical tests of random sequences. It means that at all 
points in the generation of a sequence of random or 
pseudo-random bits, the probability of Zero or One is as 
much as the probability of nine [9]. 

 
3.2. Independence 
 
Each part of a random sequence should be independent 
from other parts. In the sample sequence ( 0 1 ), 
random numbers generate in the d-dimensional space so 
the sample part of this sequence: 

, ,m m 

1 1, , ,dn dn dn dd tuples m m m     

Which is uniformity distribution should be independ-
ent in the d-dimensional cube [0,1]d. for example in 
Halton sequence [10] which is the low discrepancy 
method [10] to generate random numbers. Figure 1 de-
creased independence by increasing dimension and be-
come totally dependent in Figure 2. Also this multidi-
mensional clustering is clear in high dimensional in the 
Sobol sequence [11] (Figures 3-4). 
 
3.3. Efficient Length of Period  
 
Some classic algorithms for PRNGs such as Middle 
Square method and middle product method, although 
have the unique characteristics to generate pseudo-ran-
dom numbers, but not enough length of periods. 

In 2010 this problem solved by H. Rahimov, M. 
Babaei and H. Hassanabadi [12]. 

3.4. Unpredictability 

Unpredictability is one of the important points in cryptog-
raphy, because the random sequence with these advan-
tages (i.e. efficient length of period, good independency 
and uniformity of distribution) could be predictable thus 
existing a lot of threats in the Secret communication, we 
need to generate the sequence unpredictable.  

In the sample sequence ( 0 1 1 n ), in the 
best conditions if a group of hackers have the largest part 
of this sequence (i.e. 0 1 1 ) they may guess 
the other parts. But in the unpredictable PRNG They are 
not able to guess  with probability more than 50%. 

, , , ,nm m m m

, , , nm m m

n

The chaotic maps in combination with predictable 
PRNG methods such as LFSR (which is implemented 

m

by a small number of registers) are able to solve the 

 

Figure 1. Halton sequences in dimensions 1 × 20. 
 

 

Figure 2. Halton sequences in dimensions 20 × 21. 
 

 

Figure 3. Sobol sequences in dimensions 1 × 20. 
 

 

Figure 4. Sobol sequences in dimensions 20 × 21. 
 
problem of predictability by using Exclusive-OR opera-
tion between LFSR’s system and chaotic logistic map, 
this Theorem was proved by M. Babaei in 2011 [13]. 
 
4. Improving PRNGs 
 
In the main part of this section we discuss about how 
the PRNG weaknesses could be improved. Nowadays a 
lot of scientists are working on this subject and could 
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prepare reliable methods to improve these defects in 
generators, especially the applications of PRNGs in 
cryptography need to be more efficient than other appli-
cations. 
 
4.1. Decimation Method 
 
In this method two PRNGs generate random numbers in 
two different sequences, (the type of PRNGs may be the 
same or different). Combination based on this method is 
able to generate more efficient random sequence.  

Based on this method if a PRNG generated a sequence 
such as: 

1 2, , , np p p  

By using of Decimation method generated a sequence 
like this: 

1 2, , , mq q q  

By defining that: 

j jkq p  where  chose as a constant efficient 
value. 

1k 

Decimation algorithm is described below: 
1) float* Decimation() 
2) { 
3) float *finalSeq; 
4) boolean continueGenerating = True; 
5) int count PRNG = 0; 
6) char ans; 
7) finalSeq = new float [100]; 
8) while (Continue Generating); 
9) { 
10) int loop Length = PRNG1();  
11) for(int i=1; I  loopLength; i++); 
12) flooat random Number = PRNG2(); 
13) finalSeq [countPRNG] = random Number; 
14) } 
15) cout  “Do you want more? (y/n)”  endl;  
16) cin  ans; 
17) if (ans == ‘n’ || ans ==‘N’); 
18) break; 
19) } 
20) return finalSeq; 
21) } 
In other words this algorithm in Line 10 generates se-

quence ( ) and in Line 12 generates se-
quence ( 1 2 3 ), so Decimation method gener-
ates the final sequence as below: 

1 2 3, , , , np p p p
, , , , mq q q q

1 1 2 1 2 3 1 2
, , ,...,

np p p p p p p p pq q q q       

Many papers proved that generating random sequence 
by this method is more efficient than discrete sequences 
[19], meaning that: 
Distribution (SeqDecimation) > distribution (PRNG1) 
and 

Distribution (SeqDecimation) > distribution (PRNG2). 
 
