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Abstract 
There is a growing body of literature that recognizes the importance of data 
mining in educational systems. This recognition makes educational data 
mining a new growing research community. One way to achieve the highest 
level of quality in a higher education system is by discovering knowledge 
from educational data such as students’ enrollment data. Many mining tools 
that aim to discover exciting correlations, frequent patterns, associations, or 
casual structures among sets of items in educational data sets have been pro-
posed. One of the widely used tools is association rules. In this paper, the 
Apriori algorithm is used to generate association rules to discover the impor-
tance and correlation between factors that influence student’s decision to 
enroll in higher education institutions in Sudan. The algorithm is applied us-
ing a student’s enrollment data set that was created using a questionnaire and 
800 students enrolled in governmental and private sector universities as a 
sample. This paper classifies factors that influence enrollment into: student’s 
demographic factors and four categories of enrollment related factors (Stu-
dent and Society, Educational Institution, Admission, and Employment re-
lated factors), and determines the most influential factors in determining 
student’s decision to enroll in Sudanese universities. The analysis result shows 
that the Educational Institution related factors (50%) and Admission related 
factors (40%) are strongly influencing students’ enrollment decision, while 
the Employment related factors (10%) and Student and Society related factors 
(0%) have weak influence. The factors out of the 14 Educational Institution 
related factors that have a high impact are: reputation, diversity of study, 
quality of education, education facilities, and feasibility. 
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Student and Society Related Factors, Educational Institution Related Factors, 
Admission Related Factors, Employment-Related Factors 

 

1. Introduction 

Enrollment management is one of the most important education process phases 
that refer back to the late nineteenth century when Harvard University founded 
the board of freshman advisors in 1889. The board’s purpose was to establish 
orientation, provide advising and counseling, and develop social events for 
freshmen [1]. Since then, enrollment management is increasingly getting the at-
tention of scholars in educational data mining, particularly in computer-related 
disciplines. 

Data mining is a field of computer science that focuses on the detection of 
patterns and hidden knowledge in enormous data and gives the information in 
logical form. Artificial intelligence, machine learning, statistics are some tech-
niques applied in data mining [2]. 

One of the emerging interdisciplinary study areas is the educational data 
mining, which is a new growing research community [3]. Educational data mining 
concerns the developing and using methods that can explore or extract interest-
ing information from educational data [4]. One of these methods is association 
rules. 

An association rule is an unsupervised learning method that used for pattern 
discovery, which in turn may reveal new knowledge and exciting discovery. As-
sociation rules are considered as an important method for decision making if it 
has a support and confidence that is at least equal to some minimal support and 
confidence thresholds defined by the user. Association rules mining was first 
encountered by Agrawal et al. [5]. 

There are various association rule mining algorithms such as AIS, SETM, 
Apriori, Aprioritid, Apriorihybrid, FP-growth [6]. The Apriori algorithm is the 
most well-known association algorithm used for finding frequent itemsets with 
candidate generation [7]. 

Using association rules to discover new knowledge in educational data is a 
common method [4] [8] [9], more specifically, many studies apply association 
rules algorithms to enrollment data sets [10] [11] [12]. 

This paper applies the Apriori algorithm to a student’s enrollment data set 
that was created using a questionnaire and a sample of students who are enrolled 
in governmental and private sector Sudanese Universities. The Apriori algo-
rithm is selected since it is the most frequently used association rule algorithm. 
The aim is to discover the most influential category among enrollment related 
factor categories, and further to discover the essential factors within each in-
fluential category. Also, the paper shows the correlation between factors within 
the different categories that influence the student’s decision to enroll in Suda-
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nese Universities.  
The expected extracted knowledge can be of great value and offer a helpful 

and constructive recommendation to the academic planners to improve enroll-
ment to their higher institutions. The rest of the paper is organized as follows: 
Section 2 discusses related work that applies association rules as a mining tool to 
enrollment data sets. Section 3 reviews association rules and the Apriori algo-
rithm. Section 4 explains how the enrollment data set for students enrolled in 
the Sudanese Universities were created. Section 5 presents how association rule 
mining is applied to Sudanese Universities enrollment dataset. Section 6 is re-
sults and discussion and the conclusion was drawn in Section 7. 

2. Related Work 

Many researchers study enrollment related factors that influence student’s selec-
tion decisions to enroll in higher education institutions. Recently, there has been 
more interest in extract various relations from educational data by using associa-
tion rules as the data mining tool.  

