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Abstract 
We analyse the possibility that the observed cosmological redshift may be 
cumulatively due to the expansion of the universe and the tired light pheno-
menon. Since the source of both the redshifts is the same, they both indepen-
dently relate to the same proper distance of the light source. Using this ap-
proach we have developed a hybrid model combining the Einstein de Sitter 
model and the tired light model that yields a slightly better fit to Supernovae 
Ia redshift data using one parameter than the standard ΛCDM model with 
two parameters. We have shown that the ratio of tired light component to the 
Einstein de Sitter component of redshift has evolved from 2.5 in the past, 
corresponding to redshift 1000, to its present value of 1.5. The hybrid model 

yields Hubble constant ( ) 1 1
0 69.11 0.53 km s MpcH − −= ± ⋅ ⋅  and the decelera-

tion parameter 0 0.4q = − . The component of Hubble constant responsible 
for expansion of the universe is 40% of 0H  and for the tired light is 60% of 

0H . Consequently, the critical density is only 16% of its currently accepted 
value; a lot less dark matter is needed to make up the critical density. In addi-
tion, the best data fit yields the cosmological constant density parameter 

0ΛΩ = . The tired light effect may thus be considered equivalent to the cos-
mological constant in the hybrid model. 
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1. Introduction 

Until the discovery of cosmic microwave background radiation by Penzias and 
Wilson in 1964 [1], there was a debate about the cause of the redshift of light 
from extragalactic objects. Since then expansion of the universe by the Big-Bang 
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theory became more and more favoured explanation of the cause of the redshift 
rather than the tired light and steady state theories. Ironically, it is the close 
analysis of the cosmic microwave background that has put into question the 
cause of the redshift due to the discrepancy in the Hubble constant derived from 
the spectral data and the microwave background data [2] [3].  

The Hubble constant that relates the redshift to the distance of the source of 
light has shown steady decline in its value from about 500 km·s−1·Mpc−1 to the 
currently accepted value of about 69 km·s−1·Mpc−1 with improvements in mea-
suring techniques and availability of redshift-distance data for high redshift 
sources. However, many cosmological models seek even lower value of the Hub-
ble constant. Since the value of the Hubble constant determines plethora of 
cosmological parameters, including age, size and critical density of the universe, 
it is important to re-examine the potential causes of the redshift, or perhaps the 
composition of the redshift. 

The status of the expanding universe and steady state theories has been re-
cently reviewed by López-Corredoira [4] and Orlov and Raikov [5]. They con-
cluded that based on the currently available observational data it is not possible 
to unambiguously identify the preferred approach to cosmology.   

In a recent paper it was shown phenomenologically that Mach effect may be 
the cause of tired light redshift and may contribute dominantly to the cosmolog-
ical redshift [6]. While the paper’s assumption that observed redshift may be the 
hybrid of the expansion of the universe and tired light effect may be sound, it 
incorrectly divided the distance modulus between the two components rather 
than keeping the proper distance the same and dividing the redshift. 

Using Poisson’s work on the motion of point particles in curved spacetime 
[7], Fischer [8] has shown analytically that gravitational back reaction may be 
responsible for the tired light phenomenon and could account for some or most 
of the observed redshift. His finding may also be related to Mach effect. 

Tired light, hereafter Mach effect, redshift approach defines the distance d of 
the light emitting source, whose redshift is z, by the equation: 

( )0 ln 1d R z= + ,                         (1) 

where 0 0R c H=  with c as the speed of light and 0H  as the Hubble constant. 
The same distance in the standard ΛCDM model is defined as [9]: 

( )( )3
0 ,0 ,00

d 1
z

md R u u Λ
 = Ω + +Ω  ∫ ,                (2) 

where ,0mΩ  is the matter energy density relative to the critical energy density, 

,0ΛΩ  is the relative energy density corresponding to the Einstein cosmological 
constant, and ,0 ,0 1m ΛΩ +Ω = .   

