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Abstract 
Experimental determinations of Newton’s gravitational constant, Big G, have 
increased, in number and precision, during the last 30 years. There is, howev-
er, a persistent discrepancy between various authors. After examining some 
literature proposing that the differences in Big G might be a function of the 
length of the day along the years, this paper proposes an alternative hypothe-
sis in which the periodicity of said variation is a function of the relative peri-
odicity of the Sun-Earth distance. The hypothesis introduced here becomes a 
direct application of the Kerr Metric that describes a massive rotating star. 
The Kerr solution for the equations of the General Theory of Relativity of Al-
bert Einstein fits well with this relative periodicity and adequately predicts the 
arrangement of the experimental G values reported by sixteen different labor-
atories. Also, the author explains how the Sun disturbs gravity on the surface 
of the Earth. 
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1. Introduction 

One of the oldest constants in Physics, the constant G (commonly called Big G) 
that appears in Newton’s Law of Universal Gravitation, is the least precise value 
reported in official tables. In academia, this situation is justified by stating that 
the gravitational force is weak. The previous argument, however, is not justified 
if we consider the very precise experiments that had determined G in the last 30 
years. Those results, however, show bar errors depicting a gap in error between 
scholars thus indicating that one, or more, systematic errors might be present. In 
2015, Anderson, et al. [1] proposed a possible correlation between the observed 
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experimental variations of G and the length of the day, which is known to have a 
period of 5.9 years as shown by the 2013 work of Holme and Viron [2]. Howev-
er, in 2015, M. Pitkin [3] applying a Bayesian model, concluded that the previous 
period of around six years is not admissible when a complete table reported by 
Schlamminger et al. [4], is included in the analysis. Pitkin ran a function with an 
age ranging from two to eight years (logically covering the six-year periodicity) 
and showed no strong correlation between data and hypothesis. This letter in-
troduces a simple model to solve this apparent variability in the experimental 
determination of the universal gravitational constant. 

The author assumes that gravitational interactions do not obey the superposi-
tion principle. That is, a third body can perturb the interaction between two bo-
dies (or parts of an extended body). This idea is not new in physics. Hawking 
and Rayner express in [5] that per the Mach’s principle, the “Local physical laws 
are determined by the large-scale structure of the universe”. In addition, Pugach 
[6] reports extensive experimental work indicating that torsion balances are dis-
turbed by the Sun’s activity. The work reported in this paper will be limited to 
create the connection between a well-established theory and the experimental 
data available. Also, the author will make an evaluation of the possible perturba-
tive parameters that disturbs the determination of Big G. 

2. Quantitative Characterization 
2.1. Model 

Let’s separate the experimental value of gravitational constant G [G(exp)] into 
the universal constant Big G and a perturbative effect δG(r) that is a function of 
the distance to the perturbative source. In other words, G(exp.) = G + δG(r). 
Considering that the Sun produces the next biggest gravitational field on Earth 
(only superseded by the Earth’s field) we can redefine the perturbation parame-
ter δG(r) as expressed in Equation (1)  

exp d
n

s

aG G G
r

 
= +  

 
,                      (1) 

where a is the average separation between the Earth and the Sun, rS is the in-
stantaneous Earth-Sun distance, and dG is a gravitational range that must be 
founded. A combination of theory and experimental data will help to set the 
number n that is expected to be an integer power (with more probable values of 
1, 2, 3 or 4). 

The ratio a/rs was calculated using the monthly Earth-Sun distance reported by the 
web page [7]. A table with the monthly Earth-Sun distance along a 19-year interval was 
prepared to fit in as a function of time. Equation (2) describes that variation where the 
variable t represents the time in years, 
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Equation (2) was made using astronomical data, and consequently, its para-
meters are independent of our choice. Parameters in Equation (2) are a unit base 
of 1, an amplitude of 0.017 that is the Earth’s orbital eccentricity e, a period of 
1.0 year, and a negative initial phase of 3.2 rad. 

The total perturbative influence of the planets and the Moon in G(exp) are too 
low in comparison with the contribution of the Sun. So, they were ignored in the 
calculations. However, to get seven significant figures in Big G, it will be neces-
sary to include at least Jupiter. 

