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Abstract 
The introduction of a new concept of space-energy duality serves to extend 
the applicability of the Einstein field equation in the context of a 4-index 
framework. The utilization of the Weyl tensor enables the derivation of Eins-
tein’s equations in the 4-index format. Additionally, a two-index field equa-
tion is presented, comprising a conventional Einstein field equation and a 
trace-free Einstein equation. Notably, the cosmological constant is associated 
with a novel concept that facilitates the encoding of space and energy infor-
mation, thereby enabling the recognition of mutual interactions between 
space and energy in the presence of gravitational forces, as dictated by Eins-
tein’s field equations (EFE) and Trace-Free Einstein Equation (TFE). 
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1. Introduction 

One of the most significant intellectual achievements of the 20th century is Eins-
tein’s general relativity (GR), which presents the current understanding of gravi-
tation in modern physics. It provides a geometric explanation of gravity that 
does not conceptualize it as a traditional force, but rather as a result of the cur-
vature of space-time. This curvature is directly linked to energy through Eins-
tein’s field equation [1]-[6]. 

Despite the successes achieved by Einstein’s equations in general relativity, 
however, it is criticized for several failures in the field of formulating the total 
energy tensor, as the description of all the energy fields contributing to the stu-
died system affecting space was not considered. Incorporates all potential sub-
stantial fields, including dark energy, but excludes the energy, momenta, or 
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stresses related to the gravitational field itself because there isn’t a correct energy 
stress tensor for the gravitational field.  

For the theory of general relativity to be successful, it must fully describe the 
total energy tensor, so that it includes all possible prospects for sources of energy 
that contribute to the system. This accomplishment is only possible if we include 
inflation, dark matter, and dark energy in the energy stress tensor, all of which 
are believed to have major effects on the dynamics of the cosmos. 

Since Einstein laid the general theory of relativity and the field equation, many 
attempts have been made to develop it [7] [8] [9]. The attempt to generalize 
Einstein’s equation in the quadrilateral field led to the emergence of the Weyl 
tensor, which carries information about vacant space. 

On the other hand, Einstein’s tensor and energy tensor are scale-invariant. 
This scale-free functionality is further illustrated by the notion that gravitational 
radiation is captured by the Weyl curvature of space-time while the Ricci curva-
ture provides compatibility with matter fields. Once a cosmological constant is 
recognized, however, the scaling feature is lost. Einstein thought that changing 
GR would result in a traceless theory since the violation of the scaling feature is 
so severe. 

The fundamental concept entails the elimination of the trace component from 
Einstein’s equation on both sides.  

In a space-time characterized by n dimensions, when presented with a sym-
metric (0, 2) tensor X, we can establish its trace-free component as:  

( )1ˆ jl
jl jl jl jlX X g g X

n
= − . The idea then is to replace Einstein’s equation with  

the trace free part on both sides: ˆ ˆ
jl jlG T= . All vacuum solutions with some 

cosmological constant solve this equation. 

2. Communication between Space and Energy 

The theory of relativity has been instrumental in exploring the concept of com-
munication between space and energy. By establishing a mathematical frame-
work, this theory has provided insights into how space reacts to the movement 
of matter within it. It suggests that space can be curved in response to matter, 
while matter, in turn, influences the curvature of space. However, the underlying 
mechanism that governs this interaction remains a subject of inquiry. The ques-
tion arises: How does matter transmit information to space, prompting a re-
sponse from it? 

To address these inquiries, a model has been developed to shed light on the 
process of information transfer between two systems with distinct physical prop-
erties. This model postulates the necessity of an intermediary to facilitate the 
transfer of information. The proposed process unfolds as follows: when energy 
interacts with space, the inertial space detects the presence of energy, such as an 
inertial mass. In response, it generates a gravitational mass, also known as va-
cuum energy, which encapsulates all the relevant information about the vacant 
space. This vacuum energy is then transmitted to the inertial mass. Similarly, the 

https://doi.org/10.4236/ijaa.2023.134016


M. A. Salih 
 

 

DOI: 10.4236/ijaa.2023.134016 283 International Journal of Astronomy and Astrophysics 
 

inertial mass creates a virtual space, referred to as gravitational space or vacuum 
space, which carries all the pertinent information about the inertial mass. This 
mutual exchange of information between space and energy can be conceptua-
lized as a form of duality, termed space-energy duality. 

The interaction between space and energy is governed by an equation that in-
corporates certain terms. These terms are represented by tensors, which are ca-
pable of conveying information about vacuum space and vacuum energy. These 
tensors, such as the Weyl tensor, vanish out beyond the confines of the described 
space to rectify and generalize Einstein’s field equation. 

The initial state of space when it interacts with external energy can be defined 
as a vacuum. It is important to note that space does not necessarily have to be 
devoid of energy or mass. The concept of flatness, which refers to the relative 
state of space, is contingent upon the perspective of the observer. 

This idea can be compared to what is presented by Wheeler-Feynman’s theory 
of radiation. John Cramer called the Wheeler-Feynman theory of radiation, the 
transactional interpretation of quantum mechanics, where sub-atomic particles 
produce (offer) and (confirmation) waves in time and anti-time respectively, so 
that in effect an action in anti-time provides the electron pair with advanced in-
formation about how they will interact. And although the electrons may seem to 
“consider” all possible interactions, the electrons, therefore, end up interacting 
only in what is one path for each interaction, and the range of quantum proba-
bilities for a set of interactions [10]. 

3. The Model of Space-Energy Duality 
3.1. Formulation of the Dual Space-Energy  

The characterization of the Ricci tensor is based on the measurement of shape 
deformation along geodesics in space within the framework of general relativity, 
which is established in the pseudo-Riemannian setting. This characterization is 
evident through the inclusion of the Ricci tensor in the Raychaudhuri equation. 
Consequently, the Einstein field equations propose that the pseudo-Riemannian 
metric can effectively describe space-time, with a remarkably straightforward 
relationship between the Ricci tensor and the matter content of the universe. 

Einstein expressed the equations of general relativity using 2-index tensors,  
1
2ik ik ikR Rg T− =  with ikR  representing the Ricci curvature tensor and its scalar  

R, ikg  denoting the metric tensor, and ikT  representing the energy momen-
tum tensor. This particular formulation disregarded the influence of vacuum, as 
it was encoded in the Wyle tensor, which becomes zero in the 2-index form. 

The comprehensive description of space-time curvature is provided by the 
Riemann curvature tensor, which is a rank 4 tensor. If the Riemann curvature 
tensor is uniformly zero in all regions of space-time, it signifies the flatness of 
our space-time. In the scenario of an empty space that is flat, this implies that 

ijklR  equals zero. When pure energy, represented as ijklT , interacts with the 
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aforementioned space, an interaction between the space and energy takes place, 
leading to the emergence of interaction terms. These interaction terms are 
commonly known as pseudo tensors. 