Distance d is determined from the measurement of the bolometric flux f of the 
light emitting source and comparing it with the standard for that type of source 
with known luminosity L. The luminosity distance Ld  is defined as: 

4πLd L f= .                         (3) 
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while the flux could normally be related to the luminosity L with an inverse 
square law ( )24πf L d=  in a flat universe, it needs to be modified to include 
the effects of the redshift, the expansion of the universe, and any other unknown 
phenomenon, in order to determine the distance d of the source correctly. 

2. Theory 

If we assume the observed redshift to be due to two effects, we need to find out 
that in what proportion two effects contribute to the observed redshift. Let Xz  
be the redshift due to expansion of the universe and Mz  be the redshift due to 
the Mach effect—we will use subscript X for expansion of the universe and M for 
Mach effect. The expansion will cause the emission wavelength eλ  to stretch to 
wavelength Xλ  such that ( )1X X ezλ λ= + . This wavelength will be further in-
creased due to the Mach effect before it is observed as wavelength  

( ) ( )( )0 1 1 1M X M X ez z zλ λ λ= + = + + . But we can also write ( )0 1 ezλ λ= + . We 
may thus write: 

( )( )1 1 1X Mz z z+ = + + .                     (4) 

Considering now the scale factor ( )a t  relating the proper distance d to the 
comoving distance r between the galaxies, it can only depend on the component 
of the redshift that is due to the expansion of the universe rather than the whole 
redshift; i.e. ( ) ( )1 1X Xa t z= +  should be used as the scale factor. 

Let us estimate the loss of the flux of light in the measurement of the luminos-
ity of an object due to: 

1) Expansion of the universe: 
a) Stretching of the wavelength ( )1 1 Xz∝ + , and 
b) Increase in time between photon detection ( ) ( )1 1X Xa t z∝ = + . 
Thus the flux is reduced to ( )21X Xf f z= + . 

2) Mach effect: It is only due to the increase in wavelength ( )1 1 Mz∝ + . 
And the flux is reduced to ( )1M X Mf f z= + . 

3) Unknown factor: We found that there is an additional flux loss 1 1 z∝ + . 
The measured bolometric flux may thus be written as: 

( ) ( )224π 1 1 1B X Mf L d z z z = + + +  .             (5) 

The luminosity distance may now be written as: 

( )( ) ( )

( ) ( ) ( )

1 1
2 4

1 1 1
2 2 4

1 1 1

1 1 1

L X M

X

d d z z z

d z z z

= + + +

= + + +
                 (6) 

Since the proper distance d, often written as ( )Pd t , determined using either 
of the above models must be the same, equating them can give relationship be-
tween Xz  and Mz , and also determine the deceleration parameter 0q  in the 
limit of 1z . We may rewrite Equation (1) for Mach effect as: 

( )ln 1M M Md R z= + .                       (7) 

Here M MR c H=  with MH  being the Hubble constant corresponding to 
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the Mach effect. Regarding Equation (2) for the expansion model, we will be ex-
ploring how the density parameters, taken usually as ,0 0.3mΩ =  and ,0 0.7ΛΩ = , 
are impacted with the inclusion of Mach effect. We will start with ,0 1mΩ = , 
which corresponds to the Einstein de Sitter model. It can be expressed as: 

12 1
1X X

X

d R
z

 
= −  + 

.                     (8) 

Here X XR c H=  with XH  being the Hubble constant corresponding to the 
expansion model considered. We can use the limit 0X Mz z z= = ⇒  as the 
boundary condition for Equation (7) and Equation (8); they both should reduce 
to the Hubble’s law 0d R z= . Expanding the two equations in the limit yields: 

( )0
11
2M M M Md t R z z = − + 

 
 , and              (9) 

( )0
31
4X X X Xd t R z z = − − 

 
 .                 (10) 

This yields 0 M M X XR z R z R z= = . In the limit, we may write Equation (4) as 

X Mz z z= + , or ( )1z w z wz= − +  where w is the weight factor of Mach effect 
component and 1 w−  is the weight factor for the expansion component. Com-
paring these equations with the text book expression for proper distance to a ga-
laxy with redshift z [10] and deceleration parameter 0q  in the limit 0z ⇒ : 

