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Abstract

In the paper, we obtain new sufficient conditions ensuring existence, uniqueness, and asymptotic stability of
the equilibrium point for delayed neural network via nonsmooth analysis, which makes use of the Lipschitz
property of the functions. Based on this tool of nonsmooth analysis, we first obtain a couple of general re-
sults concerning the existence and uniqueness of the equilibrium point. Then we drive some new sufficient
conditions ensuring global asymptotic stability of the equilibrium point. Finally, there are the illustrative
examples feasibility and effectiveness of our results. Throughout our paper, the activation function is a more

general function which has a wide application.
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1. Introduction

In recent years, the stability of a unique equilibrium
point of delayed neural networks has extensively been
discussed by many researchers [1-5]. Several criteria
ensuring the global asymptotic stability of the equilib-
rium point are given by using the comparison method,
Lyapunov functional method, M-matrix, diagonal domi-
nance technique and linear matrix inequality approach.
In [1-5], some sufficient conditions are given for the
global asymptotic stability of delayed neural networks by
constructing Lyapunov functions. A new sufficient con-
dition on the global asymptotic stability for delayed neu-
ral networks via nonsmoosh analysis is derived in this
letter. The condition is independent of delay and imposes
constraints on both the feedback matrix and delayed
feedback matrix. Our results generalize and improve the
preciously known works due to expending the activation
function of the delay part.

Concerning the global stability of delayed neural net-
works described by the following differential equations
with time delays

X =—=g(x(t))+ Af (x(t))+ A"h(x(t—7)) +u 1)
where x(t) = (x,(t), -+, X, (t))" e R"
g(x(1)) = (9, (% ()., 9, (x, (D))" € K"
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f(x(®) = (L, (x ®),-, £, (x, (1)) e R"
h(x(t=7) = (h(x,(t=7),--,

and A=(g;), A" =(a’y)eR"" are respectively, the

h, (x, (t—=7))) € R"

feedback matrix and the delayed feedback matrix. u=
(u,,U,,-++,u, )" €R" is a constant input vector and ¢

is the delay parameter. Furthermore, we assume that the
function g, the activation function f and the activa-

tion function h satisfy the following conditions:
A1) Each function g,:9% — R is a locally Lipschitz

function and there exists m, >0 such that g/(y)>m,
forallat ye®R which g, is differentiable.

A2) Each function f,:9R — R is a globally Lipschitz
function with module k; >0, i.e.,

|fi(y1)_ fi(y2)| < ki |y1_ y2|

Vi=l---,n and y,y,eR
A3) Each function h :9R — R is a globally Lipschitz
function with module I, >0, i.e,

|hi(y1)_hi(y2)| < Ii | fi(yl)_ fi (y2)|
Vi=1---,n and vy, y, eR
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The paper is organized as follows: Section 2 contains a
short introduction to nonsmooth analysis for Lipschitz
functions. In particular, the Lipschitzin Hadamard Theo-
rem is explained and a homeomorphism theorem is ob-
tained. Section 3 is to demonstrate how nonsmooth
analysis can be carried out on (1) to derive sufficient
conditions to ensure the existence and uniqueness of the
equilibrium point of (1). In Section 4, we study new suf-
ficient conditions with guarantee the GAS of the (1). In
Section 5, we have an illustrative example and its simu-
lations. We conclude in Section 6.

Notation: Let m, k;,I,i=12,--,n be the constants
given in assumptions (A1), (A2) and (A3), define two
diagonal matrices M =diag(m,m,,---,m,) and K
=diag(k, k,, -+, K,)

Let m=min{m}, k=max.{k} and I=max{l}.

Let | -| denotes the Euclidean norm for vectors and
the matrix norm for matrices for any vector v =(v,,V,,

V) €RY V] = (Voo Vo|s- v, )T similarly, for any
matrix B:(bij)emnxn, 1B]=(by]) -

Let po(B) denote the spectral radius of B . It is
known that p(B) < p(|B|) . Moreover,

p(B)> p(B) if B>B>0.