The Weyl conformal tensor ijklC  and the components of the Riemann cur-
vature tensor of general relativity ijklR , that solely involve the Ricci tensor jlR  
and the curvature scalar R are the constituents of the Riemann curvature tensor. 
The Weyl tensor has the property of vanishing upon contraction, 0ik

ijklg C = , 
which implies that the information it carries regarding the gravitational field in 
vacuum is absent from the well-known Einstein equation. 

From the aforementioned, a comprehensive equation can be formulated which 
encompasses the initial boundaries of the system and the terms of interaction in 
the shape of an amalgamated equation, 

ˆ ˆ
ijkl ijkl ijkl ijkl ijklR TR T+ = + +                       (1) 

The total vacuum tensors are represented by îjklT  and ˆ
ijklR , while the interac-

tion term is denoted as ijkl . 
The Einstein field equation can be derived by contracting Equation (1) in two 

indices. This derivation involves the utilization of total vacuum tensors, namely 

îjklT  and ˆ
ijklR , as well as the interaction term ijkl . The main goal is to con-

struct a collection of fourth-order tensors, denoted as , ,jl jlTR R� � � , and T� , in or-
der to determine the vacuum fields. These tensors should possess the same 
symmetries as the Riemann tensor and incorporate the metric tensors. 

To achieve this objective, two sets of fourth-order tensors will be utilized, 
which can be defined as follows,  

ijkl ik jl il jkg T g g T g g T= −� � �                         (2) 

ijkl ik jl il jkg gR Rg gR g= −� � �                         (3) 

ik jl jk il jl ik il jk ijk l ij l kg T g T g T g T g T g Tρ ρ
ρ ρ− + − = +� � � � � �               (4) 

ik jl jk il jl ik il jk ijk l ij l kg g g g g R RgR R R R ρ ρ
ρ ρ− + − = +� � � � � �              (5) 

The equivalence between the combination of Equations (2)-(5) and the Rie-
mannian tensor and energy-momentum tensor signifies that by using Equations 
(2)-(5), we can formulate the Riemannian and energy-momentum tensors for 
vacuum, see Frédéric Moulin [9] and references there in,  

( )ˆ
ijkl ijkl ijk l ij l k ijklR R R R Rg g Rg ρ ρ

ρ ρ= + + + +� � � � �                (6) 

( )îjkl ijkl ijk l ij l k ijklT g T g T g T T Tρ ρ
ρ ρ= + + + +� � � � �                 (7) 

In order to derive the comprehensive expression for Equation (1) as the 
4-index Einstein equation of general relativity, the substitution of the Rieman-
nian and energy-momentum tensors for vacuum in a linear is required. 

( ) ( ) ( ){
( )} ( )

1 1 2

2 ,

ijkl ijkl ijkl ijkl ijkl ijkl ijk l ij l k

ijk l ij l k ijkl

R R R RR T T g g T g g

g T g T TR

ρ ρ
ρ ρ

ρ ρ
ρ ρ

α β α β α

β

+ − + + − + +

− + =

� �

�

� �

�

� �

� �
 (8) 
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where 1 2,,α α α  are three arbitrary parameters that can be determined. 

( ),ijkl TR� �  the dual coupling tensor (interaction term). 

3.2. Four-Index Einstein Equation  

By substituting the values of the parameters α , 1α , and 2α  (as provided in 
Appendix 1) into Equation (8), it becomes possible to express a generalized field 
equation in a simplified form that encompasses only a single parameter; 

( ) ( )( )

( ) ( )( ) ( )

1 1
2 1 2

1 1 ,
2 1 2

ijkl ijkl ijk l ij l k ijkl

ijkl ijkl ijk l ij l k ijkl ijkl

R g g g
n n n

T T

R R

g T g T g T T
n

R

R
n

R

n

ρ ρ
ρ ρ

ρ ρ
ρ ρ

α αα

β ββ

− −
+ + + −

− − −

 − − = + + + − + 
− − −  

� � � �

� � �� � �
 (9) 

The definition of the interaction tensor can be established by considering  

( ),ijkl TR� �  as  

( ) ( ) ( )1 1

2 2

1 1,
2 2 1ijkl ijkl ijkl ijkl ijklR RT g T g g g TR

n
β α
β α

 
= − − = −  − 

� � � �� �     (10) 

Upon substituting Equation (10) into Equation (9), the resulting equation can 
be identified as the 4-index Einstein equation. 

( ) ( )( )

( ) ( )( )

1 2
2 2 1 2

1 2
2 2 1 2

ijkl ijkl ijk l ij l k ijkl

ijkl ijkl ijk l ij l k ijkl

R R R RnR g g g
n n n

nT T g T g T g T
n n n

ρ ρ
ρ ρ

ρ ρ
ρ ρ

α αα

β ββ

 − − + + + − − − −  
 − − = + + + − 

− − −  

� � � �

� � � �
   (11) 

Equation (11) presents a generalization of the 4-index Einstein equation, en-
compassing a wider range of phenomena. The vacuum components within Equ-
ation (11) bear a similarity to those obtained through the application of the 
principle of least action by Frédéric Moulin [9]. By conducting the tonsorial 
contraction (Appendix 2) of this equation, Einstein’s equation of general rela-
tivity is derived, regardless of the particular values assigned to α, β, and n. 

The total vacuum tensors, ˆ
ijklR  and îjklT  can be defined as 

( ) ( )( )
1 2

2 2 1
ˆ

2ijkl ijkl ijk l ij l k ijkl
ng g g

n n
R R R R

n
Rρ ρ

ρ ρ
α αα

 − − = + + − − − −  
� � � �     (12) 

( ) ( )( )
1 2

2 2 1 2îjkl ijkl ijk l ij l k ijkl
nT g T g T g T

n n n
T ρ ρ

ρ ρ
β ββ

 − − = + + − 
− − −  

� � � �     (13) 

If the space is empty, ˆ,ijkl ijklT R  and their components vanish, and Equation (11) 
reads, 

( ) ( )( )
1 2

2 2 1 2
ˆ

ijkl ijkl ijk l ij l k ijkl ijkl
nR T g T g T g T

n n
T

n
ρ ρ

ρ ρ
β ββ

 − − = + + − = 
− − −  

� � � �    (14) 

Equation (14) indicates that space has the ability to generate dark energy 
through its interaction process, which can effectively interact with external 
energy and matter. This interaction displays a duality similar to that of matter. 
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Contraction of (14) gives 

1
2jl jl jlR T g T= −� � , 2

2
T R

n
= −

−
�  and 1

2jl jl jlR g R T
n

− =
−

�        (15) 

Equation (15) shows the deformation of vacant space consumes its internal 
energy (vacuum energy). 

If the energy does not interact with space, ijklR , îjklT  and their components 
have vanished, and Equation (11) reads, 

( ) ( )( )
1 2

2 2 1 2
ˆ

ijkl ijkl ijk l ij l k ijkl ijklR nT g R g g
n

R
n

R
n

Rρ ρ
ρ ρ

α αα
 − − = + + − = 

− − −  
� � � �    (16) 

Energy or matter can generate a distinct space, known as dark space or inte-
raction space, which operates based on its interaction with any given space. This 
behavior exhibits a resemblance to the dual nature of matter. 

