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Abstract 
The paper deals with the existence of equilibrium points in the restricted 
three-body problem when the smaller primary is an oblate spheroid and the 
infinitesimal body is of variable mass. Following the method of small parame-
ters; the co-ordinates of collinear equilibrium points have been calculated, 
whereas the co-ordinates of triangular equilibrium points are established by 
classical method. On studying the surface of zero-velocity curves, it is found 
that the mass reduction factor has very minor effect on the location of the 
equilibrium points; whereas the oblateness parameter of the smaller primary 
has a significant role on the existence of equilibrium points. 
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1. Introduction 

Restricted problem of three bodies with variable mass is of great importance in 
celestial mechanics. The two-body problem with variable mass was first studied 
by Jeans [1] regarding the evaluation of binary system. Meshcherskii [2] as-
sumed that the mass was ejected isotropically from the two-body system at very 
high velocities and was lost to the system. He examined the change in orbits, the 
variation in angular momentum and the energy of the system. Omarov [3] has 
discussed the restricted problem of perturbed motion of two bodies with variable 
mass. Following Jeans [1], Verhulst [4] discussed the two body problem with 
slowly decreasing mass, by a non-linear, non-autonomous system of differential 
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equations. Shrivastava and Ishwar [5] derived the equations of motion in the 
circular restricted problem of three bodies with variable mass with the assump-
tion that the mass of the infinitesimal body varies with respect to time.  

Singh and Ishwar [6] showed the effect of perturbation on the location and 
stability of the triangular equilibrium points in the restricted three-body prob-
lem. Das et al. [5] developed the equations of motion in elliptic restricted prob-
lem of three bodies with variable mass. Lukyanov [7] discussed the stability of 
equilibrium points in the restricted problem of three bodies with variable mass. 
He found that for any set of parameters, all the equilibriums points in the prob-
lem (Collinear, Triangular and Coplanar) are stable with respect to the condi-
tions considered in the Meshcherskii space-time transformation. El Shaboury [8] 
discussed the equation of motion of Elliptic Restricted Three-body Problem 
(ER3BP) with variable mass and two triaxial rigid bodies. He applied the Jeans 
law, Nechvili’s transformation and space-time transformation given by Mesh-
cherskii in a special case.  

Plastino et al. [9] presented techniques for the problems of Celestial Mechan-
ics, involving bodies with varying masses. They have emphasized that Newton’s 
second law is valid only for the body of fixed masses and the motion of a body 
losing mass is isotropically unaffected by this law. Bekov [10] [11] has discussed 
the equilibrium points and Hill’s surface in the restricted problem of three bo-
dies with variable mass. He has also discussed the existence and stability of equili-
brium points in the same problem. Singh et al. [12] has discussed the non-linear 
stability of equilibrium points in the restricted problem of three bodies with varia-
ble mass. They have also found that in non-linear sense, collinear points are unsta-
ble for all mass ratios and the triangular points are stable in the range of linear sta-
bility except for three mass ratios which depend upon β , the constant due to the 
variation in mass governed by Jean’s law.  

At present, we have proposed to extend the work of Singh [12] by considering 
smaller primary as an oblate spheroid in the restricted problem of three bodies 
as shown in Figure 1 and to find the co-ordinates of equilibrium points 

( )1, 2,3,4,5iL i  =  by the method of small parameters.  

2. Equations of Motion 

Let m  be the mass of the infinitesimal body varying with time. The primaries 
of masses µ  and 1 µ−  are moving on the circular orbits about their centre of 
mass as shown in Figure 1. We consider a bary-centric rotating co-ordinate sys-
tem ( ),O xyz , rotating relative to inertial frame with angular velocity ω . The 
line joining the centers of µ  and 1 µ−  is considered as the x -axis and a line 
lying on the plane of motion and perpendicular to the x -axis and through the 
centre of mass as the y -axis and a line through the centre of mass and perpen-
dicular to the plane of motion as the z -axis. Let ( ),0,0µ  and ( )1,0,0µ −  
respectively be the co-ordinates of the primaries 1P   and 2P  and ( ), ,x y z  be 
the co-ordinates of the infinitesimal mass P . The equation of motion of the in-
finitesimal body of variable mass m  can be written as 
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Figure 1. Rotating frame of reference in the R3BP in 3-Dimension about Z-axis. 
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1 2 23 3 5
1 2 2

1 9
2
Am m Gm

t t
µ µ µ

ρ ρ ρ
 ∂ ∂ −  + × + × = − + +   ∂ ∂    

rω ω r ρ ρ ρ , 

( ) ( )

