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Abstract 
A detailed numerical simulation of a shock accelerated heavy gas (SF6) cylinder surrounded by air 
gas is presented. It is a simplified configuration of the more general shock-accelerated inhomo- 
geneous flows which occur in a wide variety of astrophysical systems. From the snapshots of the 
time evolution of the gas cylinder, we find that the evolution of the shock accelerated gas cylinder 
is in some ways similar to the roll-ups of a vortex sheet for both roll up into a spiral and fall into a 
self-similar behavior. The systemic and meaningful analyses of the negative circulation, the center 
of vorticity and the vortex spacing are in a good agreement with results obtained from the pre- 
diction of vorticity dynamics. Unlike the mixing zone width in single-mode or multi-mode Richt- 
myer-Meshkov instability which doesn’t exist, a single power law of time owing to the bubble and 
spike fronts follow a power law of tθ with different power exponents, the normalized length of the 
shock accelerated gas cylinder follows a single power law with θ = 0.43 in its self-similar regime 
obtained from the numerical results. 
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1. Introduction 
When an impulsive acceleration impinges on the corrugated interface between two fluids of different densities, 
the instability at the interface will arise due to the deposited vorticity induced by the baroclinic torque produc-
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tion term 2pρ ρ∇ ×∇  (where p  is the pressure and ρ  is the density). The class of problems is generally 
referred to as the Richtmyer-Meshkov (RM) instability [1] [2]. One of the eventual goals in investigating RM 
instability is to shed light on the resultant mixing. Mixing is of contemporary interest in many fields of research, 
among which are the inertial confinement fusion [3], the fuel mixing in a Scramjet [4], and the explosion of su-
pernovas [5]. 

In the RM instability researches, an interesting configuration is a shock wave interacting with a cylindrical 
interface (circular interface in two dimensions) between two fluids. When a planar shock wave impacts on a 
heavy gas (e.g., SF6) cylinder around by an ambient gas (e.g., air), a shock wave is reflected and a refracted 
shock wave transmits into the heavy gas cylinder. Because the heavy gas acoustic impedance exceeds that of the 
ambient gas, the refracted shock is slower than the incident shock wave, and a convergent shock refraction pat-
tern occurs. Because of this and the curvature of the cylinder, the transmitted shock focuses at the downstream 
vertex. This focusing will induce a pressure rising that eventually leads to a cusp-like protrusion [6]. The baroc-
linically deposited vorticity due to the shock-cylinder interaction stretches and distorts the interface and rolls up 
into a counter-rotating vortex pair. Then, the evolution of the interface will be dominated by the vortex pair and 
falls into a self-similar regime, which is in some ways similar to the roll-ups of a vortex sheet [7]-[9]. 

The propagation of a shock wave in an inhomogeneous medium, and the response of the medium to impulsive 
acceleration are of fundamental interest in astrophysical systems. The evolution of the interstellar medium in 
spiral galaxies is significantly influenced by the strong shock waves generated by supernovae explosion [10]. 
Moreover, it is well-known that the generated shock waves remarkably alter the morphology of the cloud (a re-
gion of higher density). The bright eastern knot of the Puppis A supernova remnant results in a distorted shock 
front due to a cloud-shock interaction as seen in images from the Chandra X-ray telescope [11]. In this paper, 
the shock-cylinder interaction is a particularly simple configuration to investigate the problem of shock accele-
rated inhomogeneous flows. 

There are many experimental and numerical researches of the shock-cylinder interactions which concentrate 
on different subjects. Haas and Sturtevant [12], Jacobs [13] and Tomkins et al. [14] studied this problem expe-
rimentally for exploring the wave patterns and the distortion of volume in the RM instability, studying the ef-
fects of centrifugal force and viscosity, and investing the mixing mechanisms in a shock-accelerated flow, re-
spectively. Based on the experiments performed by Haas and Sturtevant, Picone and Boris [15] studied the early 
and the late time phenomena of these experiments numerically. Additionally, Quirk and Karni [16] also simu-
lated the same experiments with the concentration on the early stages of the shock-cylinder interaction. Recently, 
in light of the experiment performed by Tomkins et al., Weirs et al. [17] investigated the three dimensional ef-
fects and Shankar et al. [18] studied the effect of the tracer particle in the shock cylinder interactions. 