2.2. Direct Observations of G 

Over the last 30 years, a good number of experimental points with very precise 
results defining Big G’s value with six significant figures have been accumulated. 
Figure 1 combines the experimental points of G(exp) from references [8]-[22] 
and our function (1) using n = 2. (The yellow spot representing the Sun was off-
set a little intentionally). The only two degrees of freedom that we have are the 
base value of the universal constant Big G and the value of the perturbative pa-
rameter dG to minimize the difference between our function and the experi-
mental data as much as possible. A minimum quadratic regression was used to 
better fit the experimental points up to six significant figures. The values of the 
universal constant G and the perturbative amplitude dG for this purpose is 
6.65471 × 10−11 Nm2∙kg−2 and 0.019372 × 10−11 Nm2∙kg−2. The last two values 
come from statistical data that is affected for more than one unnoticed effect; 
that means that the real values could be a little offset from those values that 
come from these experiments. This paper has the main intention to indicate the 
way to clean up that statistical error. Figure 1 shows the trajectory of the Earth 
(lower ellipse), the experimental points of Big G (closed circles), and our fitting 
model (upper ellipse). The biggest experimental G values occur around the pe-
rihelion of the orbit and the lower values occur around the aphelion. 

2.3. Influence of Big G on Terrestrial Gravity 

An additional correlation between the author’s model and other parallel gravita-
tional measurements connected indirectly with Big G is available. For example, 
the work done by Nicolas et al. [23] in Grasse, France shows the correlation. 
Figure 2 has three parts that include: Nicolas et al. experimental points of abso-
lute gravity, the paper model, and the experimental points of Big G [8]-[22] from 
1998 to 2004. 

The agreement between the experimental points and the two models is 
good enough to increase the credibility of the hypothesis introduced in this 
paper. (It is important to clarify that their model is based on the measurement 
of little g being dependent on Big G and not the other way around). In this 
graphical comparison, amplitudes have a different meaning. The matching of 
maxima and minima phase is another point in favor of the idea being intro-
duced here. 
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Figure 1. Plots of our Equation (1) and the experimental points from [8]-[22]. Points with same color come from same lab in dif-
ferent attempts. The x-axis and y-axis are in units of the Astronomical Unit a and the z-axis shows the values of Big G times ten 
the eleventh power in units of Nm2∙kg−2. 
 

 
Figure 2. Plots of our Equation (1) (yellow) and some G(exp) points from 1998 to 2004 (points with horizontal error bars). The 
points with only vertical error bar (red diamonds) come from micro-variations of little g in Grasse, France. 
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3. Experimental Approach 

The possible variation of the gravitational interaction between any two masses 
with the distance to the Sun is something relatively easy to corroborate in com-
parison with the mathematical evaluation of that interaction. Besides that, the 
variation will not be easy to observe because those values could be many times 
smaller than the ambient noise if the apparatus is not carefully prepared. 

The author’s setting included three variations to the Cavendish’s balance [24]. 
The main one is the introduction of two strings versus the one used by Caven-
dish. The nine-millimeter separation of the two strings works like a mechanical 
filter that reduces the effect of weak perturbations with low duration of time. 
The second variation was the introduction of a microscope because the micro-
scopic displacement of the balance’s iteration is stable enough to be observed. 
That happens because the change of the gravitational influence of the Sun is 
large enough in time. The microscopic motion output is digitally recorded on 
every trial. The observation was conducted every day approximately before su-
nrise to give the balance enough time to clean out the noise coming from the 
human activity of the previous day. 

The third improvement on the balance was the use of four masses in the form 
of a cone. That is the most effective form to produce the greatest gravitational 
interactions. The spherical masses are not the most effective, as is assumed by 
many scholars, because the mass of a body increases with radius but the distance 
between centers of masses decreases when the radius is squared. On a cone, if 
the cone’s vertex is keeping constant, the center of mass does not move if the size 
of the base is increased. 

The experimental balance has a permanent state of vibration. The technique 
for this kind of situation is to accumulate enough data to find the average posi-
tion and its standard deviation. In this case, that method is not efficient. A better 
method is to record the two points that are farthest from the equilibrium point 
daily and represent both points in the graph. Of course, the size of the error bar 
of every point will fit inside the two points that were recorded. Figure 3 has the 
observations from December the 2nd to July the 4th. The negative slope on the 
graph is matching well with the results reported over the last 30 years. 