( ) ( )0 0 0
11 1
2Pd t R z q z = − +  

,                 (11) 

we get for the case of Mach effect ( )01 2 2 2Mq z z wz+ = = , or 0 1q w= − . 
And for the case of Einstein de Sitter model ( ) ( )01 2 3 4 3 1 4Xq z z w z+ = = − , 
or ( )0 1 3 2q w= − . Equating the two 0q , we get 0.6w =  and 0 0.4q = − . The 
same exercise can be done with Equation (2) with ,0m bΩ ≡  and ,0 1 bΛΩ ≡ − . 
The equation near 0u =  may be written as: 

( ) ( )

( )

( )

0
2

0

0

3 3d 1 9 4
2 8

8 6
8

31 1
4

Xz
X X

X
X X

d t R u bu b b u

R z bz

R z b w z

  = − + − −    

= − +

 = − − + 
 

∫ 





        (12) 

Thus, ( )01 3 1 2q b w+ = −  for this model. Equating it with 01 q w+ =  for  

Mach effect, we get 21 1
3

w
b

 = + 
 

 and 0
31 1
2

q b = − + 
 

. Noting that for  

Einstein de Sitter model 1b = , we get 0.6w =  and 0 0.4q = − , the same as 
above. For standard ΛCDM as expansion model, taking 0.3b = , we get 

0.31w =  and 0 0.69q = − . 
The above analysis yields contribution to Hubble constant by the expansion of 

the universe 00.4XH H=  and by Mach effect 00.6MH H=  when using Eins-
tein de Sitter model for the expansion of the universe, and 00.69XH H=  and 
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00.31MH H=  when using ΛCDM as the expansion model. The data analysis 
presented in the next section will determine the best parameters. 

Let us now see how ,X Mz z  and z are related for all values of z, rather than in 
the limit of 0z . Equating Md  and Xd —Equation (7) and Equation 
(8)—and using Equation (4) we get: 

( ) 1ln 1 2 1
1M M X

X

R z R
z

 
+ = −  + 

, or 

0 021 1ln 1
1 1M X X X

R z R zz
z z z z

  +
= −    + +   

, or 

( )
( )

2 1ln 1
1

y xy
x x x x

−    = −   −   
,                   (13) 

where for brevity we have substituted 1y z= +  and 1 Xx z= + . This can be 
numerically solved to determine x for any y, and thus Xz  for any z and also 

Mz  for any 𝑧𝑧 since ( ) ( )1 1 1M Xz z z+ = + + . Equation (6), Equation (8), and 
Equation (13), may now be combined to relate the luminosity distance Ld  with 
the observed redshift z. As the measured quantity is the distance modulus µ , 
not the luminosity distance Ld , we will use the relation: 

( )5log 25Ldµ = + , or   

( ) ( )02 1 15log 1 1.25log 25
1

R y
xy y

x x
µ

−  
= − + +  −   

.     (14) 

We have used Equation (8) for proper distance in Equation (6). However, we 
could also use Equation (7) in Equation (6) without any change in the result 
since Equation (13) has already established equality of the two expressions de-
termining the proper distance. 

We could also use Equation (2) for the proper distance in the expanding un-
iverse model, equate it to the Mach effect proper distance: 

( ) ( )( ),0 ,00

3ln 1 d 1 1Xz
M M X m mR z R u u + = Ω + + −Ω  ∫ ,     (15) 

follow the same exercise as for Equation (13) to relate ,X Mz z  and z, and then 
write the distance modulus relation: 

( ) ( )( )
( )

1 30
,0 ,00

1
5log d 1 1

1

1.25log 25

x
m m

R y
u u xy

x

y

µ
−−  = Ω + + −Ω  −   

+ +

∫    (16) 

3. Analysis Using Observational μ, z Database 

The database used in this study is for 580 SNe Ia data points with redshifts 
0.015 1.414z≤ ≤  as compiled in the Union2 μ, z database [11] updated to 2017. 