( )( ) ( ){ }

( ){ }

2
1 2 23 3 5

1 2 2

2 2
3 3
1 2

5
2

1 9ˆ ˆ2
2

ˆˆ ˆ1 ˆˆ ˆ ˆ ˆ1

ˆˆ ˆ9 1 ,
2

Am m m m xi yj Gm

x i yj zk
m xi yj x i yj zk

A x i yj zk

µ µ µω
ρ ρ ρ

µ µ µω ω µ
ρ ρ

µ µ
ρ

 −
⇒ + + × + × = + − + +  

 
 − − + +  = + − − − + + + 

 


    − − + + +   

r r ω r ω r ρ ρ ρ 

(3) 

47 



M. R. Hassan et al. 
 

where units are so chosen that the sum of the masses of the primaries and the 
gravitational constant G  both are unity. 

The equations of motion in the Cartesian form are 

( )

( )

12 ,

12 ,

1 ,

m Ux x y x
m m x
m Uy y x y
m m y

m Uz z
m m z

ω ω

ω ω

∂
+ − + = − ∂ 

∂ + + − = − 
∂ 

∂                        + = −
∂ 



  



  



 

                

 (4) 

where 

( )
2

2 2
3

1 2 2

1 3
2 2
ω μ μ AμU m x y

ρ ρ ρ
 −

= − + + + + 
 

.             (5) 

i.e., 
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 (6) 

By Jeans law, the variation of mass of the infinitesimal body is given by 

1d i.e.,
d

n nm mm m
t m

α α −= −       = −


,                 (7) 

where α  is a constant coefficient and the value of exponent [ ]0.4, 4.4n ∈     
for the stars of the main sequence. 

Let us introduce space time transformations as 

1 1 2 2
0

, , , d d ,

, , 1,
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            (8) 

where 0m  is the mass of the satellite at 0t = . 
From Equations ((7) and (8)), we get  

1d ,
d

n

t
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where 
1

0 constantnmβ α −= = . 

Differentiating ,  x y  and z  with respect to t  twice, we get 
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( ) ( )
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Putting the values of ,  ,  ,  ,  ,  ,  ,  ,  U U Ux y z x y z
x y z

∂ ∂ ∂
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m
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 in Equation 

(4), we get 
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where 
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In order to make the Equation (10) free from the non-variational factor, it is 
sufficient to put 

[ ]1 0, 2 1 0, 1 0.4, 4.4 ,
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2
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where 
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From System (13),  
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The Jacobi’s Integral is 
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3. Existence of Equilibrium Points 

For the existence of equilibrium points 0,ξ η ζ ξ η ζ′ ′ ′ ′′ ′′ ′′= = = = = =  then 
from Systems (13) and (15) 
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For solving the above equations, let us change these equations in Cartesian 
form as 
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4. Existence of Collinear Equilibrium Points 

For the Collinear equilibrium points, 0,y z= =  then  

1 2,  1x xρ µ ρ µ= − = − + . 
From Equation (17), we get 

( )( ) ( ) ( )2
2

3 3 5

1 1 9 1
0

4 1 2 1
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x

x x x

µ µ µ µ µ µα ω
µ µ µ
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.   (18) 

Let ( )1 1,0,0L ξ  be the first collinear equilibrium point lying to the left of the 
second primary ( )2 1.1,0, .0 , 1i eM µ ξ µ−     < −  as shown in Figure 2 then 
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Thus from Equation (18), 
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as 1 1ξ µ< − , so let 1 1ξ µ ρ= − −  where ρ  is a small quantity. 
For the first equilibrium point ( )1 1,0,0L ξ , we have 
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(20) 

Here, Equation (20) is seven degree polynomial equation in ρ , so there are 
seven values of ρ . If we put 0µ =  then from Equation (20), we get 

( )
2

32 4 42 1 2 0
4

α ω ρ ρ ρ
 

− + + + = 
 

.               (21) 

 

 
Figure 2. Locations of collinear and triangular equilibrium points. 
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Thus 0,0,0,0ρ = , are four roots of Equation (21) when 0µ = , so  

( ) ( )
1

4 4i.e.,o o oρ µ ρ µ υ
 

=    = =  
 

 i.e., 
1

44υ µ µ υ=   ⇒ = . 

Thus the Equation (20) reduces to 
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α ω υ ρ ρ ρ υ ρ

υ ρ ρ υ ρ
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= + +
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  (23) 

Putting the value of 2 3 4 5 6 7,  ,  ,  ,  ,  ,  ,ρ ρ ρ ρ ρ ρ ρ   in Equation (22) and 
equating the co-efficient of different powers of υ  to zero, we get the values of 
the parameters as 

( )
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( )
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2
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 (24) 

where 
( )2 3

1

1
2 6

Q
A aα

= −
+

. 