Bis called a P matrix (P, matrix ) if and only if
all principal minors of B are positive (honnegative)
and denoted by BeP(BePR) . For any matrix
BeR™, u,(B)=1/2)4,,(B+B") ie, u(B) is
the largest eigenvalue of the symmetric part of B. All

the mathematical facts concerning the eigenvalues of a
matrix used in this paper can be found in the book [6].

2. Nonsmooth Analysis on Lipschitz
Functions

We first review some concepts which are essential for
conducting nonsmooth analysis on Lipschitz function.
Then we state the Lipschitzian Hadamard Theorem, whi-
ch gives conditions for homeomorphism of Lipschitz
functions. Finally, we give a sufficient condition which
ensures the existence and uniqueness of the equilibrium
point of (1) for any input vector ueR".

Let the function F:R" — R" be locally Lipschitzian.

According to Rademacher’s theorem [7], F is dif-
ferentiable almost everywhere. Let D. denote the set
of those points where F is differentiable and F'(x)
denote the Jacobian of F at xeD.. For any given

x e R", define the constant

Copyright © 2010 SciRes.

Lip,F == sup —||F(y)— F(X)"

ox - y=x|
x#yeR"

Since F is locally Lipschitz, the constant Lip, is
finite and we have

|F'(x)| < Lip,F forany xeD,.
Now we are ready to define the generalized Jacobian
in the sense of Clarke [8]:
For any xeR", let 6F be the set of the following
collection of matrices
oF (x) = co{W | there exists a sequence of
{x*} = D, with lim F'(x*) =W}

where coQ denotes the convex hull of the set Q. Itis
easy to see that the above definition is well defined and
|W| < Lip,F for any W edF(x).We say that oF(x)
is invertible if every element W in oF is nonsingular.

For any given x,ye®R", the Lebourg Theorem [8]
states that there exists an element W in the union
U,x,0F () such that

F(Y)-F(x)=W(y-x)

where [X, Y] denotes the segment connecting x and Y.
For any two locally Lipschitz functions F:R" — R",
—->R", G:R" > NR", we have

O(F +G) c 0F (x) +9G(x) forall xeR".

Now we are ready to state the Lipschitzian Hadamard
Theroem which will lead to our homeomorphism result
Theorem 1.

Lemma 1 [9] (Lipschitzian Hadamard Theorem): Sup-

pose F:R"—>R", is locally Lipschitzian and let
x>0. If oF(x) is invertible and "\N’1||§Kfor all
xeR" and all W edF(x), then F is a homeomor-

phism from R" onto R".

For more discussions on the generalized Jacobian and
its various applications, please refer to books [7,8] as
well as to the paper [10,11]. Now, we analyze (1) from
the viewpoint of nonsmooth analysis. We first recall that
astate x eR" is called an equilibrium point of (1) if it
satisfies

~g(X")+ AF(X') + Ah(x*) +u =0

To study the existence and uniqueness of the equilib-
rium point for any input vector ueR", we define the
function F:R" - R", by

F(x)=g(x)-Af (x)—A"h(x)-u )
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Naturally, F is a locally Lipschitz function since
g, f and h are so. Moreover, the generallized Jacobian

of F at x is overestimated by (3). If each of the acti-
vation function f,,h. is nondecreasing on the real line

R, then we have a more accurate estimate of oF (x) as
follows (see (4)).

W e ®R™" |=C - AD-IAD,
C :diag(cllczx"'!cn)v

oF()cV =1 D=diag(d,,d,,,d) 3)
withc, >2m,, -k <d, <k,
foralli=12,---,n}
W e R™ |=C — AD—IA'D,
C =diag(c,,¢,,---,C,),
OF(x)cV ={ D=diag(d,d,d,) 4)

with¢, >m;,0<d; <k,
foralli=12,---,n}

Clearly, Vev. By applying Theorem 1 to (3) and
(4), we have the following.
Theorem 1: Suppose functions f,g and h satisfy

assumptions (Al), (A2) and (A3) and that one of the fol-
lowing two conditions holds.

