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Abstract 
Agent based simulation has successfully been applied to model complex orga-
nizational behavior and to improve or optimize aspects of organizational per-
formance. Agents, with intelligence supported through the application of a 
genetic algorithm are proposed as a means of optimizing the performance of 
the system being modeled. Local decisions made by agents and other system 
variables are placed in the genetic encoding. This allows local agents to posi-
tively impact high level system performance. A simple, but non trivial, peg 
game is utilized to introduce the concept. A multiple objective bin packing 
problem is then solved to demonstrate the potential of the approach in meet-
ing a number of high level goals. The methodology allows not only for a sys-
tems level optimization, but also provides data which can be analyzed to de-
termine what constitutes effective agent behavior. 
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1. Introduction 

Over the past ten years, there has been an increasing interest in agent based 
modeling and simulation. Summaries of application to manufacturing, planning 
and scheduling are given by Shen et al. [1], Marik [2] and Yoo [3]. An agent re-
fers to a software segment that performs a specific task. This task may be simple 
or complex and the agent may be intelligent or not. An intelligent agent refers to 
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one that has some form of reasoning and learning capability. The agent taxono-
my allows for a model to be developed for systems that involve complex beha-
vior. When the model is integrated with a global optimization algorithm, the 
ability to improve performance at both a local and systems level becomes possi-
ble. Often, the decisions which are made by a local agent are based on experien-
tial data which may have a very local context. System complexity often makes it 
extremely difficult to look forward in time or to consider global rather than local 
objectives. This leads to inefficiencies, which if avoided, could improve the op-
erational efficiency of the system. In industry segments involving logistics and 
manufacturing, this efficiency gain may make the difference between operating 
at a profit or loss. As the fixed cost of operation increases (energy, labor and raw 
materials), the only way to remain profitable is through increasing operational 
efficiency. An evolutionary optimization algorithm may be utilized to assist the 
local decision making capability of the agents to achieve this system goal. This 
combination represents an innovative idea and holds the promise of a significant 
gain in productivity over a wide range of industries. 

The strengths and weaknesses of agent based modeling coupled to mathema- 
tical optimization for a situation involving multiple objective distributed re-
source allocation in a dynamic environment are reviewed by Davidsson et al. [4]. 
Narzisi et al. [5] optimized an agent based model for emergency response plan-
ning where the optimization was performed by an evolutionary algorithm. Op-
timization applied to parameter tuning of the agents has been performed with 
both a single objective by Calvez [6] and multiple objectives by Rogers [7]. Spe-
cific instances of the utilization of agent based simulation in conjunction with 
various optimization approaches have been presented by Deshpande [8] and 
Gjerdrum et al. [9] for manufacturing scheduling, Sirikipanichkul [10] for freight 
hub location, Neagu [11] for transport logistics and by Botterud [12] for expan-
sion in electricity markets. It is clear from the wealth of research activity in the 
application of agent based modeling and simulation that the approach offers a 
valid means for addressing complex, real world problems. The difficulty in most 
applications involves how to best utilize optimization as a means of improving 
the performance of the system being modeled. Intelligence at the local and global 
level is difficult to implement through experience or rule based approaches. The 
value of coupling of a genetic optimizer directly to the individual agents is inves-
tigated herein.  

Agents are often introduced as elements which model the behavior of humans 
performing a specific task. Many such tasks represent highly skilled positions 
such as a scheduler for a line of a manufacturing plant or a loader for a freight 
hub. For operations involving complex reasoning, it is difficult to develop con-
sistent performance under varying day to day conditions. This is particularly 
true when such reasoning must include local and global objectives. The ability to 
share the intelligence between an agent’s knowledge base and an optimization 
algorithm helps to insure that all goals are factored into the solution and the en-
tire solution space is investigated. The results from such an optimization in 
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practice can help improve the behavior of a local agent over time and some of 
the intelligence supplied through the optimization can be incorporated into the 
logic employed by the agent. This allows a framework to be built for a specific 
application class for which the performance can be continuously improved over 
time.  

The particular implementation considered in this study will involve simple 
agents performing tasks that involve a certain level of reasoning. The agent in 
each system is coupled to an evolutionary or genetic optimization algorithm. 
The optimization algorithm utilizes a goal programming formulation in order to 
address multiple objectives. Two examples are presented which allow for the ap-
proach to be developed and demonstrated. The first example involves the solu-
tion of a simple, but non-trivial, peg game where the agent must make all move 
decisions with a global goal of solving the game. The second example involves a 
multiple objective bin packing problem with the agent being responsible for 
packing a rectangular trailer with a prescribed set of shipments or loads. Both 
examples involve only a single agent, but the approach is scalable to include any 
number of agents. The approach leads to a distributed rule based decision sup-
port environment that can be applied to complex problems encountered over a 
wide range of industries. The contribution of this work is in the demonstration 
of how a combination of evolutionary optimization methods and agent based 
simulation can solve decision support problems. 