We used Matlab curve fitting tool to fit the data using non-linear least square 
regression. To minimize the impact of large scatter of data points, we applied the 
“Robust Bi-square” method. This tool fits data by minimizing the summed 
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square of the residuals, and reduces the weight of outliers using bisquare 
weights. The Goodness of Fit is given by parameters SSE (sum of squares due to 
errors), R-Square and RMSE (root mean square error). 

Our objective is to see how well the composite model fits the observational 
data as compared to the standalone Mach effect model and the expansion mod-
els. The results are presented graphically in Figure 1, and numerically in Table 
1; the table has one extra entry that is discussed below. 

The first case is the standard ΛCDM model with two parameter fit, 0H  and 

mΩ . The values determined for the parameters are as expected. It provides a 
good two-parameter fit. This model has the legend “ΛCDM” in Figure 1. 

In the second case, we have created a composite model by including Mach ef-
fect in the first case. The data fit is obtained using Equation (16). The Goodness 
of Fit numbers have slightly deteriorated compared to the first case. There is a 
slight decrease in the value of 0H . However, the matter energy density has be-
come almost 1, the same as for the Einstein de Sitter (“EdeS”) model. One could 
therefore infer that Mach effect is equivalent to cosmological constant!  

The third case is for the Einstein de Sitter model. The Goodness of Fit is not 
good. Also, the Hubble constant value is significantly lower than the previous 
cases. This model has the legend “EdeS” in Figure 1. 

The fourth case is the composite model consisting of the Einstein de Sitter 
model and the Mach effect. Now the worst case has become the best overall fit 
case. Hubble constant is slightly lower than for ΛCDM models. This model has 
the legend “EdeS + Mach” in Figure 1. 

The last case considered here is for Mach effect. It presents a not-so-good (OK) 
one-parameter fit. The Hubble constant value is the highest ( 0 70.52H = ) of all 
the cases included here. This model has the legend “Mach” in Figure 1. 

It may thus be concluded that the one-parameter ( 0H ) Einstein de Sit-
ter-Mach (“EDSM”) composite model is slightly better than the two-parameter  
 

 
Figure 1. Fitted data curves for four models in Table 1.  
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Table 1. Parameters and “Goodness of Fit” for the analysed models, including those whose plots are shown in Figure 1.  

Model 
Parameter 95% Confidence Parameter 95% Confidence Goodness of Fit 

H0 H0 Low H0 High Ωm Ωm Low Ωm High SSE R-Square RMSE Comment 

ΛCDM 69.85 70.71 69.01 0.2877 0.2489 0.3266 24.35 0.9959 0.2053 Best 2 parameter fit 

ΛCDM + Mach 69.14 70.00 68.20 0.9949 0.8082 1.182 24.46 0.9959 0.2057 Good 2 parameter fit 

EdeS 66.30 66.82 65.72 1 Fixed Fixed 28.68 0.9951 0.2226 Bad 1 parameter fit 

EdeS + Mach 69.11 69.61 68.54 1 Fixed Fixed 24.32 0.9951 0.2049 Best fit - 1 parameter 

Mach 70.52 71.04 69.93 NA NA NA 25.54 0.9957 0.2100 OK 1 parameter fit 

 
( 0 , mH Ω ) ΛCDM model for fitting the redshift data while yielding a 1% lower 
value of the Hubble constant. 

We have shown the z (and hence the time) dependence of the new scale factor 

Xa  and other relevant parameter calculated in the EDSM model in Table 2 us-
ing Equation (13). It does not involve any fitting of the data, just the model. The 
conventional scale factor is ( )1 1 z+ . We see that while the two scale factors are 
the same at z = 0 and about the same at the lowest non-zero value in the table, 

Xa  decreases much more slowly than ( )1 1 z+  with increasing z. This is ex-
pected as only a portion Xz  of z is due to the expansion of the universe, the 
remaining Mz  being due to the Mach effect. Figure 2 shows on a log-log grid 
how the new scale factor Xa  compares with the conventional scale factor 
( )1 1 z+ . The fit to the calculated values is reasonably well represented by 
( ) ( ) 0.421Xa z z −= + , especially al lower values of z, say up to z = 10. This may be 

easier to use in some calculations than numerically solving Equation (13). 
The ratio M Xz z  is also shown in the table. It increases from the present 

value of 1.5 to 2.5 for the redshift going from 0 to about 1000, meaning that 
Mach effect was contributing 71% to the redshift then compared to 60% now. 