1
2jl jl jlRT Rg= −� � , 2

2
R T

n
= −

−
�  and 1

2jl jl jlT g T
n

R− =
−

�       (17) 

Equation (17) elucidates that the transmission of information regarding the 
intended curvature is facilitated by the matter. The generation of this spatial 
configuration, however, necessitates the utilization of energy resources. There-
fore, Equations (15) and (17) represent two aspects of the dual energy space 
process. 

Sakharov conjectures that space-time curvature is determined by the distribu-
tion of vacuum energy, and Equation (17) shows the deformation of pure energy 
annihilates its vacuum space [11]. 

Colella, Overhauser, and Werner [12], demonstrated in 1975 that de Broglie 
waves are influenced similarly by gravitational potentials. That experiment 
measured the gravitational phase shift of neutron waves. 

Wheeler has called attention to a proposal by Sakharov, that gravitation ulti-
mately arises from variation in the quantum zero-point energy of the vacuum 
[13]. 

3.3. Weyl Tensor 

The Weyl tensor measures the curvature of space-time or a pseudo-Riemannian 
manifold and represents the tidal force experienced by a body moving along a 
geodesic. Unlike the Riemann curvature tensor, the Weyl tensor does not indi-
cate changes in the volume of the body, but rather only the distortion of its 
shape due to tidal forces. The Ricci curvature, or trace component of the Rie-
mann tensor, provides information on volume changes caused by tidal forces, 
while the Weyl tensor is the traceless component of the Riemann tensor. 

To find the Weyl tensor, first, we define the tensor ijklC  as 

( ) ( )( )
1 1

2 1 2ijkl ijk l ij l k ijklC g g g
n n n

R R Rρ ρ
ρ ρ

  = + − 
− − −  

� � �          (18) 

We used  
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( ) ( )2ik
ijk l ij l k jl jlg g gR R gR Rnρ ρ

ρ ρ+ = − +� � � �  

The tensorial contraction of (18) in two indices, gives 

jl jlC R= �                             (19) 

Then the Weyl tensor can be written as 

( ) ( )( )
1 1

2 1 2ijkl ijkl ijk l ij l k ijklg g gR R R R
n n n

ρ ρ
ρ ρ

  = − + − 
− − −  

� � � �     (20) 

Where the contraction of (20) is vanishing as 

0ik
ijklg =                            (21) 

3.4. Einstein Tensor 

To find Einstein’s tensor we define the tensor ijklG  as 4-index tensor, 

( ) ( )( )
1

2 2 1 2ijkl ijk l ij l k ijkl
nG g g g

n n n
R R Rρ ρ

ρ ρ

  = + − 
− − −  

� � �        (22) 

We use, ( ) ( )2ik
ijk l ij l k jl jlg g gR R gR Rnρ ρ

ρ ρ+ = − +� � � �  to contract Equation (22) as 
(Appendix 2 (A2.5))  

1
2jl jl jlRG Rg= −� �                         (23) 

Now, the representation of the 4-index Einstein tensor is depicted on the left-hand 
side of Equation (11) as follows: 

{ }ijkl ijkl ijkl ijklE R G Cα= + +                     (24)  

The contraction of Equation (24) yields the two-index Einstein tensor; 

1
2jl jl jl RE R g= − �                        (25) 

The effective Ricci curvature tensor jlR  is defined as 

( )jl jl jlRR R= + �                        (26)  

3.5. 4-Index Energy-Momentum Tensor 

Furthermore, it is possible to ascertain the energy tensor by dividing it into two 
distinct tensors. The first tensor pertains to the vacuum, whereas the second one 
is linked to the external energy. It is imperative to note that the first tensor must 
disappear when two indices are contracted, specifically 0jl =� . 

Conversely, the second tensor does not possess this characteristic and remains 
non-zero, denoted as 0jl ≠ . 

The first tensor, known as the gravitational energy tensor or vacuum energy 
tensor, is now being defined as, 

( ) ( )( )
1 1

2 1 2ijkl ijkl ijk l ij l k ijklT g T g T g T
n n n

ρ ρ
ρ ρ

  = − + − 
− − −  

� � � � �        (27) 
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The contraction of the gravitational energy momentum tensor ijkl
�  gives, 

0jl =�                               (28) 

The traceless property of the gravitational energy momentum tensor ijkl
�  sig-

nifies that it does not possess any trace (traceless). 
The inertial (non-gravitational) energy tensor or external energy tensor can be 

defined as 

( ) ( )( )
1

2 2 1 2ijkl ijk l ij l k ijkl
ng T g T g T

n n n
ρ ρ

ρ ρ

  = + − − − −  
� � �           (29) 

Contraction of Equation (29) gives, 

1
2jl jl jlT g T= −� �                          (30)     

To determine the complete energy-momentum tensor, it is necessary to combine 
the gravitational energy-momentum tensor and the non-gravitational ener-
gy-momentum tensor in a linear manner as 

{ }sm
ijkl ijkl ijkl ijklT T β= + + �                      (31) 

We contract (31) in two indices to obtain the two-index total energy-momentum 
tensor, using the same method as before, 

1
2

sm
jl jl jlT T g T= − �                         (32) 

The effective energy-momentum tensor jlT , which comprises the sum of jlT�  
and jlT , represents both the gravitational and non-gravitational effects. It cha-
racterizes the actual energy involved in the interaction process within the system, 
as described by the energy-momentum tensors. 

3.6. Generalized Field Equation 

To arrive at a generalized formula for the Einstein field equation, based on the 
previous equations of the 4-index Einstein tensor and the complete ener-
gy-momentum tensor, 

sm
ijkl ijklE T=                            (33) 

Upon contraction of Equation (33), the resulting outcome is the two-index field 
equation, 

1 1
2 2jl jl jl jlg g TR R T− = − ��                     (34) 

Equation (34) can be restated by incorporating the terms that depict the reci-
procal impact of space and energy, manifested as vacuum terms. 

jl jl jlR g T− Λ =                         (35) 

It can be noted that all the information that space and energy need to recognize 
each other is encoded in the term jlg Λ . Therefore, we find that jlg Λ  controls 
the final form of Einstein’s field equation. 
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There are two contexts in Equation (35). The first one if the deferential 

( ) 0l
jl jlR g∇ − Λ = , Equation (35) construes to Einstein field equation. The 

second is ( ) 0jl
jl jl jlg R g T− Λ − = , in this case, Equation (35) construes to 

Trace-free Einstein field equation. 
Using Equation (34) and Equation (35), Λ can be defined as follows  

2
2

n
n
−

Λ = �                           (36)  

The equation’s interaction effect is represented by the scalar  , which is the 
result of combining the duality of space and energy in a scalar summation 

 { } 2 Λ
2n

R nT= − =
−

� �                      (37)  

In Equation (37) if the effective vacuum scalar curvature is { }TR= −� �  and 
effective cosmological constant Λ, we find the solution of quadratic gravity of 
field equation. 

