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Abstract 
We study galaxy distributions with Sloan Digital Sky Survey SDSS DR14 data 
and with simulations searching for variables that can constrain neutrino 
masses. To be specific, we consider the scenario of three active neutrino ei-
genstates with approximately the same mass, so 3m mν ν=∑ . Fitting the pre-
dictions of the ΛCDM model to the Sachs-Wolfe effect, 8σ , the galaxy power 
spectrum ( )galP k , fluctuations of galaxy counts in spheres of radii ranging 

from 16/h to 128/h Mpc, Baryon Acoustic Oscillation (BAO) measurements, 
and 0.678 0.009h = ± , in various combinations, with free spectral index n, 
and free galaxy bias and galaxy bias slope, we obtain consistent measurements 
of mν∑ . The results depend on h, so we have presented confidence contours 

in the ( ),m hν∑  plane. A global fit with 0.678 0.009h = ±  obtains  

( ) ( )0.055
0.0280.719 0.312 stat systmν
+

−
= ±∑  eV, and the amplitude and spectral 

index of the power spectrum of linear density fluctuations ( )P k :  

( )2 102.09 0.33 10N −= ± × , and 1.021 0.075n = ± . The fit also returns the ga-

laxy bias b including its scale dependence. 
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1. Introduction 

We measure neutrino masses by comparing the predictions of the ΛCDM model 
with measurements of the power spectrum of linear density perturbations 
( )P k . We consider three measurements of ( )P k : 1) the Sachs-Wolfe effect of 

fluctuations of the Cosmic Microwave Background (CMB) which is a direct 
measurement of density fluctuations [1] [2]; 2) the relative mass fluctuations 8σ  
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in randomly placed spheres of radius 8sr h=  Mpc with gravitational lensing 
and studies of rich galaxy clusters [2] [3]; and 3) measurements of ( )P k  in-
ferred from galaxy clustering with the Sloan Digital Sky Survey [4] [5] [6]. Ba-
ryon Acoustic Oscillations (BAO) were considered separately [7] [8] and are not 
included in the present study, except for the final combinations. 

To be specific, we consider three active neutrino eigenstates with nearly the 
same mass, so 3m mν ν=∑ . This is a useful scenario to consider because the 
current limits on 2mν  are much larger than the mass-squared-differences 2m∆  
and 2

21m∆  obtained from neutrino oscillations [3]. 
Figures 1-4 illustrate the problem at hand. Figures 1-3 present measurements 

of the “reconstructed” galaxy power spectrum ( )galP k  obtained from the 
SDSS-III BOSS survey [4], while Figure 4 presents the corresponding “standard” 

( )galP k . The “reconstructed” ( )galP k  is obtained from the directly measured 
“standard” ( )galP k  by subtracting peculiar motions to obtain the power spec-
trum prior to non-linear clustering. Also shown are various fits to this data (with 
floating normalization), and to measurements of the Sachs-Wolfe effect, and 8σ . 
The Sachs-Wolfe effect normalizes ( )P k , within its uncertainty, in the ap-
proximate range of ( )( )1

10log Mpck h −  from −3.1 to −2.7, while 8σ  is most 
sensitive to the range −1.3 to −0.6. Full details will be given in the main body of 
this article. 

The fit in Figure 1 corresponds to the function  
 

 
Figure 1. Comparison of ( )galP k  obtained from the SDSS-III BOSS survey [4] (“recon-

structed”) with ( )2b P k  obtained from a fit of Equation (5) with 0mν =∑  eV to the 

Sachs-Wolfe effect, 8σ , and ( )galP k . The fit obtains 38738 MpcA = ,  
1

eq 0.068 Mpck h −= , 4.5η = , and 2 1.8b = , with 2 24.7χ =  for 19 degrees of freedom. 

Also shown for comparison is the curve with the same parameters, except 0.6mν =∑  

eV.  
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Figure 2. Same as Figure 1, except that the curve “ 0.6mν =∑  eV” is fit. We obtain 

39312 MpcA = , 1
eq 0.080 Mpck h −= , 4.2η = , and 1.8κ = , with 2 21.8χ =  for 19 

degrees of freedom. Note that mν∑  is largely degenerate with the remaining parame-

ters in Equation (5), unless we are able to constrain eqk .  

 

 
Figure 3. Comparison of ( )galP k  obtained from the SDSS-III BOSS survey [4] (“recon-

structed”) with ( )2b P k  obtained from a fit of Equation (6) to the Sachs-Wolfe effect, 

8σ , and ( )galP k . The fit obtains 0.014 0.079mν = ±∑  eV, ( )2 101.41 0.12 10N −= ± × , 

and 2 1.7 0.1b = ± , with 2 47χ =  for 20 degrees of freedom (so the statistical uncertain-
ties shown need to be multiplied by 47 20 ). Also shown is the fit with 0.6mν =∑  eV 

fixed for comparison.  
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Figure 4. Comparison of ( )galP k  obtained from the SDSS-III BOSS survey [4] (“stan-

dard”) with ( )2b P k  obtained from a fit of Equation (6) to the Sachs-Wolfe effect, 8σ , 

and ( )galP k . The fit obtains 0.163 0.061mν = ±∑  eV, ( )2 101.56 0.12 10N −= ± × , and 
2 2.2 0.2b = ± , with 2 33.9χ =  for 20 degrees of freedom (so the statistical uncertain-

ties shown need to be multiplied by 33.9 20 ). Also shown is the fit with 

0.6mν =∑  eV fixed for comparison.  

 

( ) ( )
( )

3 2
20

22

2π
,

1

na Aw
P k

w wη
′ ≡

+ +
                    (1) 

where eqw k k≡ . Unless otherwise noted, we take the Harrison-Zel’dovich in-
dex n = 1 which is close to observations. The parameters A, η , and eqk , as well 
as the normalization factor b2, are free in the fit. The uncertainties of two data 
points that fall on BAO peaks are multiplied by three (since BAO is not included 
in ( )P k′ ). 