4.2. XOR Operation and Combination PRNGs 
 
One of the popular models to improve PRNG’s defects is 
combining k numbers of generator by Xor operation. For 
example, if each of the generators is defined by a primi-
tive trinomial such as: 

( ) 1rk sk
kPT x x x   . 

This is the main structure of Fibonacci LFSR genera-
tors which is distinct primitive degrees, then proved 
that the combination of these k generators has a  

rk

period of at least . 1

1

2 (2
k

rk

k





 1)

In this case, we present various PRNGs with different 
efficiencies, which can be classified into three main 
groups. 
 Class 1: Classic Generator XOR Classic Generator 
 Class 2: Classic Generator XOR Modern Generator 
 Class 3: Modern Generator XOR Modern Generator 

Based on the classification classic generators (e.g. 
Low discrepancy methods [10], High discrepancy meth-
ods [10], LFSR methods [13] and …) and modern gen-
erators contain any type of discrete chaotic maps (e.g. 
Henon map [14], Logistic map [14], Gauss map [14] …). 
 
4.3. Shuffling Method 

 
In this method two PRNGs generate two different ran-
dom sequences like the Decimation method, one of the 
sequences stores in the buffer area and the other chooses 
from buffer side. 

Suppose that, there are two PRNGs such as: 

0 1: ( , ,..., )nP p p p  

where P is a PRNG’s function. 

0 1: ( , ,..., )mQ q q q  

where Q is a PRNG’s function, and m < n. 
By using of buffer B (minimum size n), storing se-

quence P in the buffer B then, by using of sequence Q 
chooses, m values of buffer B and put them in the final 
result sequence. 

Shuffling algorithm is described below: 
1) float *Shuffling() 
2) {  
3) float *finalSeq; 
4) float *buffer; 
5) int bufferLength = 100; 
6) char ans; 
7) boolean continueGenerating = True; 
8) int countPRNG = 0; 
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5.1. TestU01 9) finalSeq = new float [100]; 
10) buffer = new float [100]; 
11) while(continue Generating) This test is designed in four classes of modules: (a) Im-

plementing per-programmed PRNG; (b) Implementing 
statistical tests; (c) Implementing per-defined batteries of 
tests; (d) Implementing tools for applying tests to entire 
family of PRNGs. These modules are implemented in the 
ANSI C language and offer the best collection of utilities 
for the empirical statistical testing [17]. The results of the 
test suites is classified into three classes, Small Crush 
(consist of 10 tests), Crush (consist of 60 tests) and Big 
Crush (consist of 45 tests). 

12) { 
13) for(int i = 0; i < bufferLength; i++) 
14) buffer [i] = PRNG1; 
15) int selection = PRNG2; 
16) finalSeq [count PRNG] = buffer [selection]; 
17) cout “Do you want more? (y/n)” endl;  
18) cin ans; 
19) if (ans == ‘n’ || ans == ‘N’) 
20) break; 
21) } In Table 1, the column 2log  in the mathematical 

equation shows the number of period length   in the 
logarithm in base 2. The column t-32 shows the CPU 
time which is required to generate a sample sequence 
with length 108 of random numbers on a 32 bit computer. 
This computer has Intel Pentium processor of clock 
speed 2.8 Giga Hertz which the Ubuntu 8.10 as OS is 
running on it. Also the small dash (-) indicates that the 
test was not applied to this particular PRNG, usually 
because the PRNG was already failed into smaller bat-
tery. The results of TestU01 are shown in Table 1. 

22) return finalSeq; 
23) } 

 
5. Statistical Tests 

Reliable and secure PRNGs are implemented based on 
strong mathematical analysis of their properties. After 
that the sample sequences will be generated and submit-
ted to empirical statistical tests. These statistical tests 
disclose varied defects in the sample sequences, so to 
achieve this goal, in the source code of these tests the 
sub-function is responsible for mapping the sequence of 
random numbers into interval (0,1) as a real variable 
number X, because in this interval it has a better ap-
proximation than the other intervals. For random variable 
X passing approximation distribution tests is so important 
to generate secure PRNGs, but it’s not enough. 