The Ricci curvature from (37) can be define as 

2 Λ
2jl jlg

n
=

−
                        (38) 

Equation (38) is the exact solution of quadratic gravity [14] [15]. In 4 dimen-
sions (n = 4) Equations (36)-(38) construe to vacuum Einstein equations, which 
confirms the validity of our assumption that { },TR� �  are vacuum parts. 

4. Einstein Field Equation and the Cosmological Constant 
4.1. Return to Einstein’s Original Equations  

To reduce Equation (40) to the Einstein field equation, we put 

{ }22 nR TR
n
−

= Λ = −� �  or { }22T Rn T
n
−

= − Λ = −� �         (39) 

{ }2
2

jl jl
nR g T
n

R−
= −� �  { }2

2
jl jl

nT g
n

RT−
= −� �  

We use ( ) ( )1 1 1jl jl
jl jl jl jl jl jlR g g R g g R g R

n n n
= = = , jl

jlg R R=  

The Schur lemma asserts that when the Ricci tensor is a multiple of the metric 
at each point [16] [17] [18], the metric is necessarily Einstein, except in the case 
of two dimensions. Furthermore, it implies that, apart from two dimensions, a 
metric is Einstein if and only if there exists a relationship between the Ricci tensor  

and the scalar curvature denoted by 1
jl jlR g R

n
= . Equation (39) represents the 

scalar curvature of the Lagrangian density associated with the Einstein-Hilbert 

action. where, ( ) 41 2 d
2

xS R g= − Λ −∫ .  

The Euler–Lagrange equations for this Lagrangian under variations in the 
metric constitute the vacuum Einstein field equations with cosmological constant  

1 Λ 0
2ik ik ikR Rg g− + = . Because the interaction term in vacuum remains con-
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stant, { }TR −� �  is a constant (see Appendix 3). 

It is evident from (39) that the impact of gravity is contingent upon two fac-
tors: the geometric characteristics, elucidated by Einstein’s interpretation, and 
the energy (mass), expounded by quantum mechanics. The weak equivalence 
principle of general relativity posits that the trajectory of a test particle in a gra-
vitational field remains unaffected by its mass. Conversely, within the realm of 
quantum mechanics, the movement of a particle is intricately intertwined with 
its mass. 

4.2. Trace-Free Einstein’s Field Equation 

The Trace-Free of Einstein’s field Equation (TFE) can be obtained by defining, 
as indicated in Equations (35) and (39), 

2
2

R Rn −
= �  and 2

2
nT T−

= � ,                   (40) 

Equation (34) corresponds to the formulation of the Trace-Free Einstein Equa-
tions (TFE) in a manifold of n dimensions. 

ˆ ˆ
jl jlG T=                            (41) 

The trace free Einstein tensor is ˆ 1
jl jl jlR g R

n
G = −  and the trace free energy 

momentum tensor is ˆ 1
jl jl jlT g T

n
T = − .     

It is essential that the symmetry on both sides of the equation match. These 
become the gravitational field equations that we use. Suppose (l, g) represents a 
solution to the vacuum version of (41). In this scenario, it is implied that the 
traceless component of the Einstein tensor, and consequently the trace free por-
tion of the Ricci tensor, completely disappears. Specifically, this implies that the 
Ricci tensor must be directly proportional to the metric g. When the dimension 
of space-time is at least 3, the aforementioned proportionality indicates that (l, g) 
is Einstein. Consequently, in the case of a vacuum, the function ˆ 0jlG =  is 
equivalent to jl jlG g+ Λ  for a certain unspecified constant Λ. 

The traces of Equation (41) give 

1 0jl
jl jlg R g R

n
 − = 
 

 and 1 0jl
jl jlg T g T

n
 − = 
 

        (42) 

4.3. The Cosmological Constant 

In 4 space-time dimensions, Einstein demonstrated that the Einstein-Maxwell 
theory adheres to the same principle, whereby any solution of the Eins-
tein-Maxwell version of (41) is also a solution of the standard Einstein-Maxwell 
equation with cosmological constant. This is due to the conformal nature of the 
Maxwell field in 4 dimensions. 

The energy-momentum tensor jlT ’s conservation is now an independent as-
sumption and not a byproduct of the geometrical identity [19]. 
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1 1l l
jl jl jl jlR g R T g T

n n
   ∇ − = ∇ −   
   

                (43)   

This differentiation interprets to the relation, 
a aR T∇ = −∇                           (44)  

By integration (44), 

R T nλ+ =                            (45) 

where λ  is integration constant. 
Substituting Equation (45) in (41) to eliminate T, 

2
jl jl jl jlR g R g T

n
λ− + =                      (46) 

In the realm of four dimensions, Equation (46) can be expressed as, 

1
2jl jl jl jlR g R g Tλ− + =                      (47) 

Equation (47) represents the Einstein field equation incorporating the cosmo-
logical constant, which arises as an integration constant during the preceding 
integration process. 

Alternatively, the identical outcome in Equation (47) can be obtained by em-
ploying Equations (40) and (41) in the following manner. 

1 2 1
2jl jl jl jl jl

ng R g g T g g T
n n n

λ λ−
= − = −�             (48) 

Upon applying Equation (48), a remarkable correlation between the scalars in 
general relativity and the cosmological constant can be derived as the following, 

2
2

nR n Tλ −
= − �                        (49) 

R n Tλ= −                          (50) 

The result of the integration in Equation (45) remains unaltered in Equation 
(50). In Equation (49), it becomes apparent that the cosmological constant is 
connected to the curvature of space resulting from the presence of vacuum 
energy. When the scalar curvature R reaches zero, it is observed that the cosmo-
logical constant is directly proportional to the interaction energy of space, which 
contains comprehensive spatial information. 

In simpler terms, the value of the cosmological constant is determined based 
on the state of space and its interaction with the energy present within it. There-
fore, it is necessary to examine the initial conditions of the entire system in order 
to define the cosmological constant λ. This definition is constrained by compati-
ble limitations on the initial data, rather than being a fixed value governed by 
universal physical laws. This concept was previously referred to as the constant 
of integration in Equation (45) [19] [20]. 