Also shown in Figure 1 is the suppression of ( )P k  for k greater than  
1 2

1 2 1
nr 0.018 Mpc

1eVm
m

k hν − 
= ⋅Ω  

 

∑                (2) 

due to free-streaming of massive neutrinos that can not cluster on these small 
scales, and, more importantly, to the slower growth of structure with massive 
neutrinos [9]. The suppression factor for nrk k  for one massive neutrino, or 
three degenerate massive neutrinos, is  

( ) ( )
( ) 0, 1 8 ,

f

f

P k
f k m f

P k

ν

νν ν=≡ = −∑                (3) 

where mfν ν= Ω Ω  [9]. mΩ  is the total (dark plus baryonic plus neutrino) 
matter density today relative to the critical density, and includes the contribu-
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tion νΩ  of neutrinos that are non-relativistic today. 2 93.04h mν ν
−Ω = ∑  eV 

for three left-handed plus right-handed Majorana neutrino eigenstates, or three 
eigenstates of left-handed Dirac neutrinos plus three right-handed Dirac an-
ti-neutrinos, that are non-relativistic today (right-handed Dirac neutrinos and 
left-handed Dirac anti-neutrinos are assumed to not have reached thermal and 
chemical equilibrium with the Standard Model particles). We take 
( ), 1f k mν =∑  for nr 0.604k k< , and  

( )
0.494

nr, 1 0.407 1
0.6 eV 0.604

m kf k m
k

ν
ν

  = − −  
   

∑∑            (4) 

for nr 0.604k k>  and 1.1mν <∑  eV, for galaxy formation at a redshift 
0.5z =  [9]. 

Figure 2 is the same as Figure 1 except that the function  

( ) ( ) ( ),P k P k f k mν′= ∑                      (5) 

with 0.6mν =∑  eV is fit. We see that the parameter mν∑  is largely degene-
rate with the parameters A, η , and eqk , so that only a weak sensitivity to mν∑  
is obtained unless we are able to constrain eqk . The power spectrum ( )P k′  of 
Equation (1) neglects the growth of structure inside the horizon while radiation 
dominates. 

The fits in Figure 3 and Figure 4 make full use of the ΛCDM theory. The fit-
ted function is  

( ) ( ) ( ), ,P k P k f k mν′′= ∑                     (6) 

where ( )P k′′  is given by [2]:  

( )
( ) ( )3 2 2 2 1

eq SW
2 4

0

4 2π 2
,

25

n

m

N C k k k kP k
kH

τ −
 ′′ =  Ω  

            (7) 

with  

( )0
eq

2
.m

r

H
k νΩ −Ω

=
Ω

                     (8) 

C is a function of mΛΩ Ω , and we take 0.767C =  [2]. ( )eq2k kτ  is a func-
tion given in Reference [2]. The pivot point 1

SW 0.001 Mpck −=  is chosen to not 
upset Equation (41) below. The fit depends on h, mΩ , and the spectral index n, 
so we define ( )0.678 0.009h hδ ≡ −  [3], ( )0.281 0.003m mδΩ ≡ Ω −  [7], and 

( )1 0.038n nδ ≡ −  [3], and obtain, tentatively,  

( ) ( )0.005
0.007

0.014 0.162 0.807 0.142

0.079 47 20 stat syst eV,
mm h nν δ δ δ

+

−

= + ⋅ + ⋅ + ⋅ Ω

±

∑
         (9) 

by minimizing the 2χ  with respect to mν∑ , and 2N . The statistical uncer-
tainty has been multiplied by the square root of the 2χ  per degree of freedom. 
This result corresponds to the “reconstructed” data in Figure 3. The systematic 
uncertainties included are from the top-hat window function instead of the 
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gaussian window function, and an alternative value of 8σ  (details will be given 
in Section 3). Not included is the systematic uncertainty due to the possible scale 
dependence of the galaxy bias b. 

To obtain ( )P k , we would like to measure the density ( ), zρ r  at redshift z, 
but we only have information on the peaks of ( ), zρ r  that have gone 
non-linear collapsing into visible galaxies. How accurate is the measurement of 
( )P k  with galaxies? The measurement of ( )galP k  in Ref. [4] is based on a 

procedure described in [10] based on “the usual assumption that the galaxies 
form a Poisson sample [11] of the density field”. In other words, the assumption 
is that the number density of point galaxies ( )n x  is equal to its expected mean 
n  (which depends on the position dependent galaxy selection criteria), mod-
ulated by the perturbation of the density field:  

( ) ( ) ( )( )1 .c
n

b b
n

ρ
δ

ρ
= ≡ +

x x
x                  (10) 

Both sides of this equation are measured or calculated at the same length scale, 
and at the same time. The “galaxy bias” b is explicitly assumed to be scale inva-
riant. If we choose a region of space such that n  is constant, then the galaxy 
power spectrum ( )galP k  (derived from ( )n nx ) should be proportional, un-
der the above assumption, to the power spectrum of linear density perturbations 
( )P k  (derived from ( )cδ x ) up to corrections:  

( ) ( )2
gal .P k b P k=                        (11) 

It is due to this bias b that we have freed the normalization of the measured 
( )galP k  in the fits corresponding to Figures 1-4. 

In the following Sections we study galaxy distributions with SDSS DR14 data 
and with simulations, in order to understand their connection with the underly-
ing power spectrum of linear density fluctuations ( )P k . In the end we return to 
the measurement of neutrino masses. 

2. The Hierarchical Formation of Galaxies  

This Section allows a precise definition of ( )P k , and an understanding of the 
connection between ( )P k  and ( )galP k . We generate galaxies as follows (see 
[12] for full details). The evolution of the Universe in the homogeneous ap-
proximation is described by the Friedmann equation  

( )1
1 4 3 2

0 1 1 1 1

d1 1 .
d

m kra E a
H a t a a a Λ

Ω ΩΩ
≡ = + + +Ω             (12) 

The expansion parameter ( )1a t  has been normalized to 1 at the present time 

0t : ( )1 0 1a t = . 0H  has been normalized so ( )1 1E = . Therefore 0H  is the 
present Hubble expansion rate. With these normalizations we have 

1r m k ΛΩ +Ω +Ω +Ω ≡ . The matter density is ( ) 3
1m m ct aρ ρ= Ω , where 

( )2
03 8πc NH Gρ =  is the critical density of the Universe. We are interested in 

the period after the density of matter exceeds the density of radiation. For our 
simulations we assume flat space, i.e. 0kΩ = , we neglect the radiation density 
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rΩ , take 0.719ΛΩ =  constant [7], and the present Hubble expansion rate 
1 1

0 100 km s MpcH h − −= ⋅ ⋅  with 0.678h =  [3]. The solution to Equation (12) 
with these parameters is shown by the curve “ 1a ” in Figure 5. The present age 
of the universe with these parameters is 0 14.1t =  Gyr. 