Therefore, the co-ordinate of the first equilibrium point ( )1 1,0,0L ξ  is given 
by 

( )
1
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4
1

1
1

n
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n

aξ µ µ
∞

=

= − − ∑ . 
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Let ( )2 2 ,0,0L ξ  be the second collinear equilibrium point between the two 
primaries 1P  and 2P  then 21µ ξ µ− < <  

( )
2 2

2 2 2 2

1 0 and 0.
1 1 and .

ξ µ ξ µ
ξ µ ξ µ ξ µ ξ µ

⇒ − + >     − <

⇒ − + = − +     − = − −
 

Thus from Equation (18), 

( ) ( ) ( )

2
2

2 2 2 4
2 2 2

1 9 0
4 1 2 1

Aα µ µ µω ξ
ξ µ ξ µ ξ µ

  −
+ + − − = 

− − + − + 
.    (25) 

Since 2 1ξ µ> −  hence let 2 1ξ µ ρ= − + , thus 

2 21 1 ,ξ µ ρ ξ µ ρ− + =     ⇒ − = − +  

where ρ  is a small quantity.  
In terms of ρ , the Equation (25) can be written as 

( )
( )

2
2

2 2 4

1 91 0,
4 1

Aα µ µ µω µ ρ
ρ ρρ

  −
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− 
 

i.e., 
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2
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2 1 1 2 1
4

2 1 9 1 0.A

α ω µ ρ ρ ρ µ ρ

µρ ρ µ ρ

 
+ − + − + − 

 

− − − − =            

(26) 

The Equation (26) is a seven degree polynomial equation in ρ , so there are 
seven values of ρ  in Equation (26). 

If we put 0µ =  in Equation (26), we get 

( )
2

32 4 42 1 2 0
4

α ω ρ ρ ρ
 

+ − + = 
 

.                (27) 

Here 4 0 i.e., 0,0,0,0ρ ρ=     =  are the four roots of Equation (27) when 
0µ = , so ρ  we can choose as some order of µ  i.e., 

( ) ( )
1

4 4o o oρ µ ρ µ υ
 

=   ⇒  = =  
 

, 

where 
1

44 i.e.,µ υ µ υ=     = . 

Let 2 3 4 5 6 7
1 2 3 4 5 6 7 .b b b b b b bρ υ υ υ υ υ υ υ= + + + + + + +  where 

1 2 3 4 5 6 7,  ,  ,  ,  ,  ,  b b b b b b b   are small parameters. Putting the values of 
1 2 3 4, , ,ρ ρ ρ ρ  and 4µ υ=  in Equation (26) and equating the coefficients of 

different powers of υ , we get  

( )
( )( ) ( )
( )( )

( ) ( )

1
4

1 2

2 4
2 1

2 6 4 2 2 2 2 2
3 1 4 2 1 2 1 2 1 2

2 7 5 4 2 2 3 2
1 1 2 1 3 1 2 1 2 1 2 3

4 3 2 3
1 2 1 2 3 1 1 2 3

9 ,
2 6
3 4 6 18 ,

4 6 3 15 6 12 9 2 18 ,

4 6 18 15 30 4 12

8 3 4 2 9 2 18

Ab
A

b R A b A

b R A b b b b b b b A b Ab

A b b b b b b b b b b b b
b R

b b b b b b A b b Ab

α
α

α

α

 = − + + 
 = + + + 
 = + + − + − + − + + 
 + + − + + − −

=
+ + + − + +

,








      

 (28) 
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where 
( )2 3

1

1
4 2 6

R
A bα

=
+ +

. 

Thus the co-ordinate of the second equilibrium point is given by 
2 3 4 5 6 7

2 1 2 3 4 5 6 7
1 2 3 5 6

14 4 4 4 4
1 2 3 4 5 6

4
2

1

1

1

1 .
n

n
n

b b b b b b b

b b b b b b

b

ξ µ υ υ υ υ υ υ υ

µ µ µ µ µ µ µ

ξ µ µ
∞

=

= − + + + + + + + +

    = − + + + + + + +

= − + ∑



  

Let ( )3 3 ,0,0L ξ  be the third equilibrium point right to the first primary, then 

3 2 3 31 ,    1 ,    1 2ξ ξ µ ρ ξ µ ρ ξ µ ρ> = − − ⇒ > − + ⇒ = − +  

Thus from Equation (18), we have 

( )
( ) ( ) ( )

( )
( )