When λ is equal to zero, Equation (50) transforms into a trace reverse ( R T= − ), 
resembling the Einstein field equation in four dimensions. Through these disco-
veries, we have gained insights into the characteristics of the cosmological con-
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stant, which elucidate how the curvature of space aligns with the energy re-
quirements that interact with it. This interaction is manifested in the form of 
vacuum energy, as demonstrated in Equations (49) and (50) [21]. The effective 
cosmological constant Λ serves as a constant of integration in classical GR, and 
thus can be arbitrarily chosen. Consequently, it is not reliant on any fundamen-
tal value assigned to Λ. Therefore, utilizing the trace-free Einstein (TFE) equa-
tions instead of the Einstein field equations (EFE) appears to be a sound theo-
retical assumption. In this scenario, a large vacuum cosmological constant Λvac 
has no influence on cosmology or the solar system, as the zero-point energy does 
not impact the geometry of space-time. The EFE remains unchanged, except for 
the inclusion of Λ as an integration constant, which can assume a small or zero 
value. Empirical observations indicate that this constant corresponds to a specif-
ic cosmological length scale ( 2

0HΛ = ), which should be determined based on the 
initial conditions of our universe. Consequently, the vacuum energy problem is 
resolved within the framework of trace-free Einstein gravity, while the coinci-
dence problem, characterized by the near equality between Λ and the Hubble 
constant, persists [20].  

The experimental forecasts of both theories exhibit identical outcomes, there-
by rendering experiments incapable of distinguishing between them, save for a 
fundamental characteristic. This characteristic pertains to the Einstein Field Eq-
uation (EFE), which has been verified with great precision through solar system 
observations and binary pulsar measurements. However, when considering the 
prediction for the vacuum energy density based on Quantum Field Theory, the 
EFE yields an incorrect result by several orders of magnitude. Conversely, the 
Theory of Fundamental Energy (TFE) does not encounter this discrepancy. 
Consequently, experimental evidence strongly favors the TFE in this regard [19] 
[20]. 

5. Conclusions 

The hypothesis put forth in this study integrates the duality principle between 
space and energy in order to provide a comprehensive explanation of Einstein’s 
field equation. A model has been developed to shed light on the complexities of 
information transmission between space and energy. This model suggests that 
an intermediary is essential to facilitate the efficient transfer of information be-
tween these two entities. By adopting this innovative approach, the resulting eq-
uations not only adhere to the Einstein field’s equation but also the Trace-free 
Einstein’s field equation, eliminating the need for intricate integrations. Instead, 
a suitable equivalent Riemannian tensor is introduced to formulate the terms of 
interaction. 

Equation (11) presents a more extensive range of applicability as it serves as a 
generalization of Einstein’s 4-index equation. This equation encompasses a broader 
spectrum of scenarios, allowing for a more comprehensive understanding of the 
underlying phenomena. The vacuum components within this equation exhibit 
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similarities to those obtained through the utilization of the principle of least ac-
tion. 

A novel 4-index gravitational field equation has been proposed, which incor-
porates Weyl’s tensor and Riemann curvature tensor in a linear manner. This 
equation includes the energy-momentum tensor of the actual gravitational field, 
which is absent in Einstein’s field equation due to the contraction of the 
four-index equation resulting in the loss of Weyl’s tensor. The newly derived 
formula represents a natural extension of the well-known Einstein’s equation 
with a two-index and is limited to the domain of general relativity. The presence 
of Weyl’s tensor in this equation provides additional information, supporting 
the adoption of a fourth-order theory. Equation (15) demonstrates the utiliza-
tion of internal energy (vacuum energy) through the deformation of empty 
space, while Equation (17) clarifies that the transmission of information regard-
ing the desired curvature is facilitated by matter. However, the generation of this 
spatial configuration necessitates the utilization of energy resources. Hence, eq-
uations (15) and (17) depict two aspects of the dual energy space process. 

In the context of Einstein’s field equation and the Trace-free Einstein’s field 
equation, the constant has been associated with the mechanism for storing space 
and energy information, facilitating their mutual recognition during gravitation-
al interaction. 

It is noteworthy that Equations (49) and (50) exhibit a significant correlation 
with the relation presented in (48), which is derived from Equation (47). This 
correlation reveals a connection between the cosmological constant and the cur-
vature of space that arises due to the presence of vacuum energy. Upon reaching 
zero scalar curvature R, it becomes evident that the cosmological constant is di-
rectly proportional to the vacuum energy of space, which encompasses inclusive 
spatial information. 
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Appendixes 
Appendix 1 

The specific fourth-order tensors, which are frequently cited in prominent lite-
rature [1]-[6], are the metric tensor combinations that will be utilized in our 
computations. 

( )1 2ijkl ijkl ijkl ijk l ij l kT T g T g T g Tρ ρ
ρ ρβ β β+ = + +� � � �             (A1.1) 

( )1 2ijkl ijkl ijkl ijk l ij l kR R R RR g g gρ ρ
ρ ρα α α+ = + +� � � �            (A1.2) 

In a n-dimensional space, l nσδ =  if l σ= . To find the parameters in equations 
(A1.1) and (A1.2), we contract them in 4 indices. 

( )\ \

1 2
ik jl ik jl ik jl

ijkl ijkl ijk l ij l kg g T g g g T g g g T g Tρ ρ
ρ ρβ β= + +� � �       (A1.3) 

( )\ \

1 2
ik jl ik jl ik jl

ijkl ijkl ijk l ij l kg g R g g g g g gR RgRρ ρ
ρ ρα α= + +� � �      (A1.4) 

The contraction of the metric gives, 
ik jl

ijklg g R R= ; ik jl
ijklg g T T= ; ( )1ik jl

ijklg g g n n= − ;  

( )1jl
ijkl ikg g n g= − ; ik

ikg g n=  

( ) ( )2ik
ijk l ij l k jl jlg g gR R gR Rnρ ρ

ρ ρ+ = − +� � � �  

( ) ( ) ( )
( ) ( )

( ) ( )
( )

1 1

1 1

2 1

ik jl jl ik ik jl
ijk l ij l k ijk l ij l k

jl ik
j l i k

jl ik
jl ik

g g g T g T g g g T g g g T

g n g T g n g T

n g T n g T

n T

ρ ρ ρ ρ
ρ ρ ρ ρ

ρ ρ
ρ ρ

+ = +

= − + −

= − + −

= −

� � � �

� �

� �

�

 

Then we find, 

( ) ( )2 1ik jl
ijk l ij l kg g g gR R n Rρ ρ

ρ ρ+ = −� � �             (A1.5) 

( ) ( )1 1ik jl ik
ijkl ikg g g T n g g T n n T= − = −� � �            (A1.6) 

( )1ik jl
ijklg g g nR Rn= −� �                   (A1.7) 

The contraction of Equation (A1.1) and (A1.2) gives, 

( ) ( )2 12 1 1T T n T n n Tβ β β+ = − + −� � �              (A1.8) 

( ) ( )2 12 1 1R Rn n n RR α α α+ = − + −� � �              (A1.9) 

( ) ( )2 11 2 1 1n n nβ β β+ = − + −                (A1.10) 

( ) ( )2 11 2 1 1n n nα α α+ = − + −                (A1.11) 

The factor of R = 1 and we assume at the boundaries, T T= � , R R= �  
Finally, we find the parameters 

2
1

2n
αα −

=
−

; 
( )( )1

1
1 2n n

αα −
= −

− −
; 2

1
2n
ββ −

=
−

; 
( )( )1

1
1 2n n

ββ −
= −

− −
 (A1.12) 