1) Each element W €V is nonsingular.

2) Each element w eV is nonsingular and each ac-
tivation function f. and h is nondecreasing.

Then for each input vector ueR", the function F
in (2) is a homeorphism from R" onto R".

Proof: We only prove the result for the case (i). The
case (2) be proved similarly as (1).

To show that F is a homeomorphism from R" to

R", in accordance with Theorem 1 it suffices to prove
that the norms of inverses of all elements in V are uni-
formly bounded. In other words, we need to show that
there exists a positive constant « such that

|[vv4||g;< W eV (5)

We prove it by a contradiction. Assume that there ex-
ists a sequence of matrices {W*}cV satisfying

] - ©

Then there exist two sequences of diagonal matrices

{C*} and {D*} , C*=diag(c,c},---,cf) , D*=

diag(d),d},---,d¥) with ¢ >m and df e[k, k]
forall i=1,---,n such that

for all

Wk =C* - AD¥ —IA*D*

Copyright © 2010 SciRes.

Recall that
M™C* =diag(p}, p,---, p¥) It is easy to see that

M =diag(m,,m,,---,m ) and let P* =

pf >1 forall i=1---,n
(CONES

and W = (M — AD*(P*) " —IA"D*(P*)™)P*.
Since both sequences of diagonal matrices {D*} and

{(P*)™'} are bounded, without loss of generality, we
assume that

lim D*(P*)™ =Q = diag(q;. ;... q,)

For some ¢, €[k k], i=1---,n. We observe that
the matrix sequence

{M — AD*(P*)™" —IA'D*(P*) '}

and the matrix {M — AQ-1A"Q} all belong to the col-
lection V . Hence, those matrices are nonsingular.
Moreover, for all k sufficiently large, we have

oy < ey
"(M _ADk(Pk)—l_IAer(Pk)—l)—l"
< 2||(M ~-AQ —IATQ)’1||

This contradicts our assumption (6). Hence, there ex-
ists a constant x>0 such that (5) holds. It then follows
from Theorem 1 that F is a Homeomorphism from
R" onto itself.

The above homeomorphism result means that if each
element in V is nonsingular, then the neural network
defined by (1) has a unique equilibrium point for any
input vector ueR". This result is the starting point of
the next two sections where we will consider what prac-
tical conditions make the delay neural network stable.

3. Existence and Uniqueness of the
Equilibrium Point

In this section, based on Theorem 1 we present some
new sufficient conditions which ensure the existence and
uniqueness of the equilibrium point of (1). As conse-
quences, we further show that the existence assumption
on equilibrium point is unnecessary in some existing
results for GAS.

Theorem 2: Suppose one of the following assump-
tions holds:

1) p(|A+IAT KM™)<1;

2) —(A+IA")e P, and each activation function is
nondecreasing;
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3) u,(A+IA")<m/k and each activation function is
nondecreasing;

Then for each input vector u e R", the function F()
is a homeomorphism from R" onto R".

Proof: 1) we first recall the facts that for any matrix
Be®R™, p(B)< p(B|). And that if two nonnegative

matrices B,éeiﬁ”*” satisfy Bsé, then we have

p(B) < p(B). It follows from Theorem 1 that we need
only to show that each element in W is nonsingular.

Let W be any element in V , then there exist two
diagonal ~matrices C =diag(c,,c,,---,c,) and D
=diag(d,.d,,---,d,) with ¢,>m, and d, e[-k, k]
forall i=1,2,---,n such that

W=C-AD-IA'D

We have from the assumption i) of the theorem and
the mathematical facts listed at the beginning of the
proof that

p((A+1A)DC ) < p((|/-\+ IA)|D|C™)
< p((A+IAKM ™) <1

This means that the matrix | —(A+IA")DC™ is non-

singular. Then the nonsingularity of W follows from the
observation that

W =C(l-(A+IA)DC )™

For the remaining two cases, we need only to show
that each element in V is nonsingular. We note the fact

d; >0 forall i=1,...,n indefining V.