2
2

2 2 4

2
2

2 2 4

1 91 2 0,
4 2 1 2 2 2

1 91 2 0,
4 4 322 1

A

A

α µ µ µω µ ρ
ρ ρ ρ

α µ µ µω µ ρ
ρ ρρ

  −
+ − + − − − = 

− 
  −

+ − + − − − = 
− 

 

( )( ) ( )

( ) ( )

2
22 4 4

2 22

32 2 1 2 1 32 1
4

8 2 1 9 2 1 0.A

α ω ρ µ ρ ρ µ ρ

µρ ρ µ ρ

 
+ − + − − −  

 
− − − − = 

        (29) 

When 0µ = , then Equation (29) reduced to 

( )
2

32 4 432 2 1 32 0.
4

α ω ρ ρ ρ
 

+ − − = 
 

               (30) 

4 0 i.e., 0,0,0,0ρ ρ=     =  are the four roots of the Equation (29) when 0µ = , 

so ( ) ( )
1

4 4O O Oρ µ ρ µ υ
 

= ⇒ = =  
 

 say when 4 .µ υ=  

Let 2 3 4
1 2 3 4c c c cρ υ υ υ υ= + + + +  

where 1 2 3 4, , , ,c c c c   are small parameters. 
Thus Equation (29) reduced to 

( )( )( ) ( )
( ) ( )

22 2 4 4 4 4

2 24 2 4

8 4 2 1 2 1 32 1

8 2 1 9 2 1 0A

α ω ρ υ ρ ρ υ ρ

υ ρ ρ υ ρ

+ − + − − −

− − − − =
 

By putting values of 2 3 4 5 6 7, , , , , ,ρ ρ ρ ρ ρ ρ ρ  in Equation (29) and equating 
the co-efficient of different powers of υ , we get  

( )
( )
( ) ( )

( )
( )( )

1
4

1 2 2

2 2 5
2 1

2 2 2 2 4 2 2 2
3 1 1 2 1 2 1 2 2

3 3 2
1 3 1 2 1 2 1 2 3

4 2 2 3 2 4 2 2 5 7
1 2 1 2 3 1 3 1 2 1 2 1

9 ,
8 4 4

48 4 ,

16 4 15 6 3 192 3 ,

32 3 80 384 3

16 4 2 6 15 30 36 4

Ac

c S c

c S c c c c c c c Ac

c Ac Ac c c c c c c
c S

c c c c c c c c c c c c

α ω

α ω

α ω

α ω

 
 = −
 + + 

 = + 
 = + − − − − 
 − − − +
 =
− + + − − + −  

,

and so on













  



 (31) 
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where 
( )2 2 3

1

1
32 4 4

S
cα ω

=
+ +

. 

Thus the co-ordinates of the third equilibrium point is given by 

4
3

1 1
1 2 1 2 1 2

n
n

n n
n n

c cξ µ ρ µ υ µ µ
∞ ∞

= =

 = − − = − + = − +∑ ∑  

5. Existence of Triangular Equilibrium Points 

For triangular equilibrium point 0,  0x y≠ ≠  and 0z =  then from the System 
(17), we have 

( )( ) ( ) ( )
0 3 3 5

1 2 2

1 1 9 1
0

2
x x A x

a x
µ µ µ µ µ µ

ρ ρ ρ
− − − + − +

− − − = .       (32) 

0 3 3 5
1 2 2

1 9 0
2
Aa µ µ µ

ρ ρ ρ
−

− − − = .                   (33) 

Now ( ) ( ) ( )Equation 32 33 1x µ − × − +  gives 

0 03 3
2 2

1 10 i.e.,a a
ρ ρ

− =     = .                   (34) 

Again ( ) ( ) ( )Equation 32 33 x µ− × −  gives 

0 03 5 3 5
1 2 2 2

1 9 1 90 i.e.,
2 2

A Aa a
ρ ρ ρ ρ

+ − =       + = .             (35) 

Since 0 1A<  , hence for the first approximation, if we put 0A = , then 
from Equations ((34) and (35)), we get 

2

03 3
1 2

1
2 3

2
1 2

1 1 1 ,
4

11 1 1.
4 12

a α
ρ ρ

αρ ρ α
− 

= = = +

 
⇒ = = + = −  < 

 

 

For better approximation 0A ≠ , then the above solutions can be written as 
2

1 11
12
αρ α= − +  and 

2

2 21
12
αρ α= − +  where 1 20 , 1α α<    . 

For triangular equilibrium points 0z = , then 

( ) ( )2 22 2 2 2
1 2and 1x y x yρ µ ρ µ= − +   = − + + . 