As be mentioned just, there were some studies on the shock accelerated heavy gas cylinder, however, in the 
aforementioned papers no attention has been paid on a perhaps existing scaling law in contrast with the single 
mode or multi mode RM instability [19]-[21]. Moreover, most numerical studies were performed for validating 
codes with comparing to the experimental data. In this work, we systemically and meaningfully analyze the ob-
tained numerical results. Comparing with the results from the prediction of vorticity dynamics, we want to 
present the behavior of the characterized variables in the evolution of the shock accelerated cylinder. Through 
studying the evolution of the integral length of the shock-accelerated cylinder, we shed light on the scaling law 
of the growth of the normalized length follows in the self-similar regime. 

2. Numerical Methods and Initialization 
This paper applies our large eddy simulation code MVFT (multi-viscous flow and turbulence) [22] to simulate 
the multi-viscosity-fluid and turbulence. The code MVFT is used for the compressible large eddy simulation that 
was developed by Institute of Fluid Physics at the China Academy of Engineering Physics. MVFT can be used 
to simulate multi-component flows, and compute shocks, contact discontinuities and material interfaces at high 
accuracy. It splits the flow into an inviscid flow and a viscous flow by using an operator splitting technique, 
where the former is computed by employing the piecewise parabolic method with a third-order Godunov scheme 
and the latter is calculated by utilizing a central difference scheme in conjunction with a second-order Runge- 
Kutta method for the time integration. MVFT applies based on the piecewise parabolic method [23] to interpo-
late physical quantities, the Vreman [24] subgrid scale eddy viscosity model to conduct large eddy simulation, 
and to solve Navier-Stokes equations. 
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The initial conditions are significantly important in numerical simulations, especially for the membrane less 
RM instability researches. Initially, a sharp interface [25] [26] was used but leaded to an ill-posed simulation 
compared with the experiments. This is because the interspecies diffusion would not be deniable in the mem-
brane less technique [27] which is used to form the interface between two fluids in experiments. More concen-
trations should be required on the interfacial diffusion. Consequently, an interfacial transition layer with finite 
thickness [28] was introduced to characterize the diffusive interface. Recently, a well-characterized initial con-
centration profile [17] was specified with experimentally measured data. And the contour map of scalar mass 
fraction and dissipation rate obtained from numerical calculations with the profile were in a good agreement 
with experimental data qualitatively. For we will simulate the same experiment, the profile is chosen as our ini-
tial concentration profile. 

In the present simulations, the initial conditions were adapted to the Mach 1.2 shock tube experiment of Tom-
kins et al. [14] which was performed at Los Alamos National Laboratory (LANL). Figure 1 shows a schematic 
of the computational domain. To match the shock tube test section dimensions, the computational domain has 
( ),x y  dimension [ ]0, 0,x yL L ×    with 14.4 cmxL = , 3.75 cmyL = . The inflow/outflow boundary condi-
tion is used on the left and right x boundaries. At the upper y boundary, the reflecting boundary condition is used 
and the symmetry condition is enforced at the lower y boundary. Three different grid resolutions with x y∆ = ∆  

50 μm, 30 μm and 15 μm=  are used for grid convergence study. In the simulations, the initial concentration 
profile of the cylinder in [17] is used. The simulations are run at a CFL number of 0.2. The main gas parameters 
are presented in Table 1. 

3. Results 
Figure 2 depicts the snapshots of the time evolution of the cylinder, which shows volume fraction maps that are 
corresponding to the densities for seven times after shock passage on three different grid resolutions. Counter 
rotating vortex pair formed at the interface owing to the baroclinic vorticity deposited stretches and rolls the in-
terface in ward the vortex cores after the shock collides. At about 220 μs , the vortex pair starts to roll up into 
the vortex core, and then falls into a self similar state. In Figure 2 one also can see a cusp-like protrusion [6] 
produced by shock refraction in the simulations with finer grid. This demonstrates that finer grid is needed in the 
shock-cylinder simulations for better capturing more fine-scale structures. 