Many researchers examined the influence of the student and society related 
factors in enrollment decision. Researchers prove that student educational aspi-
rations have positively related with Higher Educational Institution (HEI) selec-
tion decisions [8] [9] [10]. Some studies compare aptitude and the ability of the 
students’ as factors in the selection of HEI [11] [12]. Others recognize the critical 
role played by students’ guardians, family and friends factors in directing stu-
dent decide to enroll in specific HEI’s [12] [13] [14]. Students’ interests, motiva-
tions, and occupational plans, the class level, socioeconomic level, ethnic of the 
students, and institutional characteristics are examined to see their effects in in-
stitution’s total enrollment [15] [16] [17]. 

Student’s selection of colleges depends on several criteria, including academic 
quality, facilities, campus surroundings, and personal characteristics [12] [18]. 
Also, income affects the choice of students along the public-private education 
divide. The college location is a significant predictor of HEI selection, and a visit 
to the university campus was found out as an important factor [19]. 

The reputation of HEI’s has a significant influence on the student’s enroll-
ment decision, which was examined by many researchers who found that en-
gaging in international partnerships attracts larger numbers of international 
students [20] [21]. 

Recent evidence suggests that there are needs of increasing diversification at 
the programs level for adopting more general programs with based on the diver-
sity of students’ sample population, multiple regional, social, and economic 
needs [22]. Also, the institutional image emphasized the significance of building 
positive emotions in achieving educational institution enrollment goals and the 
availability of postgraduate studies in institutions are affecting student’s selec-
tion of HEI [23] [24] [25]. 

A considerable amount of literature was published on factors related to Ad-
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mission and examines the influences of these factors on the decision of the stu-
dent to enrolment. The recognition of the academic degree or the program na-
tionally or internationally, the degree flexibility, the diversity of courses, and the 
flexible of entry requirements have influenced enrollment [18]. The marketing 
mix, marketing efforts, channels, and advertisement is found to be important 
factors that influence student’s college selection [25] [26], also, financial aid in-
duces more enrollments in colleges than other factors [27] [28]. 

Finding a job had become a central issue for students and their family recent-
ly. The decision of enrollment to specific education institution was affected by 
many factors related to the employment, and employment opportunities are a 
stronger predictor of enrollment decisions [19] [29].  

Association rules have been used to discover relations between; admission 
system attributes in King Abdul-Aziz University (KAU) [30], the preliminary 
students knowledge [31], the specialties and student’s interests [32], the factors 
that affect postgraduate study and assessment [33], and the courses and the 
failed students [34]. 

Association rules as a data mining technique are used to investigate the corre-
lation between different enrollment factors. Some studies investigated the Apri-
ori algorithm on enrollment to extract the behavior of low- and high-income 
students [35], the quality of talent training and enhance the overall competitive-
ness of colleges and universities [36], student performance for a certain outcome 
(Pass or Fail) [37].  

This paper gets benefits from previous studies to determine the different fac-
tors influencing the enrollment decision. Then the paper provides a new catego-
rization to these factors. To determine the most influential factors and the cor-
relations between these factors the paper uses association rules in a similar way 
to [4] [38] [39]. The paper deals with enrollment dataset as in [30] [40] [41]. 

The paper is unique in that, it defines categorization to enrollment factors and 
uses the Apriori algorithm to extract association rules that determine which cat-
egory has more roles in student’s enrollment decisions, and what factors within 
this category are most important.  

3. Association Rules and the Apriori Algorithm 

Association rule mining is a descriptive data mining technique for finding pat-
terns, associations, and correlations among sets of items in a database. A stan-
dard association rule is a rule of the form X→Y which means that if X is true for 
instance in a database, then Y is true for the same instance, with a certain level of 
significance [5] [13]. 

Typically, an association rule is called strong if it satisfies both a minimum 
support (min-supp) threshold and a minimum confidence (min-conf) threshold 
that is determined by the user [2]. 

The minimum support is defined as the minimum percentage of occurrences 
of the item/itemset in the database, while minimum confidence defined as the 
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minimum certainty or trustworthiness associated with each discovered pattern 
[6]. 

Let A and B be itemsets in the database D. An association rule between item 
sets A and B is an implication of the form A B→ , where A B = ∅ . The 
support for an association rule A B→  denoted as sup ( A B→ ), is defined as 
the number of transactions in D that contains A B  [9]. The item sets A and B 
are called antecedent and consequent, respectively.  