Setting 0ΛΩ =  we obtain the critical universe with expansion parameter  
2 3

1 3 2 30
2

3
,

2 m
Ha t = Ω  

                      (13) 

also shown in Figure 5. We note that ( )2 0 20 0.846a t a≡ = . Let us now add den-
sity fluctuations to this critical universe and consider a density peak. The grow-
ing mode for this density peak is obtained by adding a negative kΩ  to the crit-
ical Universe. This prescription is exact if the density peak is spherically symme-
tric. An example with “expansion parameter” 4a  is presented in Figure 5. Note 
that 4a  grows to maximum expansion and then collapses to zero at time 

( )3 2
4 0π m kt H = Ω −Ω  , and, in our model [12], a galaxy forms. In the example 

of Figure 5 the galaxy forms at redshift 0.5z = . ( )3a t  is the linear approxi-
mation to ( )4a t . In the linear approximation for growing modes the density 
fluctuations relative to 2ρ  grow in proportion to ( )2a t :  

( )3 2 2 3
2

2 2

3
3 ,

5
k

c
m

a a a t
a

ρ ρ
δ

ρ
− − Ω

≡ = = −
Ω

               (14) 

while 1cδ  . At the time 4t , when the galaxy forms, ( )3 2 2 1.69cδ ρ ρ ρ≡ − =  
in the linear approximation (which has already broken down). 
 

 
Figure 5. Expansion parameters as a function of time t of four solutions of the Friedmann 
equation. From top to bottom, a1 corresponds to ( ) ( ), , 0.281, 0.719, 0m kΛΩ Ω Ω = , a2 

corresponds to ( )0.281,0,0 , a3 is the linear approximation to ( )0.281,0, 1.27− , while 

a4 is the exact solution to ( )0.281,0, 1.27− . a4 is the exact solution for the growing 

mode of a spherically symmetric density peak that collapses to a galaxy at t4. In all cases 
0.678h = .  
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In the linear approximation the density due to Fourier components of wave-
vector Ik≤k  is  

( ) ( ){ }lin 3
2

, , 1 , , ,m c
ct I t I

a
ρ

ρ δ
Ω

= +x x                  (15) 

where  

( ) ( ) ( )2
, 2

, , exp .
I

c
k k

t I a t i i
a t

δ δ ϕ
≤

 ⋅
= + 

  
∑ k k

k

k xx              (16) 

ϕk  are random phases. The sum of the Fourier series is over comoving wave-
vectors that satisfy periodic boundary conditions in a rectangular box of volume 

x y zV L L L= :  

ˆˆ ˆ2π ,
x y z

n m li j k
L L L

 
= + +  

 
k                     (17) 

where max 0xL n L= , max 0yL m L= , max 0zL l L= , , , 0, 1, 2, 3,n m l = ± ± ± ⋅⋅ ⋅ , and  

max
max

I
Ik k

I
=                            (18) 

where max 02πk L= , and max1,2, ,I I=  . 
Inverting Equation (16) obtains  

( )
( ) ( )* 3

2

,1e exp d ,ci
V

t
i

V a t
ϕ δ

δ δ δ−≡ = = − ⋅∫k
k k k

x
k X X         (19) 

where ( ) ( )2t a t≡X x  is the comoving coordinate in the linear approximation. 
The power spectrum of density fluctuations  

( ) 2 2
20P V aδ≡ kk                       (20) 

is defined in the linear approximation corresponding to 3a , and is approx-
imately independent of V for large V. Averaging over k  in a bin of k ≡ k  
obtains ( )P k . Note that  

( ) ( )22 2 3
20 0

1 1 , d .cV
P a t

V V
δ δ= =∑ ∑ ∫k

k k
k x X             (21) 

Each term in this equation is approximately independent of V. The Fourier 
transform of the power spectrum is the correlation function:  

( ) ( ) ( ) 3
0 0e , , d .i

c cV
P t tδ δ⋅ ′ ′ ′= +∑ ∫k X

k
k x x x X            (22) 

The generation of galaxies at time t proceeds as follows. We start with 2I = , 
calculate ( ), ,c t Iδ x , and search for local maximums of ( ), ,c t Iδ x  inside a 
comoving volume x y zL L L . If a maximum exceeds 1.69 we generate a galaxy of 
radius  

( ) 2π ,
I

aR I
k

≈                           (23) 

and dark plus baryonic plus neutrino mass  
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( ) ( )3

3
2

4π
2.69

3
m cR I

M I
a
ρΩ

≈                     (24) 

if it “fits”, i.e. if it does not overlap previously generated galaxies. I is increased 
by 1 unit to generate galaxies of a smaller generation, until maxI I=  is reached. 
See Figure 6. 

The peculiar velocity of the generated galaxies is  

( )
1

2
2

pec 2
, 2

2
, exp ,

3Ik k

i a
t i i

ak t
δ

ϕ
−<

 ⋅
= + 

 
∑ k

k
k

k k xv x             (25) 

and their peculiar displacement is  

pec pec
3 .
2

t=x v                           (26) 

pec+x x  is the proper coordinate of a galaxy at the time t of its generation, and 

( )2 2a a t≡ . The comoving coordinate of this galaxy, i.e. its position extrapolated 
to the present time, is the corresponding ( ) ( )pec 1a t+x x . pecx  causes the dif-
ference between the data points ( )galP k  in Figure 3 and Figure 4 at large k. 

Note in Figure 6 that the formation of galaxies is hierarchical: small galaxies 
form first, and, as time goes on, density perturbations grow, and groups of ga-
laxies coalesce into larger galaxies in an ongoing process until dark energy do-
minates and the hierarchical formation of galaxies comes to an end. The distri-
bution of galaxies of generation I depend only on ( )P k  for Ik k< . Also,  
 

 
Figure 6. The hierarchical formation of galaxies [12]. Three Fourier components of the 
density in the linear approximation are shown. Note that in the linear approximation 

( ) ( )3 2 2c a tδ ρ ρ ρ≡ − ∝ . When cδ  reaches 1.69 in the linear approximation the exact 

solution diverges and a galaxy forms. As time goes on, density perturbations grow, and 
groups of galaxies of one generation coalesce into larger galaxies of a new generation as 
shown on the right.  
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luminous galaxies occupy a total volume (luminous plus dark) less than 1/2.69 of 
space. 

Neutrinos with 0 1.17mν< <  eV become non-relativistic after the densities 
of radiation and matter become equal, as illustrated in Figure 7. 