2) The proof is trivial by noticing the fact that for any
three matrices B;,B,, Q, in ®R™" with B, being
positive diagonal, B, PR, and Q a nonnegative di-
agonal matrix, then the matrix B, +B,Q € P, hence it is

nonsingular. Any matrix we encountered in W has the
same structure as of B; + B,Q and therefore it is non-
singular.

3) As in 2), it suffices to show that any element W in
V is nonsingular. Then there exist two diagonal matrices
C =diag(c,,c,,---,c,) , D=diag(d,,d,,---,d,) with
¢c,zm; and d; €[0,k] for all i=1---,n such that
W =C-AD-IA’D. Since C is nonsingular, it suf-
fices to show the matrix N =1—(A+IA")DC™ is non-
singular. We prove it by a contradiction. Assume that

N is singular, then there exists 0= xe9R" such that
Nx =0, or equivalently

(%)(A+ IA")DC 1x = (%)x )

Copyright © 2010 SciRes.
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Let Q=(m/k)DC™ =diag(q,,q,,-,q,), then 0<q,<1,
forall i=12,---,n.
Multiplying (Qx)" on both sides of (7), we have

Q) (A+IAT)Qx = <%)xT x
which yields that
m m m
?IIQXIIZ = (X Q= (X' Qx
< 1y (A+ 1A Qx|
That is

(o~ (A+IA]QA” <0

Since Qx =0 (otherwise it would follow from (7)
that x=0), we have

%S,uz(A—i-IAT)

a contradiction to the assumption g, (A+IA")<m/k.

Hence any element W €V is nonsingular. This com-
pletes our proof.

4. New Conditions for GAS

In this section, we present new conditions for the GAS of
the equilibrium point of (1). We assume that all the acti-
vation function are nondecreasing, i.e., the generalized
Jacobian of F at any point xe®R" is contained in

V.

Theorem 3: In addition to assumptions (A1), (A2) and
(A3), we assume that each activation function is nonde-
creasing. Suppose

20, (A+IA7) 1A 1] < 2(7)

Then for each ueR", (1) has a unique equilibrium
point which is GAS.

In particular, the DCNN where m=k=1 has a
unique equilibrium point for each input vector ueR"
and this equilibrium point is GAS if the following condi-
tion holds:

2
2y2(A+IA’)+HIAT—IH <2 @)

Proof: Since Z,uz(A+IAf)+“IA’ - I“2 <2(m/k), we

obviously have g, (A+IA")<(m/k). Then it follows
from Theorem 2 3) that (1) has a unique equilibrium
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point. Hence it remains to show that this equilibrium
point, say X', is GAS. For simplicity, we shift x* to
this origin through the transformation

z2(t) = x(t) = x"
2(t—-7)=x(t-7)-x"

Equation (1) then can be equivalently written as the
following system

2(t) =—(9(z()+x") - g(x") ©)
+AD(z(t)) + A"P(z(t—17))

2() = (@), 22() - 20 ()"

O(2()) = (421 ), b2 (22 (D), (2, )
¥ (20) = (2121 ), 02 (22 (D), 0 (2, )
4@ ) = fiz(O)+x)-fi(x)

i (z,() =hi (z; ) +x7) =hy (")

We now show that the origin is GAS of (9).
Itis easy tosee ¢(0)=0,vi=12,---,n. and

[eEO)” < k" o)
[¥ O] <o)

Let us consider the Lyapunov function:

where

and

(10)

V() =z + 2a2j¢i (s)ds

i=1 o

n ot
el )Y [vienas

i=l {7
with «, >0 being chosen appropriately later on. We
first point out that V (z(")) is positive except at the ori-

gin, and it is radially unbounded in the sense that
V(z(t)) > as [z(t)] > . Next, evaluating the time

derivative of V(z) along the trajectories of (9), we ob-
tain
V(z(t)) = 22" (t)2(t) + 2a® " (2(t))2(t)
e+ O -0