The support of an itemset A, supp(A) is the proportion of transaction in the 
database in which the item A appears. It signifies the popularity of an itemset. 

( )support ,P A B N=  

The confidence determines how frequently items in B appear in the transac-
tions that contain A; it is the ratio of the number of transactions that include all 
items in the association rule.  

( ) ( ) ( )Confidence supp , suppP B A A B A= =  

Moreover, one of the simplest correlation measures is Lift. Lift is important to 
measure the interestingness of a rule. Lift measure tells us whether the LHS 
(left-hand sides) of a correlation influences the RHS (right-hand sides) positively 
or negatively. The lift between the occurrence of item set A and B can define as 
[42]: 

( ) ( )
( )

conf
lift ,

supp
A B

A B
B
→

=  

The strength of correlation was measured from the lift value as follows [42]: 
- If Lift(A, B) = 1 or P(B/A) = P(B) (or P(A/B) = P(B)), then B and A are 

independent and there is no correlation between them.  
- If Lift(A, B) > 1 or P(B/A > P(B) (or P(A/B) > P(A)), then A and B are po-

sitively correlated, meaning the occurrence of one implies the occurrence of 
the other.  

- If Lift(A, B) < 1 or P(B/A) < P(B) (or P(A/B) < P(B)), then A and B are 
negatively correlated, meaning the occurrence of one discourage the occur-
rence of the other.  

The Apriori algorithm was proposed in 1994 [10]. The algorithm identifies the 
frequent items in the database and extending them to larger and larger item sets 
as long as those itemsets appear adequately often in the database. The Apriori 
algorithm defines confidence level for association rules using two parameters; 
the minimum support threshold, and the minimum confidence threshold. The 
frequent itemsets defined by Apriori can be used to determine association rules 
which highlight general trends in the database [15]. 

Apriori algorithm uses a level-wise search, where k-itemsets (An itemset which 
contains k items is known as k-itemset) are used to explore (k + 1)-itemsets, to 
mine frequent itemsets from the transactional database for Boolean association 
rules. In this algorithm, frequent subsets are extended one item at a time, and 
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this step is known as the candidate generation process. Then groups of candi-
dates are tested against the data [6]. 

To count candidate item sets efficiently, Apriori uses breadth-first search me-
thod and a hash tree structure. It identifies the frequent individual items in the 
database and extends them to larger and larger item sets as long as those itemsets 
appear sufficiently often in the database [6]. 

Apriori algorithm defines frequent item sets that can be used to determine asso-
ciation rules which highlight general trends in the database. Mining of association 
rules from a database consists of finding all rules that meet the user-specified 
threshold support and confidence. The problem of mining association rules can 
be as stated in the Algorithm below. 

Algorithm: 
1) Find all sets of items which arise with a frequency that is greater than or 

equal to the user-specified threshold support, s. 
2) Generate the anticipated rules using the large itemsets, which have us-

er-specified threshold confidence, α. 
Apriori algorithm starts by scanning the data set to find all the items and count 

their support as candidates of size1 (i.e., C1) and removes infrequent items (count 
< min-supp). 

4. The Enrollment Dataset 

We classify the enrollment factors into four categories that contain 32 factors; 
Table 1 below shows these categories and the factors constitute each category. 

Based on categorization in Table 1, the enrollment data collected via a 
questionnaire that has been subject to a rigorous assessment by experts and 
professionals. The questionnaire has two sections; the first section is about 
demographic factors related to the enrolled student, namely; the university 
name the student enrolled in, the type of institution (governmental/private), 
gender (male/female), age (from 18 to 20), academic year class (1/2/3/4/5), and 
academic level (B.Sc./Diploma), and the second section is about the enroll-
ment-related factors.  

The sample of students is enrolled in eight Sudanese universities in Khartoum 
state in computer-related studies. From each of the 8 selected universities, 125 
students are selected randomly from different classes. Then the 1000 sample has 
been reviewed and organized, making analysis easy, each type of data in the 
questionnaire is encoded.  

The demographic information is encoded as follows; universities take codes 
{1, 2, 3, 4, 5, 6, 7, 8}, institution type as {1, 2}, gender is encoded as 1 or 2, age as 
{1, 2, 3}, academic class as {1, 2, 3, 4, 5}, and academic level as {1, 2}. 