Substitute (A1.12) in Equation (8) we find 
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( ) ( )

( )( ) ( )( )

1 1
2 2

1 1 0
1 2 1 2

ijkl ijkl ijk l ij l k ijk l ij l k

ijkl ijkl

R T g g g T g T
n n

g g T
n n

R

n n

R

R

ρ ρ ρ ρ
ρ ρ ρ ρ

α βα β

α β

− −
− + + + +

− −
− −

− + =
− − − −

� �

��

� �

 

Appendix 2 

( ) ( )( )

( ) ( )( )

1 2
2 2 1 2

2 1 2
2 2 1 2

ijkl ijk l ij l k ijkl

ijk l ij l k ijkl ijkl ijkl

nR g g g
n n n

g T g T g T T T
n

R

n

R R

n

ρ ρ
ρ ρ

ρ ρ
ρ ρ

α αα − −
+ + −

− − −

  = + − + + 
− − −  

�

� �

�

�

�


 (A2.1) 

( ) ( )( )
11 1

2 1 2ijkl ijk l ij l k ijkl ijklR RR g g T
n n n

Rgρ ρ
ρ ρ α −− + + =

− − −
� � �    (A2.2) 

( ) ( )( )
1 1 1

2 1 2ijkl ijkl ijk l ij l k ijklR RR T g g g
n n n

Rρ ρ
ρ ρα −= + + −

− − −
� � �    (A2.3) 

( ) ( )( )

( ) ( )( )

1
2 2 1 2

2 1 2
2 2 1 2

ijk l ij l k ijkl

ijk l ij l k ijkl ijkl

ng g g
n n n

g T g T g T T
n n n

R R Rρ ρ
ρ ρ

ρ ρ
ρ ρ

+ −
− − −

  = + − + 
− − −  

� �

� � �

�
   (A2.4) 

( )
1

2 2 2jl jl jl jl
nG g g

n n
R R R= + −

− −
� � �               (A2.5) 

( ) ( )2 1ik jl
ijk l ij l kg g g gR R n Rρ ρ

ρ ρ+ = −� � � , ( )1ik jl
ijklg g g nR Rn= −� � , 

( )
( )

22 1
2 2 2

n nG
n

R
n

 − = − 
− −  

�                  (A2.6) 

{ }1 1
2

ik ik ik ik
ijkl ijkl ijkl ijkl ijklg G g g Rg R

α α
= + + − � 


        (A2.7) 

Appendix 3 

{ }2
2

n T
n

R−
Λ = −� �  

( ) 41 2 d
2

S R g x= − Λ −∫  

Taking variations with respect to the inverse metric: 

( ) 410 2 d
2

S R g xδ δ  = = − Λ −  ∫  

4d
2 2

ik
ik ik ik

g g gR RS g x
g g g

δ δδδ δ
δ δ δ

 − − −
= + − Λ 

  
∫  

41 d 0
2 2

ik
ik ik ik

g gR RS g g x
g g gg g

δ δδδ δ
δ δ δ

 − −Λ
= + − − = 

− −  
∫  

ikik
R R

g
δ
δ

= , 
42 ikik

gR R g
gg

δ
δ
−

= −
−

, 
2 ikik

g
g

gg
δ
δ
−Λ Λ

= −
−
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1 0
2ik ik ikR Rg g− + Λ =  

Because the interaction terms in vacuum remains constants, { }TR −� �  is a con-
stant. 
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Abstract 
In order to simulate the red sun at the horizon we need to evaluate the aver-
age density of matter along a line of sight characterized by a given elevation 
angle. The decrease in frequency or the increase in wavelength of the light is 
modeled by the Bouguer-Beer-Lambert law and as a consequence, all the 
Planck spectrum is shifted toward lower frequencies or longer wavelengths. 
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1. Introduction 

The red color of the sun at the horizon raises some astrophysical questions that 
should be solved: 

1) What is the mechanism that changes the color of the sun from yellow to red?  
2) What is the role of the declination angle in this change of color?  
The solar spectrum at the top of the atmosphere is here assumed to be mod-

eled by the Planck distribution which dates back to 1901 [1]. The Planck distri-
bution is an active field of research and we select some topics under discussion: 
A careful examination of the maximum in emissivity in the following domains: 
frequencies, wavelength and wave number [2]; a parametrization of the peaks in 
emissivity with the Lambert function [3]; a parametrization of the fraction of the 
total power emitted by a blackbody in a given spectral band with the polyloga-
rithm function [4]; a semi-analytical method to calculate the total radiance re-
ceived from a black body between two frequencies [5]; a careful analysis of the 
Planck distribution in order to explain three features of the Solar photons: re-
frangibility, heat effect and chemical effect [6]. In order to answer the posed 
questions, we review in Section 2 the existing data on the density of the atmos-
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phere and we analyze in Section 3 the behavior of the density of matter along 
three lines of sight: horizon, zenith and variable declination angle. The losses in 
energy along the line of sight are evaluated in the framework of a blackbody dis-
tribution for frequencies, see Section 4, and a blackbody distribution for wave-
lengths, see Section 5. Section 6 derives the temperature of the sun’s spectrum 
for the air mass zero (AM0). 

2. The Density Profile of the Atmosphere 

We assume that the atmosphere has a density of the type  

( ) exp ,atm
rr C
s

ρ  = ∗ − 
 

                      (1) 

where r is the altitude above the sea level, atmC  and s are two numerical para-
meters to be found from the available data. In order to find the above parameters 
we processed the data of the U.S. standard atmosphere as reported in  
https://www.engineeringtoolbox.com/. Conversely a ray of the sun in the travel 
from the top of the atmosphere interacts with a growing density of air  

 ( ) exp ,out
rr C
s

ρ  = ∗  
 

                      (2) 

where outC  is a constant and r varies between 0 at the top of the atmosphere 
and t, the thickness of the atmosphere. In both cases r is evaluated along a line 
which crosses the center of Earth and Table 1 reports the numerical values for 
the atmosphere here adopted. A first application is the average density of the 
atmosphere evaluated along the two directions of a radial line which crosses the 
center of Earth  

 
0 0

3

exp d exp d
kg0.127892 .
m

t t
atm out

zenith

r rC r C r
s s

t t
ρ

   ∗ − ∗   
   = = =

∫ ∫
   (3) 

The above result means that the average density at zenith is equal in both direc-
tions. 
 