One question naturally arises: How is the cosmological constant of the ΛCDM 
model related to the Mach effect of the EDSM model? The question is best ans-
wered by analysing the Friedmann equation. The simplest Friedmann equation 
containing the cosmological constant Λ is for the spatially flat universe [10]: 

( )
2

2
2

8π
33

a GH t
a c

ε
Λ ≡ = + 

 



.                   (17) 

Here a  is the cosmological scale factor, a  is the time derivative of the scale 
factor, G is the gravitational constant, and ε is the energy density. Equation (17) 
is based on the assumption that all the redshift relates to the velocity of the ex-
pansion of the universe: ( ) ( ) ( )cz v t H t d t≡ = . In the EDSM model, 

( ) ( ) ( )X Xcz v t H t d t≡ = , and hence the scale factor that represents the expan-
sion of the universe is really ( )1 1X Xa z≡ +    with no Λ. So, we may write the 
Friedmann equation for the spatially flat universe as: 

( )
2

2
2

8π
3

X
X

X

a GH t
a c

ε
 

≡ = 
 



                    (18) 
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Table 2. Parameters based on the numerical solution of Equation (13). The conventional 
scale factor ( )a t  is normally taken as ( )1 1 z+ . Here we designate the scale factor as 

( )Xa z  since the expansion of the universe is determined by a fraction of the redshift. 

z zX zM 1/(1 + z) ax (z) zM/zX 

0.0000 0.0000 0.0000 1.0000 1.0000 1.5000 

0.014959 0.00595 0.008956 0.985261 0.994085 1.5052 

0.522439 0.1847 0.285084 0.656841 0.844096 1.543497 

1.283658 0.3986 0.632817 0.437894 0.715001 1.5876 

2.425487 0.6549 1.069906 0.291929 0.604266 1.633694 

4.138231 0.9621 1.618741 0.19462 0.509658 1.682508 

6.707347 1.3308 2.306739 0.129746 0.429037 1.733347 

10.56102 1.7735 3.168386 0.086498 0.360555 1.786516 

16.34153 2.3055 4.246265 0.057665 0.302526 1.841798 

25.01229 2.9451 5.59357 0.038443 0.253479 1.89928 

38.01844 3.7145 7.276263 0.025629 0.212112 1.958881 

57.52766 4.6405 9.376325 0.017086 0.177289 2.020542 

86.7915 5.7555 11.99556 0.011391 0.148028 2.084191 

130.6872 7.0986 15.26049 0.007594 0.123478 2.149789 

196.5309 8.717 19.32838 0.005063 0.102912 2.21732 

295.2963 10.6679 24.39414 0.003375 0.085705 2.286686 

443.4444 13.0203 30.70007 0.00225 0.071325 2.357862 

665.6667 15.8578 38.54648 0.0015 0.05932 2.430758 

999 19.2814 48.30626 0.001 0.049306 2.50533 

 

 
Figure 2. Variation of the new scale factor Xa  with the conventional scale factor 

( )1 1 z+  plotted on a log-log grid. Calculated values using Equation (13) are shown as 

blue dots. Also is shown a power fit curve in red. 
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Subtracting Equation (18) from Equation (17): 

( ) ( )2 2

3 XH t H tΛ
= − .                     (19) 

The right hand side of Equation (19) represents the Mach effect. At 0t t= : 

( )2 2 2 35 2
0 03 1 0.4 2.52 1.22 10 sH H − −Λ = − = = × .            (20) 

We have assumed 1 1 18 1
0 68 km s Mpc 2.2 10 sH − − − −= ⋅ ⋅ = × . Dividing by 2c , 

52 21.36 10 m− −Λ = × . In terms of the density parameter, the Mach effect contri-
bution is therefore equivalent to 0.84ΛΩ = . However, unlike the true cosmo-
logical constant, this one is not constant and has time dependence expressed by 
Equation (19). One could infer that the dark energy is replaced by Mach effect. 