For the enrollment-related factor, the questionnaire uses the Likert fifth scale 
(Strongly agree, agree, Na, disagree, and strongly disagree), which are encoded 
as {5, 4, 3, 2, 1}. 

The questionnaire data n transformed into tables as a data set. Statistical ad-
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justments applied to data that requires scale transformations. Validation tests 
were used to evaluate the questionnaire scale and contents as follows: 
• Cronbach alpha (α) was utilized for estimating the reliability coefficient for 

the questionnaire scale. Reliability coefficient means obtaining the same val-
ues when re-using the measuring instrument with the same circumstance, 
and give thus results [43]. Cronbach Alpha value for most factors is above 
70%. 

• Moreover, the percentage of the main categories of enrollment related factors 
is 92%. These show that the enrollment factors are the highly reliable and 
consistent measuring tool. 

 
Table 1. Enrollment factors. 

Category No of factors Factors Names 

Student and Society 7 

• Aspiration, 

• Family/society motivation, 

• Parent’s occupation/qualification, 

• Family income, 

• Family Social class, 

• Proudness/academic prestige, 

• Ethnic/religion 

Educational Institution 14 

• Location, 

• Reputation, 

• Education facilities, 

• International partnership, 

• Diversity of study, 

• Quality of education, 

• Image/campus, 

• Activity facilities, 

• Social life, 

• Postgraduate and institutional research, 

• Systematic and organized, 

• Academic assistance, 

• Modern/feasibility, 

• Campus visiting 

Admission 7 

• Aptitude test, 

• Education/tuition cost, 

• Financial aid, 

• Approved degree, 

• Admission requirements, 

• Educational institution representative and  

advertising, 

• Retention 

Employment 4 

• Good job opportunity, 

• High income, 

• Good position, 

• Employed promotion and planning 
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• The Kaiser-Meyer-Olkin (KMO) and Bartlett’s tests were used to check for 
adequacy of sample contents. KMO is statistic values that demonstrate the 
proportion of variance in the variables that might be affected by underlying 
factors [44]. KMO returns values between 0 and 1. Here in this sample test, 
KMO values are between (0.8 and 1), which indicates that the sampling is 
adequate, and a factor analysis may be useful with this dataset. 

5. Applying Association Rule Mining to the Sudanese  
Universities Enrollment Dataset 

To determine what enrollment factor category is the most influential, we apply 
the Priori association rule algorithm, with a suitable minimum support value, to 
find all the frequent itemsets in the dataset with that minimum support thre-
shold, and then extract the association rules. 

Factors within the extracted rules, define the set of most critical factors and 
thus the most influential category. Besides, the extracted rules determine the 
correlations between these factors.  

Two types of relationships are of interest to this study, the first is the rela-
tionship between the demographic factors and the enrollment-related factors, 
and the second is the relationship between enrollment related factors themselves. 

In extracting association rules, three steps have to be followed: 
1) Determine the minimum support: A fundamental problem in Apriori is 

how to choose a minimum support (min-supp) value to find interesting pat-
terns. There is not an easy way to determine the best min-supp threshold. In this 
paper, the minimum support is determined by trial and error.  

2) Create the itemset list: In association rules, a set of the item also defined as 
a large item set. The item set is said to be frequent if it occurs more than the 
predefined minimum support. 

3) Extract the association rules:  
a) Generate the standard association rules from the frequent items by using 

the Apriori algorithm. 
b) An association rule measures. The correlation rule is measured based on 

the minimum support, minimum confidence, and interest correlation between 
itemsets A and B by using lift measures. 

5.1. Extraction of Association Rules between Demographic  
Factors and Enrollment Related Factors  

To determine the suitable minimum support value, we try different values of 
minimum support and minimum confidence, and record the number of associa-
tion rules that can be generated. Table 2 shows the number of association rules 
for the range of values 0.1 to 1 for minimum support and minimum confidence 
Since the number of generated rules is similar for support from 0.1 to 0.3 and 
confidence from 0.1 to 0.9, we select as appropriate values min-supp = 0.3 and 
min-conf = 0.9 as thresholds.  
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To create the candidate set, called large itemset L(1), the set is generated for 
demographic factors and enrollment related factors. The size of L1 is 19 items, as 
shown in Table 3, and the size of large itemsets L(2) is 14 items, as shown in 
Table 4 below. 