A bonus from Figure 3 is that the curve shows the superposition of two per-
manent signals with an average repetition of around ten and six days respective-
ly. Both periodicities can be explained if the nucleus of the Sun is a plasma torus 
that rotates with an angular momentum of value J. We can associate the ten days 
with a plasma torus precession of 20 days’ period and the six days with its nuta-
tion. This idea is in correspondence with the visual information that the Sun’s 
equator is rotating with a period of approximately 25 days. 

The General Theory of Relativity (GTR) of Albert Einstein [25] is the neces-
sary tool to understand this problem. The solution of the GTR found by Kerr 
[26], for a non-charged rotating body, discloses the consequences that can be 
used to explain all the problems analyzed in this paper. Kerr’s Metric has the 
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following solution, 
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   (3) 

where the mass of the rotating body is M, and J is its angular momentum. The 
functions A, B, C, and D were introduced in (3) because these functions are not 
directly related to this paper. A consequence of the Kerr’s Metric is a dragging 
effect on the spin of any gyroscope localized inside the gravity field of the rotat-
ing mass. It is interesting that the dragging effect cannot change the spin’s value 
of the gyroscope (even if the spin is zero) but generates the spin precession. The 
author observed in his non-rotating horizontal bar the precession effect stated 
by Kerr’s Metric as a variation of the azimuthal angle φ (see Figure 3) and the 
vertical angle θ (originally around 90 degrees; see Figure 4. It can be checked 
that Figure 3 and Figure 4 peaks coincide with each other in time. 

The qualitative correspondence between theory and observation moves the 
author to do a quantitative analysis. Per the Kerr’s Metric, a gyroscope spinning 
inside the field of a rotating mass has a precession at the frequency [27], 

( ) 2
2 5 3 J Jp
G

c
ρ

ρ
 = ⋅ − Ω ρ ρ ,                  (4) 

where G is the gravitational constant, J  is the total angular moment of the rota-
tion mass, c is the speed of light, and ρ  is the distance to the dragging source. 
Starting from Equation (4) and the condition that the plane of rotation of the nuc-
leus of the Sun almost coincides with the plane of the solar system allows us to 
calculate the Sun’s plasma torus velocity with the necessary relativistic equation, 

( )3 23 21 1 0
4pc GM Rαρ β β Ω − − + = 

 
,              (5) 

where R is the Sun’s plasma torus major radius, and α is the ratio of minor ra-
dius to the major radius (the value α comes close to 0.01 from the relativistic 
condition that the velocity of the plasma torus’s faster points must be smaller 
than the speed of light), M is the mass of the Sun, and ρ is the Earth-Sun dis-
tance. The precession period of the Earth-axis of rotation is 26,000 years, and the 
core radius of the Sun is close to 280 million meters. Those numbers indicate 
that the speed of the Sun’s plasma torus is around 0.986216c. 

The Sun’s static gravitational influence makes the Earth revolve around the 
Sun, and does not affect gravity on the Earth’s surface. However, the dragging 
gravitational effect of the Sun’s rotating nucleus is working here on Earth. We 
use the temporal part of Kerr’s solution to calculate an equivalent gravity com-
ing from the dragging effect. The resulting equation is 

22
2

dragging 4 2 cos
1

GMRg
r

β θ
β

 
≈  − 

.                 (6) 
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Figure 3. Azimuthal angle of the modified Cavendish’s balance on the y-axis. According to the Newton’s gravitational theory that 
angle should be constant and should not have any oscillating pattern if the distance between the attracting masses is kept constant. 
 