3. Fluctuation Amplitude σ8  

8σ  is the root-mean-square fluctuation of total mass relative to the mean in 
randomly placed volumes of radius 18sr h−=  Mpc. We use a “gaussian window 
function”  

( )
2

2

1 exp ,
2W W

rW r
V r

 
= − 

 
                    (27) 

which smoothly defines a volume  

( )3 23 34 π 2π .
3W s WV r r≡ =                     (28) 

Note that  

( ) 2
0

4π d 1.W r r r
∞

=∫                       (29) 

The Fourier transform of ( )W r  is  

( ) ( ) ( )3 2 2e d exp 2 .i
WW k W r r k r− ⋅≡ = −∫ k r              (30) 

Then  
 

 
Figure 7. Example with 0.46mν =  eV for each of 3 active neutrino eigenstates. Neutri-
nos become non-relativistic at 0.00115aν ≈ . The matter density relative to the critical 
density is m νΩ −Ω  for a aν< , and mΩ  for a aν> . The densities of matter and radi-
ation become equal at eq 0.00036a = .  
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( )
( ) ( )2 2 2 2

8 3 0

1 4π d exp .
2π

Wk kP k k rσ
∞

= −∫             (31) 

An alternative window function is the “top hat” function ( ) ( )33 4π sf r r=  
for sr r< , and ( ) 0f r =  for sr r> . Then  

( )
( )

( ) ( )( )3

3 sin cos .s s s
s

f k kr kr kr
kr

= −              (32) 

Direct measurements obtain [3]  

( ) ( ) ( ) 0.47
8 0.813 0.013 stat 0.024 syst 0.25 .mσ −= ± ± Ω         (33) 

80% of 2
8σ  is due to k/h in the range 0.05 to 0.25 Mpc−1. For comparison, from 

the 6-parameter ΛCDM fit [3], 8 0.815 0.009σ = ± . 

4. The Sachs-Wolfe Effect 

The spherical harmonic expansion of the CMB temperature fluctuation is  

( ) ( ) ( )0, , , .lm lm
lm

T T T a Yθ φ θ φ θ φ∆ ≡ − =∑               (34) 

Averaging over m obtains 2
l lmC a≡ . The variable that is measured is [2]  

( ) ( ) ( )1 2 1 2
2 1ˆ ˆ ˆ ˆ .
4πl l

l

lT n T n C P n n+
∆ ∆ = ⋅∑              (35) 

For 7 20l< <  the dominant contribution to lC  is from the Sachs-Wolfe 
effect [1] [2] [3]. This range corresponds to 1 10.0007 Mpc 0.002 Mpck h− −< < . 
The Sachs-Wolfe effect relates temperature fluctuations of the CMB to perturba-
tions of the gravitational potential φ  [2]:  

( ) ( )
0 SW

ˆ 1 ˆ .
3

T n
n

T
δφ

∆ 
= 

 
                      (36) 

When expressed as a function of comoving coordinates, ( )δφ X  is independent 
of time when matter dominates. The primordial power spectrum of gravitational 
potential fluctuations is assumed to have the form [2]  

( ) 2 4.nP k N kφ φ
−=                           (37) 

The relation between 2Nφ  and 2N  is 2 29 25N Nφ =  [2]. In the present 
analysis, unless otherwise stated, we assume the Harrison-Zel’dovich power 
spectrum with n = 1, which is close to observations [3]. For 7 20l  , [2]  

( )
224π ,

5 1l
QC

l l
=

+
                          (38) 

where the “quadrupole moment” Q is measured to be  

18.0 1.4 KQ = ± µ                         (39) 

from the 1996 COBE results (see list of references in [2]). Then, for ( )P k′ ,  

( )
4 2

4 4
2 2

eq 0 0

1 12 16 3 10 Mpc ,
5πm

A c Q
k H T

 
= = ± × 
Ω  

              (40) 
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and for ( )P k′′ ,  

( )
2

2 10
2

0

15 2.08 0.33 10 ,
π

QN
T

−= = ± ×                   (41) 

independently of mν∑ . Detailed integration obtains results within 10% for 
5 18l< < . 

5. Data and Simulations  

The data are obtained from the publicly available SDSS DR14 catalog [5] [6], see 
acknowledgement. We consider objects classified as GALAXY, with redshift z in 
the range 0.4 to 0.6, with redshift error zErr 0.002< , passing quality selection 
flags. We further select galaxies in the northern galactic cap, in a “rectangular” 
volume with 400xL =  Mpc along the line of sight (corresponding to redshift 

0.5 0.046z ≈ ± ), 3800yL =  Mpc (corresponding to an angle 860 across the sky), 
and 1400zL =  Mpc (corresponding to an angle 320). In total 222470 galaxies 
pass these selections. The distributions of these galaxies are shown in Figure 8. 

Unless otherwise specified, the simulations have 700x y zL L L= = =  Mpc, 

max 59I = , 0.678h = , 0.719ΛΩ = , 0.281mΩ = , 0kΩ = , and the input power 
spectrum of density fluctuations is (5) with 9200A =  Mpc3, eq 0.067k h =  
Mpc−1, 4.7η = , and 0mν =∑  eV. We generate galaxies at redshift 

1
1 1 0.5z a−= − = , corresponding to 8.9t =  Gyr, and ( )2 0.62a t = . This refer-

ence simulation has 34,444 galaxies, which is near the limit we can generate with 
available computing resources. 
 

 
Figure 8. Distributions of 222470 SDSS DR14 galaxies in a “rectangular” box of dimen-
sions 400xL =  Mpc along the line of sight (corresponding to redshift 0.5 0.046z = ± ), 

3800yL =  Mpc (corresponding to an angle 860 across the sky), and 1400zL =  Mpc 

(corresponding to an angle 320).  
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Some definitions are in order. For data we define the absolute red magnitude 
of a galaxy MAGr at redshift z as the SDSS DR14 variable -modelMag_r cor-
rected to the reference redshift 0.35. Similarly, we define the absolute green 
magnitude of a galaxy MAGg at redshift z as the SDSS DR14 variable -modelMag_g 
corrected to the reference redshift 0.35. For a simulated galaxy we define the ab-
solute magnitude MAG ( )16

1019 2.5log 10M M≡ − +


, where M is defined by 
Equation (24). Note that MAGr and MAGg are derived from observed luminosi-
ties, while MAG is derived from the total (baryonic plus dark plus neutrino) 
mass of the simulation. These quantities can only be compared if the luminosi-
ty-to-mass ratio is known. 

The number of galaxies per unit volume depends on the limiting magnitude of 
the survey, or on maxI  of the simulation. 

6. Distributions of Galaxies in SDSS DR14 Data and in  
Simulation 

We would like to obtain ( )P k  from Equation (19) and Equation (20). Unfor-
tunately we do not have access to the relative density fluctuation ( ),c tδ x . In-
stead we have access to the positions of galaxies and their luminosities. The rela-
tion between luminosity and mass of galaxies depends on many variables and is 
largely unknown, so we focus on the information contained in the positions of 
galaxies. 