 
Table 2. The number of association rules extracted for support and confidence values 
(from 0.1 to 1). 

Support 
Confidence 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.1 10 10 10 10 10 10 10 10 10 10 

0.2 10 10 10 10 10 10 10 10 10 0 

0.3 10 10 10 10 10 10 10 10 10 0 

0.4 10 10 10 10 10 10 10 8 8 0 

0.5 2 2 2 2 2 1 1 1 1 0 

0.6 0 0 0 0 0 0 0 0 0 0 

0.7 0 0 0 0 0 0 0 0 0 0 

0.8 0 0 0 0 0 0 0 0 0 0 

0.9 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 

 
Table 3. Large itemsets L(1). 

No Itemset Support (%) 

1 Academic level = 1 93.7 

2 Gender = 1 54.4 

3 Age = 2 52 

4 Type of institution = 1 50.4 

5 Type of institution = 2 48.9 

6 Admission requirements = 4 46.5 

7 Gender = 2 44.9 

8 Family income = 4 43.7 

9 Diversity of study = 4 42.8 

10 Approved degree = 4 42.6 

11 Age = 3 40.6 

12 Aptitude test = 4 38.9 

13 Aspiration = 5 37.9 

14 Reputation = 4 37.7 

15 Good job opportunity = 4 37.6 

16 Approved degree = 5 37.4 

17 Quality of education = 4 35.9 

18 Postgraduate/institutional research = 4 35.3 

19 Aspiration = 4 35.1 
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Table 4. Large itemsets L(2). 

No Itemset Support (%) 

1 {Gender = 1, Academic level = 1} 51.7 

2 {Age = 2, Academic level = 1} 48.5 

3 {Academic level = 1, Type of institution = 1} 47.5 

4 {Academic level = 1, Type of institution = 2} 46.2 

5 {Academic level = 1, Admission requirements = 4} 43.4 

6 {Gender = 2, Academic level = 1} 42 

7 {Academic level = 1, Family income = 4} 40.9 

8 {Academic level = 1, Approved degree = 4} 40 

9 {Academic level = 1, Diversity of study = 4} 39.6 

10 {Age = 3, Academic level = 1} 39.1 

11 {Academic level = 1, Aptitude test = 4} 36.1 

12 {Academic level = 1, Approved degree = 5} 35.3 

13 {Academic level = 1, Aspiration = 5} 35.2 

14 {Academic level = 1, Reputation = 4} 35 

 
The generated common Apriori association rules of demographic factors and 

enrollment related factors using min-supp is (0.3), min-conf is (0.9), and using 
lift measures are shown in Table 5. 

Table 5 shows 10 association rules. Six rules correlated demographic factors 
and four rules were correlated demographic factors with enrollment factors. 
Numbers within each rule shows the number of itemsets comes together, for 
example, the in rule 1: Age = 3406  Academic levels = 1391, 406 is the total 
number of records with Age = 3391 of them come with academic level = 1. 

The column of Lift was used to measure the new rules and specified the type 
of association rules. Rule 1and rules 2 are higher than one; this means the factors 
are positively correlated. In positive correlation, both antecedent and consequent 
factors move in the same direction. While rules 3, 4, 5, and 6 are equal to one, 
this means they have an independent correlation. In independent correlation, 
the probability of occurrence of the antecedent and that of the consequent fac-
tors are independent of each other. While rules 7, 8, 9, and 10 are less than one, 
this means they negatively correlated with high confidences. A negative correla-
tion is an inverse relationship between the two factors 

5.2. Extraction of Association Rules between Enrollment Related  
Factors  

To determining the minimum support value; association rules generated by try-
ing different values of min-supp, and min-conf and the number of rules gener-
ated as shown in Table 6. The most appropriate values found are min-supp is 
(0.2), min-conf is (0.6).  
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Table 5. Association rules of demographic factors and enrollment factors. 

No Rules Confidence Lift 

1 Age = 3406  Academic level = 1391 0.96 1.02 

2 Gender = 1544  Academic level = 1517 0.95 1.01 

3 Type of institution = 2489  Academic level = 1462 0.94 1 

4 Approved degree = 5374  Academic level = 1353 0.94 1 

5 Type of institution = 1504  Academic level = 1475 0.94 1 

6 Approved degree = 4426  Academic level = 1 0.94 1 

7 Family income = 4437  Academic level = 1409 0.94 0.99 

8 Gender = 2449  Academic level = 1420 0.94 0.99 

9 Admission requirements = 4465  Academic level = 1434 0.93 0.99 

10 Age = 2520  Academic level = 1485 0.93 0.99 

 
Table 6. The number of association rules extracted for support and confidence values 
(from 0.1 to 1). 