Now,  

( ) ( )
( )

22 2
2

2 2
2 1

2 1,

2 1.

x y x

x

ρ µ µ

ρ ρ µ

= − + + − +

− = − +
 

( ) 2 1

2 1

1 ,
2

1
2

x

x

µ α α

µ α α

⇒ − = − − 

⇒ = − + −
                   

 (36) 

Again, 
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( )22 2
1

2 22
2

1 2 1

2
2

1 2

,

11 ,
12 2

3 ,
4 6

x y

y

y

ρ µ

αα α α

αα α

= − +

   = + − − − −   
  

= + + −

 

( )
2

1 2
3 2 21

2 3 9
y αα α

 
= ± + + − 

 
.                (37) 

Putting the value of 2ρ  and 0a  in Equation (34), we get 2 2
Aα = − . Putting 

the value of 2ρ  and 0a  in Equation (35), we get  
2

1
151
2 3

A αα = + − . 

Thus, 
2 2

2 1 2 11 7 and 1 8
3 3

A Aα αα α α α+ = + −        − = − − + .        (38) 

Therefore,  
23 8

2 3
x A αµ= − − + ,                     (39) 

( )

2 2

2

3 2 21 1 7 ,
2 3 3 9
3 2 41 1 7 .

2 3 9

y A

y A

α α

α

  
= ± + + − −  

   
 

= ± + + − 
                

(40) 

( )
2 2

4,5
3 3 2 48 , 1 1 7
2 3 2 3 9

L A Aα αµ
  

= − − +   ± + + −     
 

6. Surface of Zero–Velocity 

 
Figure 3. Zero velocity curve (ZVC) for 1C =  (classical case). 

56 



M. R. Hassan et al. 
 

 
Figure 4. Zero velocity curve for 2C =  (classical case). 

 

 
Figure 5. Zero velocity curve for 3C =  (classical case). 

 

 
Figure 6. Zero velocity curve for 1C =  (perturbed case). 
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Figure 7. Zero velocity curve for 2C =  (perturbed case). 

 

 
Figure 8. Zero velocity curve (ZVC) for 3C =  (perturbed case). 

 

 
Figure 9. 3 Dimensional view of ZVC of Figure 6. 
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Figure 10. 3 Dimensional view of ZVC of Figure 7. 

 

 
Figure 11. 3 Dimensional view of ZVC of Figure 8. 

7. Discussions and Conclusions 

In section 2, the equations of motion of the infinitesimal body with variable 
mass have been derived under the gravitational field of one oblate primary and 
other spherical. By Jean’s law, the time rate mass variation is defined as  

[ ]d , 0.4, 4.4
d

nm m n
t

α= −   ∈  , where α  is a constant and the interval [ ]0.4,4.4   

in which exponent of the mass of the stars of the main sequence lies. The System 
(4) is transformed to space-time co-ordinates by the space-time transformations 
given in Equations (8) and (9). The Jacobi’s integral has been derived in Equa-
tion (16).  
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In section 3, the equations for solving equilibrium points, have been derived 
in Equation (17) by putting 0,  0,  0ξ ξ η η ζ ζ′ ′′ ′ ′′ ′ ′′= = = = = =  in Equation 
(13). Again the equations for equilibrium points, have been transformed to 
original frame ( )0, xyz  which are given in Equation (18). In section 4, for col-
linear equilibrium points we put 0y z= = , then from Equation (17), we get 
only one Equation (19). Applying small parameter method, we established the  

co-ordinates of 1 2 3, ,L L L   as 1 2 3, ,ξ ξ ξ   in terms of order of 
1
4µ . In section 5,  

the co-ordinates of equilateral triangular equilibrium points have been calcu-
lated by the classical method. In section 6, zero-velocity curves in Figures 3-8 
and its 3-dimensional surface in Figures 9-11 have been drawn for 1,  2C C= =  
and 3C =  in classical case and perturbed case. 

From the above facts we concluded that in the perturbed case, first equili-
brium point ( )1 1,0,0L ξ  shifted away from the second primary ( )2 1,0,0P µ −  
whereas ( )2 2 ,0,0L ξ  shifted towards the first primary ( )1 ,0,0P µ  but 

( )3 3 ,0,0L ξ  is not influenced by the perturbation which can be seen in Figures 
6-8. So far, the matter is concerned with the influence of perturbation on the 
co-ordinates of 4L  and 5L , we can say that for 1C =  and 3C = , the trian-
gular equilibrium configuration is maintained but for 2C =  in both classical 
and perturbed cases, the equilateral triangular configuration is not maintained. 
Whatever be the analytical changes in the co-ordinates of 1 2 3 4, , ,L L L L  and 5L  
that is due oblateness not due to the mass reduction factor α  of the infinite-
simal body. 
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