Let  

( ) 1 ein n ′⋅
′

′

 = + ∆ 
 

∑ k X
k

k
X                     (42) 

be the number density of point galaxies at redshift z as a function of the comov-
ing coordinate ( ) ( )t a t≡X x . We have applied periodic boundary conditions 
in a comoving volume x y zV L L L= , so ′k  has the discrete values of Equation 
(17). ( )n X  is real, so *

′ ′−∆ = ∆k k . The number of galaxies in V is galN nV= . 
To invert Equation (42), we multiply it by ( )exp i− ⋅k X , integrate over V, and 
obtain a sum over galaxies j:  

1/ 2= .
i ij

gal gal
j

e N N e ϕ− ⋅
∆ +∑

k X
k                  (43) 

The first term on the right hand side of Equation (43) is the result of a cohe-
rent sum of galN N≡ ∆k k  terms corresponding to mode k . The second term is 
the result of an incoherent sum which we have approximated to 1 2

gal e
iN φ , where 

the phase φ  is arbitrary. We define the “galaxy power spectrum”  

( ) 2
gal ,P V≡ ∆kk                         (44) 

and obtain  

( ) ( )
2

gal gal
gal gal gal

1 2e .ji

j

V VP V P k
N N N

− ⋅= − ±∑ k Xk           (45) 

The transition between signal and noise occurs at  
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( )( )3 3
10 gallog Mpc 3.47P k h− ≈  for our data sample, and ≈3.49 for our reference 

simulation. To test these ideas we can select a narrow range of MAGr, MAGg, or 
MAG to shift the noise upwards, compare Figures 9-11 (which plot the first 
term on the right hand side of Equation (45) and include the noise at large k). 

Averaging over k  in a bin of k ≡ k  obtains ( )galP k . The factor V is in-
serted so that ( )galP k  becomes independent of the arbitrary choice of V for 
large V. The function ( )galP k  defines statistically the distribution of galaxies. 
The variables k  in Equation (16) and Equation (45) should not be confused: 
there is not necessarily a one-to-one relation between them. 

Results for data are presented in Figures 9-11. We note that the galaxy bias b 
depends on MAGr and MAGg. Even tho galN Nk

, 1 2
galN N>k  at small k. For 

this reason ( )galP k  in Figure 9 extends to higher k than in Figure 10 and Fig-
ure 11 before saturating with noise. Figure 12 presents the noise subtracted ga-
laxy power spectrum ( )galP k , obtained from Figure 9, compared with ( )P k  
calculated with the indicated parameters. Their ratio is the bias b2. 

Results for the simulations are presented in Figures 13-15. In Figure 15 we 
compare the reference simulation with ( )P k′ , with simulations with 

( ) ( )( )1
10log MpcP k k h −′ ⋅ −  (“steeper slope”), or ( ) ( )( )1

10log MpcP k k h −′ −  
(“less slope”). Note that the function ( )1

10log Mpck h −−  varies between ≈1.3 to 
≈0.5 in the region of interest. We observe, qualitatively, that the slope of ( )P k  
has a larger effect on ( )galP k  than the amplitude A. A comparison of the  
 

 
Figure 9. Galaxy power spectrum (plus noise visible at large k) from SDSS DR14 data in a 
volume 3400 3800 1400 MpcV = × × , at redshift 0.5 0.0457z = ± . The fit is  

( )1.233.60 0.92 0.2y x= + ⋅ −  with 2 26.8χ =  for 29 degrees of freedom, where x and y 

are the axis in this figure.  
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Figure 10. Galaxy power spectrum (plus noise visible at large k) in bins of MAGr from 
SDSS DR14 galaxies with redshift 0.5 0.0457z = ± .  
 

 
Figure 11. Galaxy power spectrum (plus noise visible at large k) in bins of MAGg from 
SDSS DR14 galaxies with redshift 0.5 0.0457z = ± .  
 

 
Figure 12. Noise subtracted galaxy power spectrum ( )galP k , obtained from Figure 9, 

compared with ( )P k  calculated with the indicated parameters. Their ratio is b2.  
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Figure 13. Galaxy power spectrum (plus noise visible at large k) from simulations with 
three amplitudes A. All other parameters of the simulation are given in Section 5.  
 

 
Figure 14. Galaxy power spectrum (plus noise visible at large k) from simulations with 

1.35mν =∑  eV, with three amplitudes A. Other parameters are 4.4η = , and 
1

eq 0.14 Mpck h −= .  

 
simulations in Figure 15 with ( )galP k  from data in Figure 9 favors a power 
spectrum ( )P k  “steeper” than in the reference simulation. The reference si-
mulation has parameters of ( )P k  similar to the ones obtained from the fit in 
Figure 1 which assumes scale invariant b, and 0mν =∑  eV. The reference si-
mulation is also similar to the fit “ 0.014mν =∑  eV” in Figure 12 (taken from 
Figure 3 which assumes scale invariant b). A steeper ( )P k  implies 0mν >∑  
as shown in Figure 12 by the curve “ 0.719mν =∑  eV”, and corresponds to a 
bias b with positive slope as in Equation (55) below. 
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Figure 15. Galaxy power spectrum (plus noise visible at large k) of the reference simula-
tion, a simulation with ( )P k  with steeper slope ( ( )P k  of Equation (1) is multiplied by 

( )1
10log Mpck h −− ), and a simulation with less slope ( ( )P k  of Equation (1) is divided 

by ( )1
10log Mpck h −− ).  

7. Luminosity and Mass Distributions of Galaxies 

Distributions of MAGr and MAGg from data, and MAG from several simula-
tions are presented in Figure 16 and Figure 17. From these figures it is possible 
to obtain the “mean” luminosity-to-mass ratios. We note that these figures do 
not show useful sensitivity to mν∑ . 

8. Test of Scale Invariance of the Galaxy Bias b 

In this Section we test the scale invariance of the bias b defined in Equation (11). 
To do so, we count galaxies in an array of s x yN N N= ×  spheres of radii sr , 
and obtain their mean N , and their root-mean-square (rms). All spheres have 
their center at redshift 0.5z =  to ensure the homogeneity of the galaxy selec-
tions. The results for 8 ,16 ,32 ,64 ,128sr h h h h h= , and 256/h Mpc are pre-
sented in Table 1. The (rms)2 has a contribution 2σ  from ( )P k , and a con-
tribution N  from statistical fluctuations:  

2 2rms 2 .
s

NN
N

σ σ= − ±                       (46) 

We compare Nσ  obtained from galaxy counts, with the relative mass fluc-
tuations 

shrσ  obtained from Equation (6) and Equation (31). The ratio of these 
two quantities divided by a correction factor  

( )( )( ) ( )( )( )31 1 0.779m mC z C zΛ ΛΩ Ω + Ω Ω + =  

[2] is the bias b. 
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Figure 16. Distributions of MAGr and MAGg of SDSS DR14 data, and distributions of 
MAG of several simulations (see definitions in Section 5). The difference between the 
MAGr or MAGg of data and MAG of simulations determines the “mean” galaxy L/M ra-
tio.  
 

 
Figure 17. Same as Figure 16 with additional simulations.  

 
The measured bias b is a function of sr , mν∑ , h and the spectral index n. 