Table 1. Numerical values for the parameters in SI.  

symbol meaning numerical value 

atmC  constant from inside 1.44766271 kg/m3 

outC  constant from outside 1.75711175 × 10−5 kg/m3 

s atmospheric scale 7067.63477 m 

t thickness atmosphere 8 × 104 m 

a radius Earth 6.3781 × 106 m 

zenithl  line of sight for zenith 8 × 104 m 

horizonl  line of sight for horizon 1.0133 × 106 m 

zenithρ  averaged density along zenith 0.127892 kg/m3 

horizonρ  averaged density along horizon 0.380299 kg/m3 
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3. The Involved Geometry 

We start with the observer situated on the Earth’s surface at the center of an X-Y 
frame with coordinates (0, 0). A first line represents the line of sight of the sun  

 ( )tan ,y xθ=                            (4) 

where the angle θ  in rad grows in the counterclockwise direction. The sun at  

the horizon has an angle 0θ =  and sun at the zenith has an angle 
2

θ =
π

; in 

astronomy θ  is named elevation angle. 
A second line  

 ( )tan ,y x aφ= −                          (5) 

crosses the center of the Earth (0, −a) with a representing the Earth’s radius, see 
the numerical value in Table 1, and φ  a counter-clockwise angle in rad. The 
two lines are reported in Figure 1. A first circle represents the Earth’s surface  

 ( )2 2 2 ,y a x a+ + =                          (6) 

and a second circle represents the end of the atmosphere  

 ( ) ( )2 22 .y a x a t+ + = +                       (7) 

We now analyze two directions of sight, zenith and horizon, and then the line of 
sight as function of the angle of sight θ . 

3.1. Two Directions 

We limit ourselves to the zenith, 
2

θ =
π

, and to the horizon, 0θ = , in order to  

 

 

Figure 1. The first green line of sight with gradient equal to ( )tan θ  and the second gray 

line which connects the center of Earth to the atmosphere, gradient equal to ( )tan φ . 
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obtain first results in a simple way. The intersection of the line 0y =  with the 
second circle (7), maxx  is at  

 2
max 2 ,x at t= +                         (8) 

which means that at the horizon the line of sight is ≈12.6 bigger in respect to the 
zenith. A way to parameterize the second line, see Equation (5), which crosses 
the center of the Earth is  

 
( )

,h

h

a x x
y

x
−

=                         (9) 

where hx  is the intercept with the line 0y =  which varies between 0 and maxx , 
see Equation (8). The distance as going from outside to inside in the atmosphere 
along the above line to the line 0y =  is function of hx   

 
( )22 2 2 2

2 22 2
.

h
h

h
hh

a a x ax ar t x
a xa x

− + + 
 ∆ = − − +
  ++ 

         (10) 

When maxhx x=  we have 0r∆ =  and when 0hx =  we have r t∆ = ; Figure 2 
reports an example of evaluation of r∆ . 

A second application is the average density of the atmosphere evaluated along 
the line of sight for the horizon which is  

 

2
2 2 22

2 22 2
22

302

1 kge 0.380299 .
m2

a a x axat x
a xa x

at t s
horizon outC

at t
ρ

 − + +     − − +
  ++ 

+
= =

+
∫  (11) 

 

 
Figure 2. First circle in red, second circle in blue, line which connect the center of Earth 
to y = 0 in gray and thick line which represents the distance on which to evaluate the den-
sity in green.  
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The above numerical result allows to say that the average density along the 
line of sight for the horizon is ≈2.97 time bigger than that along the line of sight 
of the zenith. The line of sight along the zenith direction is zenithl t=  and along 
the horizon direction is maxhorizonl x= . 

3.2. Variable Angle of Sight 

The angle θ  characterizes the line of sight, see Equation (4), and the intersec-
tion of the above line with the second circle, see Equation (7), ( ,2sx , ,2sy ), is at  

 ( )( ) ( ) ( ) ( )( ) ( )2 2 2 2
,2 sin 2 sec cos sin cossx a at t aθ θ θ θ θ= + + −    (12) 

 ( ) ( ) ( )2 2 2 2
,2 sin 2 sin sin .sy a at t aθ θ θ= + + −           (13) 

The second line which crosses the center of the Earth, see Equation (5), has a 
minimum angle φ   

 
( ) ( ) ( )
( ) ( )

2 2 2

min 2 2 2

sin 2 tan cos
arctan ,

sin sin 2

a at t a

a a at t

θ θ θ
φ

θ θ

 + + +
 =
 − + + + 

      (14) 

which means that the range of φ  is min ,
2

φ π 
  

 and Figure 3 reports the value 

of minφ  as function of the angle θ  in degree. 

The intersection, ( ,s ex , ,s ey ), between the line which represents the line of 
sight, see Equation (4), and that one which represents the radial direction in re-
spect to the center of Earth, see Equation (5), is at  

 
( ) ( ), tan tans e

ax
θ φ

= −
−

                    (15) 

 

 
Figure 3. The value of minφ  as function of the angle θ  in degree, parameters as in Ta-
ble 1.  
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( )
( ) ( ),

tan
.

tan tans e

a
y

θ
θ φ

= −
−

                    (16) 

The intersection, ( ,e cx , ,e cy ), between the line which represents the radial di-
rection in respect to the center of Earth, see Equation (5), and the second circle, 
see Equation (7), is at  

 
( ) ( ) ( )

( )

2 2 2 2 2

, 2

2 sec tan

tan 1e c

at t a a
x

φ φ

φ

+ + +
=

+
           (17) 

 
( ) ( ) ( ) ( )

( )

2 2 2 2 2

, 2

tan 2 sec tan
.

tan 1e c

at t a a
y a

φ φ φ

φ

+ + +
= −

+
       (18) 

As a consequence of the above intersection the distance r∆  as evaluated on 
line crossing the Earth from outside the atmosphere to the intersection of the 
two lines is  

 
( ) ( ) ( )( )

( )( ) ( ) ( )( )

22

22

tan tan tan
,

tan 1 tan tan

a A A a
r

φ φ θ

φ φ θ

− + +
∆ =

+ −
         (19) 

where  

 ( ) ( )2 2sec .A a t φ= +                   (20) 

We are now ready to evaluate the average density of the atmosphere along the 
line of sight θ  which is defined as  

 ( )

( ) ( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )

2
2 2 2

22

min

tan tan sec tan 1

tan 1 tan tan

2

min

e d
,

2

a t a

s
outC

φ θ φ φ

φ φ θ

φ
φ

ρ θ
φ

 − + + + + 

−
π

 

+

π
=

−

∫
      (21) 

whith minφ  as given by Equation (14). The above integral does not have an 
analytical solution and therefore we introduce the following fit for the numerical 
integration  

 ( ) ( )0.37047 degree0.131733 0.244471e ,θρ θ −≈ +             (22) 

see Figure 4. The percentage error of the fit, δ , is 1.07%δ =  at 0θ =  degree 
and 3%δ =  at 90θ =  degree. 

4. The Planck Distribution in Frequencies 

The Planck distribution for the spectral radiance [1] [7], Bν , is  

 
3

2
2

2 J ,
s m sr Hz

e 1
h
kT

hB
c

ν ν

ν
=

⋅ ⋅ ⋅ 
−  

 

                  (23) 

where ν  is the frequency, c the light velocity, h the Planck constant, T the 
temperature and k the Boltzmann constant. The numerical values of the above 
physical constants are reported in Table 2 in SI units [8]. 
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Figure 4. The value of the average density of the atmosphere as function of the angle θ  
in degree, parameters as in Table 1. The red full line represents the fit as given by Equa-
tion (22) and the blue square the numerical integration.  
 