Figure 3 presents the negative circulation evolution over time of the flow field. Once a straight vortex sheet 
rolls up, the circulation of each branch is either positive or negative. For the roll-ups of the straight vortex sheet, 
we only consider the negative circulation here. The amount of circulation deposited during the interaction of the 
 

 
Figure 1. Schematic diagram of the computational domain.                 

 
Table 1. Properties of air and SF6 gases.                                                                        

Gases Density (kg/m3) Specific Heat Ratio Kinematic Viscosity 
(10−6 m2/s) Prandtl Number Diffusion Coefficient 

in Air (cm2/s) 

Air 0.95 1.40 15.7 0.71 0.204 

SF6 4.85 1.09 2.47 0.90 0.097 
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Figure 2. Image sequence of SF6 volume fraction at t = 130, 220, 310, 400, 
560, and 650 μs after shock impingement on the coarse (left column), me-
dium (middle column), and fine (right column) mesh resolutions. The shock 
has traversed the cylinder from top to bottom.                            

 

 
Figure 3. Negative circulation as a function of time on three different 
grid resolutions. The short dashed, short dotted and solid lines cor-
respond to the results computed on the coarse, medium, and fine grid 
resolutions respectively. The dashed line is the theoretical prediction 
for the negative circulation in [29].                                



B. Wang et al. 
 

 
42 

shock wave with the interface is calculated using a path integration of velocity 

d ,Γ ≡ ⋅∫V s


                                          (1) 

where V  is the velocity vector and s  is the path. From Stokes theorem, the circulation is a measure of the 
vorticity over an area A . In the two dimensional flow, the circulation is 

( ), , d ,zA
x y t AωΓ = ∫                                     (2) 

with 

( ), , .z x y t v x u yω = ∂ ∂ − ∂ ∂                               (3) 

where zω  is the vorticity component which is perpendicular to the x-y plane, u and v are x and y components of 
the velocity respectively. 

The vorticity generated by a shock wave propagating through a circular cross-section has been studied by Pi-
con and Boris [29]. They gave the magnitude of the vortex strength or circulation, 

2
2 02 1 ln .

2 c

VV R
W

ρ
ρ
∞  Γ ≈ −   

   
                             (4) 

where 2V  is the flow velocity behind the shock in the laboratory frame, W is the shock velocity, 0R  is the ra-
dius of the cross-section of the cylinder, ρ∞  is the ambient density, and cρ  is the density of the gas in the cy-
linder. For an initial temperature of 298 K and pressure of 0.8 atm, the resulting 1D gas dynamic velocities are 
the following, 2 105.6 m sV = , and 414.75 m sW = . In the simulations, the effective radius 0R  is 2.57 mm, 
the ambient density ρ∞  is the density of air, 30.95 kg m , and cρ  is the density of the cylinder 2.85 kg/m3. 
From these data, one can get the amount of circulation is 20.52 m s− . From Figure 3, one can see that the si-
mulation data is shown a good agreement with the value. 

Additionally, one can calculate the vortex strength by applying the approximate model of the compact vortex. 
When a shock impacts on a heavy gas cylinder, the cylinder will stand here relative to the ambient gas because 
of its inertia. Then the cylinder will have a velocity 2V  with the opposite shock direction relative to the back-
ground. There is a discontinuity of the tangential velocity at both edge of the cylinder, so the cylinder could be 
considered as a two dimensional vortex sheet. From the vorticity dynamics, one can calculate the magnitude of 
the circulation of the compact vortex rolled up from the vortex sheet 2 02V RΓ =  [30]. One can obtain a value of 

20.54 m s−  which is also in a good agreement with the numerical results. 
In two dimensional case, as analogous to center of mass, one can define the coordinate of center of vorticity, 

d d
,    .

d d
z z

cv cv
z z

x A y A
x y

A A

ω ω

ω ω
= =∫ ∫
∫ ∫

                            (5) 

The time evolution of the center of vorticity is presented in the Figure 4. One can see that the x-component 
velocity of center of voriticity is 85.6 m/s. In [15], Picone and Boris gave an equation to compute the perpendi-
cular distance d of the vortex core to the y axis or the half vortex spacing,  

( )2

.
4π cm

d
V V
Γ

≈
−

                                       (6) 

Here, cmV  is the velocity of center of vorticity in x direction. Then, one can get the value of d, 2.3 mm. From 
Figure 4, the value is in a good agreement with the center of vorticity in y direction. 