Results for 0.678h =  and 1n =  are presented in Table 1. The last column is 
the 2χ  of the five b’s of spheres with 1N > , assuming these b’s are scale inva-
riant with respect to their weighted average. Additional measurements of 2χ  
are presented in Figure 18. Assuming that b is scale invariant we obtain  

0.939 0.035 0.089 0.008 eV,m h nν δ δ= + ⋅ + ⋅ ±∑            (47) 

with minimum 2 3.2χ =  for four degrees of freedom. We have defined 
( )0.678 0.009h hδ ≡ − , and ( )1 0.038n nδ ≡ − . 
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Table 1. Mean galaxy counts N  in spheres of radius sr . All spheres have their center at redshift 0.5z = . The number of 
spheres is s y zN N N= × . Note that the observed root-mean-square (rms) fluctuation relative to the mean N  is larger than the 

corresponding statistical fluctuation, i.e. rms 1N N> . 
shrσ  is calculated with Equation (6) and Equation (31) with N2 chosen 

so 8 0.770σ =  to set the scale for b (e.g. 2 100.8472 10N −= ×  for 0mν =∑  eV, or 2 101.3575 10N −= ×  for 0.6mν =∑  eV). 

Both the galaxy counts and 
shrσ  are obtained with the top-hat window function. The true standard deviation is obtained from 

2 2rms 2 sN N Nσ σ= − ± . The measured “bias” is defined as ( ) ( )0.779
shrb Nσ σ≡ ⋅ . The last column is the 2χ  of the five 

b’s of spheres with 1N > , assuming these b’s are scale invariant. 0.678h = , 1.0n = , and 0.281mΩ = . 

shr  [Mpc] 8 16 32 64 128 256  

sr  [Mpc] 11.80 23.60 47.20 94.40 188.79 377.58  

y zN N×  151 55×  75 27×  37 13×  19 7×  9 3×  4 1×   

N  0.836 6.781 52.279 410.74 3092.3 21810.0  

1 N  1.0935 0.3840 0.1383 0.0493 0.0180 0.0068  

rms N  1.798 0.873 0.443 0.210 0.0870 0.0346  

Nσ  1.427 0.012±  0.784 0.009±  0.421 0.006±  0.204 0.004±  0.085 0.003±  0.034 0.003±   

, 0.0 eV
shr mνσ =∑  0.7700 0.4457 0.2255 0.0987 0.0374 0.0124 2χ  

, 0.0 eVb mν =∑  2.380 0.020±  2.257 0.025±  2.398 0.036±  2.650 0.056±  2.925 0.119±  3.503 0.349±  79.2 

, 0.3 eV
shr mνσ =∑  0.7700 0.4514 0.2321 0.1036 0.0402 0.0136  

, 0.3 eVb mν =∑  2.380 0.020±  2.228 0.024±  2.329 0.035±  2.523 0.053±  2.722 0.111±  3.193 0.318±  49.5 

, 0.6 eV
shr mνσ =∑  0.7700 0.4603 0.2425 0.1113 0.0443 0.0152  

, 0.6 eVb mν =∑  2.380 0.020±  2.185 0.024±  2.230 0.033±  2.350 0.049±  2.468 0.100±  2.862 0.285±  20.0 

, 0.7 eV
shr mνσ =∑  0.7700 0.4640 0.2468 0.1144 0.0460 0.0158  

, 0.7 eVb mν =∑  2.380 0.020±  2.168 0.024±  2.191 0.033±  2.285 0.048±  2.379 0.097±  2.755 0.275±  12.6 

, 0.8 eV
shr mνσ =∑  0.7700 0.4682 0.2516 0.1179 0.0478 0.0165  

, 0.8 eVb mν =∑  2.380 0.020±  2.148 0.023±  2.149 0.032±  2.218 0.047±  2.289 0.093±  2.648 0.264±  7.1 

, 0.9 eV
shr mνσ =∑  0.7700 0.4729 0.2570 0.1218 0.0497 0.0171  

, 0.9 eVb mν =∑  2.380 0.020±  2.127 0.023±  2.104 0.032±  2.147 0.045±  2.198 0.089±  2.541 0.253±  4.0 

, 1.0 eV
shr mνσ =∑  0.7700 0.4782 0.2630 0.1261 0.0519 0.0179  

, 1.0 eVb mν =∑  2.380 0.020±  2.103 0.023±  2.056 0.031±  2.073 0.044±  2.107 0.086±  2.434 0.243±  3.8 

, 1.2 eV
shr mνσ =∑  0.7700 0.4911 0.2775 0.1363 0.0568 0.0196  

, 1.2 eVb mν =∑  2.380 0.020±  2.048 0.022±  1.948 0.029±  1.919 0.040±  1.923 0.078±  2.220 0.221±  13.7 

 

In conclusion, the galaxy bias b is scale invariant within the statistical uncer-
tainties of b presented in Table 1, provided mν∑  satisfies Equation (47), else 
scale invariance is broken. Note in Table 1 that the variation of b with scale de-
pends on mν∑ . 

9. Measurement of Neutrino Masses with the Sachs-Wolfe  
Effect and σ8  

We return to the measurement of neutrino masses. Since the galaxy bias b may 
be scale dependent, in this Section we exclude measurements of ( )galP k  with 
galaxies. 
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Figure 18. 2χ  of five measurements of bias b assumed to be scale invariant with respect 
to their weighted mean as a function of mν∑ , for several values of the Hubble parameter 

h, and the spectral index n. The five measurements of b correspond to scales 
16 ,32 , 64 ,128sr h h h h= , and 256/h Mpc.  

 
The ΛCDM model is described by Equation (6) that has three free parameters: 

N2, n, and mν∑ . We keep n fixed. We vary the two parameters N2 and mν∑  
to minimize a 2χ  with two terms corresponding to two observables: the 
Sachs-Wolfe effect (N2 from Equation (41)), and 8σ  given by Equation (33). 
We therefore have zero degrees of freedom. The result is a function of h, mΩ , 
and the spectral index n, so we define ( )0.678 0.009h hδ ≡ −  [3], 

( )0.281 0.003m mδΩ ≡ Ω −  [7], and ( )1 0.038n nδ ≡ −  [3], and obtain  

( ) ( )0.484
0.152

0.595 0.047 0.226 0.022

0.225 stat syst eV.
mm h nν δ δ δ

+

−

= + ⋅ + ⋅ + ⋅ Ω

±

∑
         (48) 

Note that in the “6 parameter ΛCDM fit” [3], which assumes 0.06mν =∑  
eV, 0.968 0.006n = ± . Here, and below, the systematic uncertainties are ob-
tained by repeating the fits with the top-hat window function instead of the 
gaussian window function for 8σ  (and for Nσ  if applicable), and also with 

8 0.815 0.009σ = ±  obtained with the “6 parameter ΛCDM fit” [3], instead of 

8σ  from direct measurements, Equation (33). 
The fit of Equation (48) is compared with measurements of ( )galP k  obtained 

from the SDSS-III BOSS survey [4] in Figure 19. It is interesting to note that the 
discrepancy, i.e. the drop of ( )P k  in the range ( )101.6 log Mpc 1.3k h− < < − , 
is also observed in Figure 12. 