 
Figure 4. Variation of the microscopic angle between the horizontal plane and the vertical direction. According to Newton, that 
angle should stay constant at 90 degrees. The quadratic increment of the angle in the initial 60 days is associated with the incre-
ment in length of the strings that keep in place the balance. In other words, there is always an initial string elongating effect on this 
experimental setup. 
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The author, correlating its experimental points with the result from [8]-[22], 
deduces that the Sun’s plasma torus plane of rotation makes an angle of 80 de-
grees with the zenith of the solar system (nutation cover only 2 degrees). Apply-
ing that angle in Equation (6), the gravity on Earth should oscillate annually be-
tween 100 × 10−8 m/s2 and 92 × 10−8 m/s2. The difference between those numbers 
(8 × 10−8 m/s2) is close to the 9 × 10−8 m/s2 annual variation of g in France, re-
ported by Nicolas et al. [23]. By now, the reader will know that the power of the 
inverse of the distance in our initial hypothesis becomes n = 3 per Equation (4). 
That inverse power is the same that appears in the tidal equation and that maybe 
is not a numerical coincidence. The analysis of that coincidence will also be dis-
cussed in a following paper. 

Figure 1 only has 20 points affected without control of the Sun’s dragging ef-
fect. On the other hand, the author report here 185 well characterized points 
taken in the first six months of 2017. An increment in accuracy could be done by 
mixing both data. The axis of Figure 4 were converted with the functions, 

( ) ( )day0.985 0.030 182 3 and 6.6695 0.0009exp 0.0008x N G ϕ= + − = + ,  (7) 

where dayN  represent the number of the day from January first to July fourth, x  
is a parameter without units that represent the distance to the Sun ( )x r a= , and 
φ is the balance’s microscopic deflection. The author selects the points with 
minimum deflection. The idea was to minimize as much as possible the influ-
ence of the precession and the nutation effects. It is, for those points in Equation 
(8), the angle θ was close to 90 degrees. Figure 5 showed all the points under this 
condition. 

 

 
Figure 5. The points shown here are the ones with the minimum values. That happens when the dragging influ-
ence from the Sun comes to a minimum. The variable x in the x-axis is correlate with the Earth-Sun distance. 
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The Fit function from Wolfram Mathematica 11.1 reported the numbers, 

( )
( ) ( )

exp 3

2
11 2 2

3

d

0.0616 0.0031 1 9cos
6.6114 0.0031 10 N m kg .

GG G
x

x
θ − −

= +

 ± +
 = ± + × ⋅ ⋅
 
 

 (8) 

4. Conclusions 

The most influential labs in the world always turn toward the values of the fun-
damental constants in physics. Not just for trustworthiness but also for safe 
comparison with the reliable values from other labs. The constant’s errors may 
not overlap; however, the scientific community expects those errors to be close 
to the same significant figure on every constant. That has not been happening to 
the gravitational constant Big G in the last 30 years. Some differences cover three 
orders of magnitude, far away from every error. The explanations proposed by 
now to solve this contradiction have not been established without reasonable 
doubt. 

The author proposed that the experimental values of Big G will depend in-
versely on some power of the distance to the Sun, and show an experimental 
work to test the hypothesis. Its experimental confirmation justifies the search for 
any theory that interconnects all the information available. 

The author founded the mathematical explanation that covers all the points 
on the determination of Big G in the General Theory of Relativity under the as-
sumption that the core of the Sun has the form and condition of a relativistic ro-
tating plasma torus. The Sun’s core is massive enough to produce visible drag-
ging effects here on Earth assuming its spin suffers precession and nutation. 

The experimental work introduced here clearly shows how others failed to 
null the dragging effects from the Sun by making, half of the time, the gravita-
tional force to be right-handed and, the other half of the time, left-handed be-
cause those effects are not symmetric in space and cannot be neutralized. The 
remaining difference showed up in every result of Big G and if displayed on an 
annual graph, will create a pattern as an inverse relationship with the distance to 
the Sun. Modern gravitational theory dictates that the connection between the 
experimental value of Big G and the distance to the Sun, follows a negative third 
power law. One of the questions that arises from this research, “Is the dragging 
effect changing along the years, forcing in that way the variation of the length of 
the day”? This question serves as an exigency for the opening of labs to make di-
ary controls of the dragging variation. The relativistic nature of this effect could 
potentially be dramatically unstable. Furthermore, while one might suggest the 
duration of the day could be an explanation it could also be the case that the in-
verse result is true. The author will show experimental evidence on a new paper 
that this dragging function is responsible for the Sun’s tidal effect, meaning they 
are not correlative but rather one in the same. 
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