=-22" (1)(g(z(t)+x ) - g(x"))
+227 ()AD(z(t)) +22" () A" (z(t—17))
-2a®" (z(1))(9(z(t) +X)
—g(x))+20®7 (2(1) AD(2(t))
+2a®" ((t)) AT (z(t - 7))

+|i2(a + AP O - |¥ 2t -))

(11)

Copyright © 2010 SciRes.
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The Lebourg theorem for Lipshcitz functions means
that

g(z(t)+x)-g(x") = Dz(t)

forsome De uye[x*’x*ﬂ(t)]ag(y)

(12)

From the definition of g, matrix D is diagonal, and
we denote D =diag(d,,d,,---,d,). It is obvious to see
d; >2m for i=12,---,n. We then have

2" ()(9(z(M)+x)-g(x))
=" diz?(t) = mlz(0)|°
i=1

o' (Z(O)(g(2())+x) - 9(x)
=Y dig(z )z
i=1

> mz" (D (2(t)) > %"@(z(t))"z

Putting those inequalities into (11) and using (10), we
have

V (z(t) < —2mlz@0)|” + 22" () AD(2(1))
+227 (O AT (2(t - 7)) - 202 [ (2 (1))
k (13)
+2a®" (2(t)) AD(Z(t)) + 2a®@" (z(t)) AW (z(t - 7))

+|i2(a + AP O - t- )

Noticing that

—mlz)” + 227 () AD(z(t))
2

\/Hz(t)—%Aq)(z(t)

+%q>T (z()) AT AD(z(t))

—mlz(®)|® + 227 @) AT (2(t - 7))
2

ﬁz(t)—iquJ(z(t—r)
m

Im

+%\1ﬂ (z(t—7)) (A7) A" (z(t-17))

2007 (z(t) A" (z(t - 7)) +Ii2a||\y(z(t ~0)|f

2
=—-a

Ilqz(z(t_f))—l(Af)%(Z(t))

+al?07 (z(1) AT (A7) D(z(t))

Rearranging terms in (19) and using above inequalities,
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we obtain
V (2(t) < %@T (2(0) AT AD(z(t))
+%\1ﬂ (z(t—7) (AT AW (z(t - 7))
2 %”@(z(t))"z +2a@" (2(8) AD(2(t))
+al?07 (z(t)) AT (AT)T O (z(t)) + Iiza"‘l’(z(t))"z
+ A O -7 A ee-o)f
< L (AT A2 + 2 A (AT)T AY)-
m m
[¥ @t~ 2N - 205 o)’
+2a®" (2(1)) AD(z(t))
+al?07 (2(t) AT (AT D (z(t)) + Iizoc”q!(z(t))"2
e A -7 Avee-o)f
Let 8= (12/m) Ay (A7) A7), we have

V(2(0) £ Clnas (AT 2)

1 A (AT A (2 ()]
- 20:%"(1)(2(0)"2 + 2207 (2(t) AD(2(t))
+al?®T (z(t)) AT (AT)T D(z(t)) + Ilzog"\y(z(t))"2

+2a®" (z(1)(AT)T W(z(1))
—2a®" (2(t))(A)T P (2(1))2a@T (2(1)) AD(z(1))

+al?®T (Z(t)) AT (AD)T - D(z(t)) + Ii205||\11(z(t))||2

+ AV - Al -0
(14)
Using the fact that

a?®7 (z(t)) AT (A7) @ (z(t))

— 220" (2(1))(A7)T W(z(1))
= a(I?®7 (z(t) A7 (A")T ©(z(t))

=207 (2(1))(A)" W (2(t)))

<afl(a) o(2(t) - o) - Iiza"LP(z(t))”z

<a

A -1 ool el el

We have from (14) that

Copyright © 2010 SciRes.
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V (20) % = U (A7) 12y (AT AT):

2
AT —1| -

o) - 20 oot -
oo ool + v el
+2a®7 (z())(A+ AT +IA+1AT)D(z(t))