Support 
Confidence 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.1 10 10 10 10 10 10 10 10 0 0 

0.2 10 10 10 10 10 8 0 0 0 0 

0.3 0 0 0 0 0 0 0 0 0 0 

0.4 0 0 0 0 0 0 0 0 0 0 

0.5 0 0 0 0 0 0 0 0 0 0 

0.6 0 0 0 0 0 0 0 0 0 0 

0.7 0 0 0 0 0 0 0 0 0 0 

0.8 0 0 0 0 0 0 0 0 0 0 

0.9 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 

 
In the extract the association rules, the candidate set called large itemsets, (L) 

is generated of enrollment related factors. The size of L(1) is 73 items, and the 
size of large itemsets L(2) is 29 items. 

The common Apriori association rules of enrollment related factors were ex-
tracted using min-supp = 0.2, min-conf = 0.6 and lift > 1, as shown in Table 7. 

6. Results and Discussion 

Table 5 shows that there are only 7 factors that influence student’s enrollments, 
4 of them related to the demographic factors, and 3 factors of them are enroll-
ment related factors. These factors are shown in Table 8. 

Table 7 shows that the Student and society related factors category did not 
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appear in all association rules, Educational Institution related factors appeared 
in five rules, Admission related factors appeared in four rules, and employ-
ment-related factors appeared in one rules. These factors are shown in Table 9.  

In addition to that, we found out there is the ministry approves a positive in-
fluence from the two factors reputation of universities and education facilities 
with a degree. Besides, there is a positive correlation between factors reputation 
of universities and education facilities with a degree are approved by the minis-
try, a correlation between the factors; good position, retention, the degree is ap-
proved by the ministry, aptitude test and feasibility and the factor admission re-
quirements.  
 
Table 7. Association rules found between enrollments related factors. 

No Rules Confidence Lift 

1 Reputation = 5340 ==> Approved degree = 5208 0.61 1.62 

2 Quality of education = 4359 ==> Diversity of study = 4224 0.62 1.45 

3 Education facilities = 4337 ==> Diversity of study = 4207 0.61 1.43 

4 Good position = 4314 ==> Ministry requirements = 4200 0.64 1.36 

5 Retention = 4341 ==> Ministry requirements = 4213 0.62 1.34 

6 Approved Degree = 4426 ==> Ministry requirements = 4267 0.63 1.33 

7 Aptitude test = 4389 ==> Ministry requirements = 4240 0.62 1.32 

8 Modern /feasibility = 4341 ==> Ministry requirements = 4208 0.61 1.3 

 
Table 8. The demographic and enrollment related factors influencing student’s decision 
to enrollment. 

Category 
Demographic 
Factors 

Students and 
Society-Related 
Factors 

Educational  
Institution  
Related factors 

Admission- 
Related factors 

Employment- 
Related Factors 

Factors 

Age, Gender, 
Type of  
institution, 
Academic level 

Family income 
 

Approved  
degree,  
Admission  
requirements 

 

Total 4 1 0 2 0 

 
Table 9. The enrollment related factors influencing student’s decision. 

Categories 
Students and  
Society-Related Factors 

Educational Institution  
Related factors 

Admission Related 
Factors 

Employment- 
Related Factors 

Factors 
 

Reputation Approved degree 

Good position 

Diversity of Study 
Admission  
requirements 

Quality of education Retention 

Education facilities 
Aptitude test 

Modern/feasibility 

Total 0 5 4 1 

https://doi.org/10.4236/iim.2019.114006
conf:(0.62)%3e
conf:(0.62)%3e
conf:(0.62)%3e
conf:(0.62)%3e
conf:(0.62)%3e
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7. Conclusions 

This paper shows that only 4 out of the 6 student’s demographic factors, namely: 
age, gender, type of institution, and academic level have a strong influence on 
student’s enrollment. Moreover, the most important categories of factors that 
affect the Sudanese student’s decision to enroll in Higher Education Institutions 
are the Educational Institution and Admission categories of enrollment related 
factors.  

The findings can be used by higher education institutions as a guideline in of-
fering students the appropriate knowledge about enrollment related factors. 
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