Table 2. Numerical values for the parameters connected with the Planck distribution in 
SI.  

symbol meaning numerical value 

c light velocity 299,792,458 m/s 

h Planck constant 6.62607015 × 10−34 J/Hz 

k Boltzman constant 1.380649 × 10−23 J/K 

T Temperature of the sun 5772 K 

yellowν  frequency of the color yellow 520 × 1012 Hz 

redν  frequency of the color red 440 × 1012 Hz 

µ  coefficient of attenuation for frequencies 4.4 × 10−7 m2/kg 

 
The spectral radiance has a maximum, maxν , at  

 
( )( )3

max

3e 3kT W

h
ν

−− +
=                     (24) 

where W is the Lambert W function, after [9]; with the data of Table 2.  
14

max 3.3933 10 Hzν = ∓  which is in the near infrared region. We now analyze 
how is possible to decrease the frequency of the sun at zenith characterized by 
the yellow color with frequency yellowν  to the red frequency, redν , at horizon,  

see Table 2 for the numerical values. The ratio 0.8461red

yellow

ν
ν

= , see parameters  

in Table 2, is the target of the following simulation. The Bouguer-Beer-Lambert 
law [10] [11] [12] is very useful in spectrophotometry  

 ( ) 0 exp ,I d I dα= −                      (25) 
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where 0I  is the initial intensity of the light, I is the intensity of the light after 
traveling the distance d and α  is a coefficient of absorption expressed in unit 
neper, see formula (1) in [13]. The parameter α  can be expressed as  

 ,a bc cα =                           (26) 

where bc  is a coefficient of attenuation and ac  the concentration. Here we 
assume that the energy E of a photon which travels the atmosphere decreases 
according to the following ODE  

 ( ) ( )d ,
d aveE x E x
x

µρ= −                      (27) 

where aveρ  is the averaged density of matter in kg/m3 and µ  the attenuation 
coefficient for energy in m2/kg. A usual assumption is E hν=  which produces 
the following ODE in frequency  

 ( ) ( )d ,
d avex x

x
ν µρ ν= −                      (28) 

see formula (5) in [14]. The above ODE is solved assuming the initial condition 
( ) 00ν ν=   

 ( ) 0e .ave xx µρν ν −=                        (29) 

Figure 5 reports the decrease in frequency at the zenith which is minimum 
and Figure 6 reports the decrease in frequency at the zenith which covers the 
yellow-red transition. 

 

 

Figure 5. The decrease in frequency as function of the distance at the zenith, (
2

θ =
π ), 

parameters as in Table 1.  
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Figure 6. The decrease in frequency as function of the distance at horizon, ( 0θ = ), pa-
rameters as in Table 1.  

 
We are now ready to display the evolution of the spectral radiance adopting 

the following rules:  
1) We select an initial frequency at the top of the atmosphere.  
2) We evaluate the spectral radiance for the initial frequency.  
3) We evaluate the final frequency in a given direction with formula (29) 

adopting the appropriate density and line of sight which are functions of the an-
gle θ . 

4) The spectral radiance of the final frequency is that of the initial frequency 
evaluated at point [2].  

As an example, Figure 7 reports the overall spectral radiance in three direc-
tions of sight.  

5. The Planck Distribution in Wavelengths 

The Planck distribution in wavelengths is  

 
2

5

2 ,
e 1

hc
kT

hcBλ

λλ
=

 
−  

 

                      (30) 

and the maximum, maxλ , is at  

 
( )( )max 5

.
5e 5

hc
Tk W

λ
−

=
− +

                   (31) 
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Figure 7. The modified spectral radiance at the horizon ( 0θ =  degree), red line, at 

3θ =  degree, orange line and at the zenith ( 0θ =  degree), yellow line.  
 

As a practical application at the temperature here adopted of 5772 K the 
maximum of the radiance is at 502.039 × 10−9 m or 502.039 nm. We start from 
Equation (28) in order to obtain the ODE for the increase in wavelength  

 ( ) ( )d .
d avex x

x
λ λ µρ=                     (32) 

The above ODE is solved assuming the initial condition ( ) 00λ λ=   

 ( ) 0e .ave xx µρλ λ=                       (33) 

We are now ready to display the evolution of the spectrum adopting the fol-
lowing rules:  

1) We select an initial wavelength at the top of the atmosphere.  
2) We evaluate the spectral radiance for the initial wavelength.  
3) We evaluate the final wavelength in a given direction with formula (33) 

adopting the appropriate density and line of sight which are functions of the an-
gle θ . 

4) The spectral radiance of the final wavelength is that of the initial wave-
length evaluated at point [2].  

As an example Figure 8 reports the overall spectrum on three directions of 
sight.  

6. Temperature Determination 

The solar cell measurements require an accurate knowledge of the solar spec-
trum at the top of the atmosphere, as an example at 35 km, which is called air 
mass zero (AM0) [15]. The data of AMO can be found, as an example, digitizing 
ASTM E-490 on a search engine, and are displayed as a green point in Figure 9. 
We fit the AM0 data with the following function  
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Figure 8. The theoretical spectrum at the horizon ( 0θ =  degree), red line, at 3θ =  de-
gree, orange line and at the zenith ( 0θ =  degree), yellow line, the wavelengths are ex-
pressed in nm.  
 

 
Figure 9. Spectral radiance versus wavelength in nm for AM0, green points, and theoret-
ical fit, red line.  
 

 ( )
2

5

2, ,
e 1

hc
kT

hcf T B
λ

λ
λ

= ×
 

−  
 

                     (34) 

where B is a constant which allows to match the data. The temperature and the 
constant can be found through the Levenberg-Marquardt method (subroutine 
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MRQMIN in [16]) and turn out to be 5467.49 KT =  and 148.9033 10A −= × . 
The above value of temperature has a percent error of 5.27% on the value here 
adopted of 5772 K.  

7. Conclusions 

The average density of the atmosphere 
The evaluation of the average density of the atmosphere is simple along a 

radial direction which crosses the center of Earth but complicated along a given 
elevation angle, see Equation (22) for a numerical approximation. 

The decrease in frequencies 
The ODE for the decrease in frequency due to the Bouguer-Beer-Lambert law, 

see Equation (28), allows the yellow-red transition for the sun at the horizon. 
Due to the fact that the initial value of the spectral radiance is maintained, all the 
spectrum is shifted toward lower frequencies, see as an example Figure 7. 

The increase in wavelengths 
The ODE for the increase in wavelengths, see Equation (33), explains the yel-

low-red transition. Also here the initial value of the spectral radiance is main-
tained and as a consequence all the spectrum is shifted toward bigger wave-
lengths, see as an example Figure 8. 
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