The vorticity distribution along y direction computed on the fine mesh resolution at seven different times is 
shown in Figure 5. The vorticity trends to get together inward and extend outward as time goes by. Because of 
roll-ups, there are some troughs appeared in the vorticity distribution. After about 400 μs , the vorticity is al-
most fixed at the outer edge as time elapses, although it also moves inward to the y axis. The behavior is consis-
tent with the evolution of the center of vorticity in y direction which decreases after about 400 μs  shown in 
Figure 4. 

Considering the mole fraction ( ), ,X x y t , the spatial maximum of the mole fraction in the stream wise direc-
tion gives 
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Figure 4. Center of vorticity in x direction (solid line) and y direction (shot 
dot) as a function of time computed on the fine grid resolution. The dashed 
line is obtained from linear fitting. The dash dot line corresponds to the theo-
retical prediction for the half of vortex spacing in [29].                       

 

 
Figure 5. Vorticity distribution along y direction at seven different times on 
the resolution of 15 μmx y∆ = ∆ = .                                      

 
( ) ( )( )max , max , , ,    for all .X x t X x y t y=                             (7) 

The left and right edge locations of the cylinder, ( )lx t  and ( )rx t , are defined as the x position maxX ε≤ , 
with 0.05ε =  in the present simulations. The length is given by ( ) ( ) ( )r lh t x t x t= − ; which divided by the 
diameter of the cylinder 02R , then one can get the normalized length ( ) ( ) 02t h t Rη = . In Figure 6, the 
log-log plot of normalized length vs. time shows that from about 200 μs to 650 μs , there is a linear relation-
ship. Then, a power law of 0.43t  for the normalized length is obtained. 

4. Discussions and Conclusions 
To the authors’ knowledge, there hasn’t been an investigation of the power law of the length for a shock accele-
rated gas cylinder, although the power law followed by the mixing zone width has been investigated in the sin-
gle mode or multi-mode Richtmyer-Meshkov instability. Dimonte and Schneider [19] reported a power law tθ   
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Figure 6. Log-plot of normalized length vs. time computed on the coarse 
(shot dashed line), medium (short dotted line) and fine (solid line) mesh 
resolutions. The dashed line corresponds to the power law of 0.43t . The 
scattered data correspond to the experimental data obtained from [14].        

 
with 0.2 - 0.32θ ∼  for 0.1 0.5A< <  with linear electric motor experiments in three dimensions. Using full 
numerical simulations, Oron et al. [20] gave the power exponent 0.4 0.02θ = ±  for the bubbles. Recently, 
Sohn [21] predicted that the bubble fronts follow a power law with θ  in the range of ( )0.3 - 0.35 0.02±  by 
applying a quantitative model of bubble completion. For the roll-ups of vortex sheet, the power law of ~r tθ  
with 2 3θ =  has been gained [7], where r  is the polar radius of the spiral. Interestingly, it is seen that the 
power law exponent of the normalized length obtained here is almost same to that of the bubble fronts in [20], 
although it’s quite different from the others. 

In conclusion, we studied the evolution of a shock impinging heavy gas cylinder and the growth of the nor-
malized length. A self-similar behavior is shown from the snapshots of the evolution of the gas cylinder. The 
two dimensional numerical results of the negative circulation, the center of vorticity, and the vortex spacing are 
in a good agreement with the results obtained from the analyses of Picon and Boris [29]. Moreover, the norma-
lized length obeys a power law ~ tθη  with 0.43θ = . Whether the power law is a universal property for a 
shock accelerated cylinder is under investigation. More investigations of a shock accelerated cylinder with dif-
ferent radii, density ratios, and Mach numbers will be performed in future. 
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