Since Equation (18) represents the expansion of the universe, it also deter-
mines the critical density rather than Equation (17). It can be easily seen that the 
new critical density is only 16% of the generally accepted critical density since 

00.4XH H= . And since all the density parameters are expressed relative to the 
critical density, one could easily see that the baryon density parameter would get 
a boost by a factor of 6.25. Consequently, the dark matter requirement is drasti-
cally reduced. 

Another concern: Can the EDSM model explain the time-dilation in type Ia 
Supernovae and gamma-ray bursts (GRB)? Blondin et al. [12] have shown that 
the time dilation in Supernovae Ia is proportional to the ( ) 11 z −+ . This finding 
is considered by many cosmologist, including López-Corredoira [4] and Orlov 
and Raikov [5], as inconsistent with other findings, and by Crawford [13], as 
flawed. Hawkins [14] did not find any time dilation in 878 quasars. Chang [15] 
studied time dilation in GRB with measured redshift and did not get any conclu-
sive evidence of time dilation. It would be interesting to explore if EDSM model 
can reconcile such discrepancies as it could explain time dilation proportional to 
( ) 11 Xz −+ , which is significantly less than the time dilation proportional to 
( ) 11 z −+  of ΛCDM model; the smaller time dilation of EDSM model fits well 
within the error bars in the paper of Blondin et al. [12]. 

At this early stage of the development of EDSM model, we have not attempted 
to explain other cosmological phenomena, such as baryonic acoustic oscillations 
and nucleosynthesis. However, since the EDSM model involves both the Mach 
effect and the expansion of the universe, the latter due presumably to the 
big-bang, these phenomena should be possible to account for using the EDSM 
model albeit with different parameters than the ΛCDM model.  

Advantages of the EDSM model over ΛCDM model: 
1) EDSM model needs only one adjustable parameter to fit the data, the Hub-

ble constant, whereas ΛCDM model needs two adjustable parameters; it does 
not require the cosmological constant. 

2) EDSM model keeps the expansion model which is essential for explaining 
the cosmic microwave background. 

3) EDSM model predicts a negative deceleration parameter in compliance 
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with observations, albeit a different value than the ΛCDM model. 
4) EDSM’s Mach effect contribution to the redshift may be deemed equivalent 

to the cosmological constant in ΛCDM model; there is no need for a controver-
sial constant density parameter that leads to the continuous creation of energy 
from nothing as universe expands. 

5) EDSM model may be considered a simpler model from the viewpoint of 
Occam’s razor having dispensed with ad-hoc assumptions, and dependent only 
on one verifiable adjustable parameter, the Hubble constant; it does not have 
conceptual problems associated with the ΛCDM model. 

6) EDSM model has the potential to explain time dilation claimed to be 
present in Supernova Ia and some GRB measurements albeit differently than the 
ΛCDM model. 

4. Conclusions 

The extragalactic redshift results not only from the expansion of the universe but 
also from light losing energy in traveling vast distances from source to observer. 
By combining the two, through the fact that both the contributions to the red-
shift measure the same proper distance of the source, we have come up with a 
one parameter model that fits the redshift SNe Ia data with the same Goodness 
of Fit as the standard ΛCDM model that requires an additional adjustable para-
meter. The new model, dubbed EDSM, yields: 

1) The Hubble constant ( )0 69.11 0.53H = ±  km/s/Mpc. 
2) The deceleration parameter 0 0.4q = − .  
3) The Λ equivalent for EDSM model 35 21.2 10 s− −= ×  ( )52 21.4 10 m− −× , i.e. 

0.84ΛΩ = . 
4) The variation of the expansion scale factor with 𝑧𝑧 that is substantially less 

steeper than ( )1 1 z+ . 
5) The Hubble constant component that results from the expansion of the 

universe is 00.4H  and that from Mach effect is 00.6H . 
6) A boost to baryon density parameter by a factor of 6.25, resulting in a 

greatly reduced dependence on dark matter to explain cosmology. 
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