< %(ﬂmax(A’ )+ 12 2 (AT A Y@ (2O
+ Za%”d)(z(t))uz + 21, (A+ 1A | (2 ()|

+ oA 1 o)’

< %(Amax(/v )12 (AT A0 O)

—a(Z%—ZIuZ(A+ A7) —[1a7 - |”2)||<1>(z(t))||2

(15)
Now we consider the following three cases.
1) O(z(t))=0 and z(t)=0.lt then follows from (15)

2
and 24, (A+IA7) + IA’—I“ <2(m/k) that the choice

Amax (AT A) + 12 A (A7)T AY)
2m T T 2
m(% "~ 24, (A+ 1A 1A -|H )

ensures that V (z(t)) is negative.
2) ®(z(t))=0 but z(t)=0. Then it follows from
(13) that

V (z(t) < —2mlz ()] + 22" () AP (2(t - 7))
+ @+ YO -|¥ae-n))
= —mlfz)|” + 22" @A™ (2(t - 7)) - m]z(®)|
+ @+ YO -[¥ae-o))

1

< Hqﬂ (z(t—2))(A")T A" (z(t - 7))

+ @+ AP )+ @+ Aloeo)f
<3 (@4 )= e (A AP

We recall that S =(1%/m)A, ((A")T A7) , which

obviously implies V (z(t)) <0 for this case.
3) z(t)=0 clearly,®(z(t)) =0 due the fact (10). In
this case, V (z(t)) is given by
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V (z() =
Iiz(a s AP EO -2t - o))

<(a+ AloE) - Iiz (a+ B ¥t - )
< -Iiz(a s eEt-0)f

Hence, V(z(t)) is negative if W(z(t—7))=0 and
V(z(t)) =0 if and only if it happens in the last case
where

z(t) = d(z(1)) = ¥ (z(t-7))=0

We recall that V(z(t)) is radially unbounded. Ac-
cording to [12] or [13] that the origin of (9) or equiva-
lently the equilibrium point x"of (1) is GAS.

The sufficient conditions (8) for DCNNs are direct
consequence of the general result proved above.

Theorem 4: In addition to assumptions (A1), (A2) and
(A3), we assume that all the activation f, and h, are

nondecreasing. Suppose that there exists a positive di-
agonal matrix P =diag(p,, p,,---, p,) such that the

matrix

PA+ATP +1>(PA")(PA") —2MK'P+1  (16)

is negative definite. Then for each ue®R", (1) has a
unique equilibrium point which is GAS.

Proof: We first prove the existence and uniqueness of
the equilibrium point by using Theorem 1.

Let C =diag(c,,c,,:--,c,) be a diagonal matrix with
¢ >m for all i=12,---,n. Since both K and P
are diagonally positive, the negative definiteness of the
matrix in (16) implies that the matrix

PA+ ATP +1°(PA")(PA")" —2CK P + 1

is also negative definite. By using positive semi defi-
niteness of the matrix XX™ +1—-(X +X"), we have
that the matrix

PA+ATP+12(PA" +(PAT)' )-2CK'P (17

is negative definite. In the other word, the matrix
—(A+IA" —CK™) is Lyapunov diagonally stable under

(16). Consequently, it is a P matrix. Then it follows
from [9] that for any diagonal matrix D such that

0<D<K, det(C—-(A+IA")D) =0 ; that is, the matrix
C—-(A+IA")D is nonsingular for the above choice of

C and D. This fact in turn means that any element in
V is nonsingular. Now the existence and uniqueness of
the equilibrium point follows from Theorem 1.