5.2. NIST 

One of the most powerful statistical tests is NIST tests 
suite. It contains 15 tests which are based on null hy-
pothesis testing. This package focuses on large types of 
general non-randomness on the target sequences [18]. In order to confide a PRNG, especially as a part of 

cryptography algorithms, it should be tested as an input 
parameter in the software system test. The best systems 
are briefly introduced in the next sub-sections.  

All of the tests are standard normal and the amount of 
the chi-square as reference distribution. So if the current 
sequence which is under test is non-random, the software 
calculates an unacceptable value for sequence distribu-
tion. The results of eight NIST tests are shown in Tables 
2-3. 

In the following tables the results of well-known or 
widely used PRNGs beside proposed PRNGs by M. Ba- 
baei et al. [12,13] are shown. 
 

Table 1. Results of TestU01 for various PRNGs. 

Butteries Tests 
Generators 

2log  t-32 Small Crush Crush Big Crush 

LCGa 24 3.9 14 - - 

LCGb 57 4.2 1 10 17 

LFibc 85 3.8 2 9 14 

MSM 101 3.0 5 45 - 

Choatic MSMd 27 3.2 9 10 16 

MPM 105 3.2 7 47 - 

Choatic MPMd 29 3.4 10 11 13 

Fibonacci LFSR 30 4.1 17 - - 

Glaois LFSR 31 4.0 15 - - 
Choatic LFSRd 32 4.2 9 12 14 

a: (224, 16598013, 12820163); b: (259, 1313, 0); c: (231, 55, 24); d: logistic map. 
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Table 2. Results of NIST for various PRNGs (Part 1). 

Generators Frequency 
Block 

Frequency 
CuSums 
Forward 

CuSums 
Backward 

LCGa 0.804645 0.764534 0.193567 0.002323 

LCGb 0.985634 0.893467 0.229087 0.012678 

LFibc 0.875379 0.026789 0.679834 0.126789 

MSM 0.908733 0.128908 0.873456 0.009367 

Choatic MSMd 0.804645 0.322901 0.265567 0.090388 

MPM 0.83733 0.127835 0.783606 0.091678 

Choatic MPMd 0.96372 0.762609 0.126709 0.201289 

Fibonacci LFSR 0.535558 0.256881 0.125567 0.558502 

Glaois LFSR 0.269087 0.269087 0.390767 0.389001 

Choatic LFSRd 0.606499 0.483676 0.553505 0.769260 

a: (224, 16598013, 12820163); b: (259, 1313 , 0); c: (231, 55, 24); d: logistic map. 
 

Table 3. Results of NIST for various PRNGs (Part 2). 

Generators Rans Long Run Rank FFT 

LCGa 0.876522 0.003634 0.347851 0.000147 

LCGb 0.753678 0.125620 0.892736 0.000951 

LFibc 0.595634 0.0913567 0.012673 0.000566 

MSM 0.463678 0.001237 0.347851 0.000159 

Choatic MSMd 0.569766 0.066673 0.248649 0.000159 

MPM 0.67364 0.087367 0.001267 0.000159 

Choatic MPMd 0.88383 0.283709 0.337328 0.000159 

Fibonacci LFSR 0.578382 0.012343 0.859903 0.000159 

Glaois LFSR 0.369001 0.155672 0.790510 0.000159 

Choatic LFSRd 0.425020 0.174249 0.967341 0.000159 

a: (224, 16598013, 12820163); b: (259, 1313 , 0); c: (231, 55, 24); d: logistic map. 
 
6. Conclusions  
 
In this paper we discussed about some important factors 
to generate Pseudo-Random Numbers such as uniformity 
of distribution, independence, efficient length of period 
and unpredictability. Then we proved that chaotic logis-
tic map is able to promote the performance of classic 
PRNGs which are not independent generators or do not 
have a long reliable period to generate random numbers. 
Finally the statistical tests (i.e. TestU01 and NIST suite 
tests) supported the main idea of the paper. 
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