For comparison, reference [8] obtains 0.282 0.003mΩ = ±  and 

0.711 0.335 0.050 0.063 eV,m h bν δ δ= − ⋅ + ⋅ ±∑           (49) 
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Figure 19. Comparison of ( )galP k  obtained from the SDSS-III BOSS survey [4] (“re-

constructed”) with ( )2b P k  obtained from a fit of Equation (6) to the Sachs-Wolfe effect 

and 8σ  only. The fit obtains 0.595 0.225mν = ±∑  eV with zero degrees of freedom. 

0.678h =  and 1.0n =  are fixed.  
 
where ( )2 0.02226 0.00023bb hδ ≡ Ω − , from a study of BAO with SDSS DR13 
galaxies. We allow 2

bhΩ  to vary by one standard deviation, i.e. 0 1bδ = ±  [7]. 
To combine the independent measurements (48) and (49) we add one more 
term to the 2χ  corresponding to the measurement (49), so we now have one 
degree of freedom. We obtain  

( ) ( )0.055
0.029

0.696 0.281 0.032 0.003

0.075 stat syst eV,
mm h nν δ δ δ

+

−

= − ⋅ + ⋅ + ⋅ Ω

±

∑
          (50) 

with 2 0.25χ =  for one degree of freedom, so the two independent measure-
ments of mν∑ , Equation (48) and Equation (49), are consistent. Note that the 
uncertainty of h dominates the uncertainty of mν∑  in Equation (50). 

We now free h and add one term to the 2χ  corresponding to  
0.0678 0.009h = ±  [3], and obtain  

( ) ( )0.064
0.0430.633 0.168 stat syst eV,mν
+

−
= ±∑                (51) 

( )0.680 0.005 stat ,h = ±                      (52) 

with 2 0.07χ =  for one degree of freedom. The systematic uncertainties in Eq-
uation (51) now include nδ . The 1σ, 2σ, and 3σ contours are presented in Fig-
ure 20. 

If instead we set 0.72 0.03h = ±  from the direct measurement of the Hubble 
expansion rate [3], we obtain  

( ) ( )0.064
0.0430.563 0.207 stat syst eV,mν
+

−
= ±∑                (53) 
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Figure 20. Contours corresponding to 1, 2, and 3 standard deviations in the ( ),m hν∑  

plane, from Sachs-Wolfe, 8σ , 0.678 0.009h = ± , and BAO measurements. Points on 

the contours have 2 2
min 1, 4χ χ− = , and 9, respectively, where 2χ  has been minimized 

with respect to N2. The total uncertainty of mν∑  is dominated by the uncertainty of h. 

In this figure n = 1, and the systematic uncertainties, presented in Equation (51), are not 
included.  
 

( )0.682 0.006 stat ,h = ±                       (54) 

with 2 1.7χ =  for 1 degree of freedom. The corresponding 1σ, 2σ, and 3σ con-
tours are presented in Figure 21. Note that the fitted h does not change signifi-
cantly. 

10. Measurement of Neutrino Masses with the Sachs-Wolfe  
Effect, σ8, and Pgal(k)  

We repeat the fit of Figure 3, which includes the “reconstructed” SDSS-III BOSS 
( )galP k  measurements [4], but this time we allow the galaxy bias b to depend on 

scale: ( )1
0 1 10log Mpcb b b k h −≡ + . Minimizing the 2χ  with respect to mν∑ , 

N2, n, 0.678 0.009h = ± , 0b , and 1b , we obtain  

0.80 0.23 eV,mν = ±∑  

( )2 101.88 0.39 10 ,N −= ± ×  

1.064 0.068,n = ±  

0.676 0.011,h = ±  

0 2.35 0.36,b = ±  

1 0.229 0.094,b = ±                       (55) 

with 2 27.8χ =  for 18 degrees of freedom. The uncertainties have been multip-
lied by 27.8 18 . Confidence contours are presented in Figure 22. Fixing  
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Figure 21. Same as Figure 20 but 0.72 0.03h = ± .  

 

 
Figure 22. Contours corresponding to 1, 2, and 3 standard deviations in the ( ),m hν∑  

plane, from Sachs-Wolfe, 8σ , 0.678 0.009h = ± , and ( )galP k  measurements. Points 

on the contours have 2 2
min 1, 4χ χ− = , and 9, respectively, where 2χ  has been mini-

mized with respect to N2, n, 0b , and 1b .  

 

1 0b =  obtains 
2 36.3χ = , so including the scale dependence of b is necessary. 

11. Measurement of Neutrino Masses with the Sachs-Wolfe  
Effect, σ8, and Galaxy Fluctuations 

We repeat the measurements of mν∑  of Section 9 but add 4 more experimen-
tal constraints: Nσ  of galaxy counts in spheres of radius  
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16 ,32 ,64sr h h h= , and 128/h Mpc, which are listed in Table 1. Spheres of ra-
dius 8/h Mpc were not considered because they have 1N < . Spheres of radius 
256/h Mpc were excluded because there are only 4 spheres of this radius, and the 
difference between the rms for the top-hat and gaussian window functions turns 
out to be large (while consistent results are obtained for the other radii). We add 
two more parameters to be fit: 0b  and sb  which define the bias 0 s sb b i b= − , 
with 0,1, 2,3si =  for 16 ,32 ,64sr h h h= , and 128/h Mpc, respectively. Note 
that we do not obtain a good fit with fixed bias 0b b= , and so have introduced a 
“bias slope” sb . 

From the Sachs-Wolfe effect, 8σ , and the 4 Nσ  measurements we obtain  

( ) ( )0.420
0.139

0.618 0.042 0.206 0.019

0.209 stat syst eV,
mm h nν δ δ δ

+

−

= + ⋅ + ⋅ + ⋅ Ω

±

∑
         (56) 

with 2 1.10χ =  for 2 degrees of freedom. The variables that minimize the 2χ  
are mν∑ , 2N , 0b , and sb . This result may be compared with (48). 