Next we prove the GAS of the equilibrium point, say

Copyright © 2010 SciRes.
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x*, of (1). Through the transformation as in the proof of
Theorem 3, we consider the GAS of the system (9) at the
origin. Define a Lyapunov function as [10] follows:

V() =z + Zai P, j @, (s)ds

Ha+ B [ @ (2ONe

=1t
with «, >0 ,being selected later on. It is easy to see

that V(z(-)) is positive except at the origin and it is

radially unbounded. Evaluating its time derivative along
the trajectory of (9), we obtain that

V(z(t) = 22" ©)(g(z(t) + x) g (X))
+227 (1) AD(z(t)) + 22" () A" W (z(t))
—2a®7 (z(1))P(g(z(t) +x")
+2a@" (2(t)) PAD(z(t))
+2a®" (z(t))PA ¥ (z(t - 7))

v @+ YO -

Using the Lebourg theorem of (12) and as of deriving
(13), we obtain

V(2(t) = —2mlz@)| + 227 (©) AD(2(1))
+227 () A" (z(t)) - 22D (z(t))PMK D (z(t))
+2a®7 (2(t))PAD(z(t))
+2a®" (2(t))PA"Y (2(t - 7))
ez e+ AUYEOI - ae-l)

Let B =(12/m) A ((A7)T A7), we obtain similarly
as of (22) that

V() = %(Amax ((A)T A+12 20 (A7) AT))

<[] +2a®T (2(t) PAD(2(1))
—a®" (z(1))(2PMK 1 = ) D(z(t))
+al?07 (2(t))PAT (PAT)T @ (z(t))
(AT A1 (AT A 2O
+a®" (2(t))(PA+ ATP +12PA" (PAT)T
—2PMK ™ + 1d(z(t))
Since the matrix in (16) is assumed to be negative
definite, we can prove that the origin is GAS of (9) by

following the very similar way of 1)-3) in the last part of
the proof of Theorem 3. This accomplishes our proof.
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5. lllustrative Examples

Example 1: Consider the following model:

X (t) = —g (% (1)) + Af (g (1)+ AT (t— 7)) +uy
X2(t) = =g (% (1) + Af ( (0)+ ATh (X (t — 7)) + Uy

Xa(t) = ~g (X (1)) + Af (X (1) + ATh(Xg(t —7)) + U

where g(x) = 0.3x, f(x) = 0.2x, h(x) = 0.1(x-sinx), obvi-
ously, g(x), f(x),h(x) satisfied the assumption (Al),
(A2) and (A3), we obtain

m=0.3, k=02, 1=01

02 -01 0
let A=| 01 03 -02
~02 01 02
01 1 02 0.1
AT=|-01 02 01 u=|0.2
02 -01 04 0.1

It is easy to check that the model satisfied the condi-
tion of Theorem 3. Using the Matlab, we have made
graphics of the solution as the time in the system with
initial conditions [-0.5 0.6 -0.8] and the delay 7 =0, as
follow: (Figure 1)

From the figure, we can easily see the system has a
unique equilibrium point, and is GAS.

Example 2: In order to demonstrate the validity of our
criterion of the Theorem 4, we consider a delayed neural
network in (5) with parameters as

02 01 04 01 1
A: AT = u=
o 02) (o 0] “|og

0.2 0.4
908 = (0.1:3 T = [0.4:]

h (x.) = O.2(xl—sin X1)
PPIT10.2(x, —sin xy)
obviously, (Al), (A2) and (A3) hold.
02 0 04 O
M = K= 1=0.1
[ 0 0.1} [ 0 0.4}

Using the Matlab LMI toolbox, we prove that the ma-

Copyright © 2010 SciRes.
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Figure 1. State trajectories of X, , X, ,X,.

trix inequality (17) is feasible. Also, we obtain the matrix
~ {1.169 o.ooo}

- 10.000 1.2765

6. Conclusions

In this paper, we present new conditions for the existence,
uniqueness, and GAS of the equilibrium point of DNNSs.
Our study is based on a thorough nonsmooth analysis on
functions defining DNNs. The general Theorem 1 on
existence and uniqueness of the equilibrium point is
proved easy to apply. This general result, allows us to
study sufficient conditions for GAS in which the spectral

properties of the matrix (A+1A") play an important

role. Advantages of our results are illustrated by exam-
ples and also given a graph of the GAS. It would be very
interesting to see how our approach can be used to study
conditions which do not enjoy symmetric properties.
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