Freeing 0.678 0.009h = ± , and keeping 1.0n =  fixed, we obtain  

0.618 0.214 eV,mν = ±∑  

( )2 102.11 0.31 10 ,N −= ± ×  

0.678 0.009,h = ±  

0 1.756 0.057,b = ±  

0.062 0.042,sb = − ±                      (57) 

with 2 1.10χ =  for 2 degrees of freedom. 
Combining with the BAO measurement (49) we obtain  

( ) ( )0.055
0.028

0.697 0.276 0.032 0.003

0.075 stat syst eV,
mm h nν δ δ δ

+

−

= − ⋅ + ⋅ + ⋅ Ω

±

∑
        (58) 

with 2 1.29χ =  for 3 degrees of freedom. The variables that minimize the 2χ  
are mν∑ , 2N , 0b , and sb . Freeing 0.678 0.009h = ± , and keeping 1.0n =  
fixed, we obtain  

0.644 0.162 eV,mν = ±∑  

( )2 102.13 0.28 10 ,N −= ± ×  

0.680 0.005,h = ±  

0 1.756 0.057,b = ±  

0.058 0.036,sb = − ±                      (59) 

with 2 1.14χ =  for 3 degrees of freedom. 
Finally, freeing n, and minimizing the 2χ  with respect to mν∑ , N2, n, 

0.678 0.009h = ± , 0b , and sb , we obtain  

( ) ( )0.055
0.0280.719 0.312 stat syst eV,mν
+

−
= ±∑  
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( )2 102.09 0.33 10 ,N −= ± ×  

1.021 0.075,n = ±  

0.678 0.008,h = ±  

0 1.751 0.060,b = ±  

0.053 0.041,sb = − ±                       (60) 

with 2 1.1χ =  for 2 degrees of freedom. The parameter correlation coefficients, 
defined in [3], are  
 

 mν∑  N2 n h b0 bs 

mν∑  1.000 −0.019 0.856 −0.966 −0.226 0.779 

N2 −0.019 1.000 −0.491 0.018 −0.155 0.428 

n 0.856 −0.491 1.000 −0.834 −0.303 0.427 

h −0.966 0.018 −0.834 1.000 0.219 −0.755 

b0 −0.226 −0.155 −0.303 0.219 1.000 −0.037 

bs 0.779 0.428 0.427 −0.755 −0.037 1.000 

 
Note that we have measured the amplitude N2 and spectral index n of ( )P k , 

and the bias 0b  including its slope sb  for the SDSS DR14 galaxy selections at 
redshift z = 0.5. 1, 2, 3, and 4 standard deviation contours are presented in Fig-
ure 23. 
 

 
Figure 23. Contours corresponding to 1, 2, 3, and 4 standard deviations in the ( ),m hν∑  

plane, from Sachs-Wolfe, 8σ , 4 Nσ , BAO, and 0.678 0.009h = ±  measurements. 

Points on the contours have 2 2
min 1, 4,9χ χ− = , and 16, respectively, where 2χ  has been 

minimized with respect to N2, n, 0b , and sb . The total uncertainty of mν∑  is domi-

nated by the uncertainty of h. In this figure the systematic uncertainties, presented in Eq-
uation (60), are not included.  
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Figure 23 and Equation (60) are our final results. 

12. Conclusions 

We have studied galaxy distributions with Sloan Digital Sky Survey SDSS DR14 
data and with simulations searching for variables that can constrain neutrino 
masses. Fitting the predictions of the ΛCDM model to the Sachs-Wolfe effect, 

8σ , ( )galP k , fluctuations of galaxy counts in spheres of radii ranging from 16/h 
to 128/h Mpc, BAO measurements, and 0.678 0.009h = ± , in various combina-
tions, with free spectral index n, and free galaxy bias and galaxy bias slope, we 
obtain consistent measurements of mν∑ . The uncertainty of mν∑  is domi-
nated by the uncertainty of h, so we have presented confidence contours in the 
( ),m hν∑  plane. 

Fitting the predictions of the ΛCDM model to the Sachs-Wolfe effect and 8σ  
we obtain (48). Fitting the predictions of the ΛCDM model to the Sachs-Wolfe 
effect, 8σ , and galaxy number fluctuations Nσ  in spheres of radius 

16 ,32 ,64sr h h h= , and 128/h, we obtain (56). These results are consistent 
with the measurement (49) with BAO. Combining these last two independent 
measurements we obtain  

( ) ( )0.055
0.028

0.697 0.276 0.032 0.003

0.075 stat syst eV.
mm h nν δ δ δ

+

−

= − ⋅ + ⋅ + ⋅ Ω

±

∑
        (61) 

Note that the uncertainty of mν∑  is dominated by the uncertainty of h. A 
global fit with 0.678 0.009h = ±  obtains ( ) ( )0.055

0.0280.719 0.312 stat systmν
+

−
= ±∑  

eV, 0.678 0.008h = ± , and the amplitude and spectral index of ( )P k : 
( )2 102.09 0.33 10N −= ± × , and 1.021 0.075n = ± . The fit also returns the galaxy 

bias b including its scale dependence. 
Figure 23 and Equation (60) are our final results. These results follow from 

the data analyzed and the assumptions of the validity of the ΛCDM model and 
0.678 0.009h = ± . The measured mν∑  is anticorrelated with h. All steps in 

this analysis have been fully described. 
Note added in proof: Let us comment on Equations (49) and (56). Equation 

(49) is mainly determined by the precise measurement of the sound horizon an-
gle MCθ  by the Planck experiment, and by the assumption that the BAO wave 
stalls at redshift *= = 1089.9 0.4z z ± . Equation (49) tells us that ( ),m hν∑  lies 
on the diagonal shown in Figure 23 (with some uncertainty from 2

bhΩ ). Equa-
tion (56) is a constraint mainly between mν∑  and n with large uncertainties. 
To determine mν∑  we need as input a value for h (or a value for n). In this ar-
ticle we have taken = 0.678 0.009h ±  from [3]. If = 0.678 0.009h ±  we obtain 

= 0.719 0.312mν ±∑  eV, and = 1.021 0.075n ± . If however = 0.688 0.009h ±  
we obtain = 0.412 0.328mν ±∑  eV, and = 0.960 0.073n ± . And if 0.697h ≈ , 
we obtain 0mν ≈∑  eV. Alternatively, if we fix = 1.0n , then  

= 0.681 0.005h ±  and = 0.619 0.182mν ±∑  eV. Or if we fix = 0.968n  [3], 
then = 0.684 0.005h ±  and = 0.486 0.183mν ±∑  eV. At the Guadeloupe 2018 
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Conference, Adam Riess, representing the SH0ES Team, presented the latest di-
rect measurement of the expansion parameter: = 0.7353 0.0162h ± , which cor-
responds to negative mν∑ ! The solution may come from an unexpected direc-
tion: gravitational waves from merging black holes are a “standard siren”. The 
single black hole merger GW170817 already obtains 0.12

0.08= 0.70h +
− , see the talk by 

Archil Kobakhidze! 
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