2. An Evolutionary Goal Programming Approach 

For a decision support system implementation utilizing intelligent agents, the 
agents must be capable of making a sequence of decisions at the local level which 
determine not only local but global system behavior and performance. The im-
pact of each individual decision is influenced by all previous decisions and all 
future decisions are impacted as well. The traditional nonlinear mathematical 
programming formulation for this problem class is defined as: 

( ) [ ]T1 2 3Maximize ; , , , , nf x x x x x x=                     (1) 

Subject to 

( ) 0; 1, 2, ,jg x j J≥ =                          (2) 

( ) 0; 1, 2, ,kh x k K= =                          (3) 

and 
low high
i i ix x x< <                             (4) 

In this formulation, f(x) represents a measure of global performance which is 
to be maximized. This measure may be linear or nonlinear and related to effi-
ciency, profit or any calculable quantity. The design or decision vector, x, is 
composed of all decision possibilities that each agent must make at the local level. 
Additional design variables may be included to allow for evaluation of non-agent 
based decision related factors. The design variables may be continuous, integer 
or discrete and may be defined on a range as by Equation (4), or as a set of dis-
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crete or integer valued choices. The number of assigned decision values may 
vary for each individual decision variable and the design variable vector includes 
the local decisions for all local agents. Equations (2) and (3) define constraints 
which establish the feasible search space. The greater or less than constraint giv-
en by Equation (2), allows for a constraint which can be over satisfied, while the 
equality constraint given by Equation (3) specifies a constraint which must be 
exactly satisfied. 

The mathematical formulation presented above is useful for the solution of a 
wide range of problems. Difficulties arise, however, when multiple objectives are 
desired as well as soft constraints. Soft constraint represent conditions which are 
desirable but are allowed to be violated if beneficial trade-offs may be made 
among the values of the other objectives. A goal formulation may be applied to 
the decision support problem to easily include these additional aspects. A goal 
programming formulation for the broad class of decision support problems may 
be expressed as follows: 

( ) { }
1

Maximize 
I

kj k i i
i

f x W P d d+ −

=

= +∑                  (5) 

for 1, 2, ,k K=   
1, 2, ,j J=   

where the id +  and id −  are positive valued variables and represent the under 
and over achievement of goals which may be specified by one of the following 
goal constraint equation forms: 

( )j i iG x d b−+ =                         (6) 

( )j i iG x d b+− =                         (7) 

and 

( )j i i iG x d d b− +− + =                      (8) 

From a comparison to a linear programming formulation, the id −  and id +  
deviational variables may be thought of as a form of slack variables. With this 
analogy, the first two goal constraints may be seen to be less than or equal to and 
greater than or equal to forms. The third form essentially represents a hard 
equality constraint, which allows for absolute requirements to be met. In a goal 
formulation, only the deviational variables appear in the objective function as 
represented by Equation (5). Each deviational variable, however, is a function of 
the decision variables. The specific form of the objective function allows for 
weighting factors, Wkj, and for goal priorities Pk for each goal. There is no limit 
to the total number of goals allowed. An evolutionary optimization algorithm 
may be implemented to address either the formulation given by Equations 
(1)-(4) or for that given by Equations (5)-(8). The general flow of the algorithm 
is presented in Figure 1. 

3. The Peg Game: A Simple Example 

The implementation of an optimization controlled, agent based decision support  
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Figure 1. Flowchart of evolutionary goal programming approach. 
 
application is best demonstrated through the consideration of a simple, but 
non-trivial, example. The example utilized here involves a peg game which has a 
simple measure of success, but no clear-cut strategy to implement in a given 
game situation. The game consists of fifteen uniformly spaced holes on a game 
board that is configured as an equilateral triangle. The game layout is presented 
in Figure 1. The holes on the game board are filled with pegs which can be re-
moved according to the rules of the game. The game begins as the user removes 
one peg from the board and then continues by jumping pegs as allowed by the 
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current configuration. A peg may be jumped only if a peg is directly adjacent to 
it and the opposite position is vacant. Once a peg has been jumped, that peg is 
removed from the game board and the process continues. The game terminates 
when all possible moves have been made. If a single peg remains, the game is 
considered to be won. As with most decision support problems, the current 
game condition at any point in the solution process is determined by all previous 
moves. At each step in the game, however, an appropriate move may be deter-
mined by an agent whose intelligence is derived from an evolutionary optimiza-
tion algorithm. 

The agent, which is implemented in the game simulation, must make the de-
cisions which control the operation of the game. At each game state, the agent is 
responsible for selecting which peg to move among all possible pegs that can 
move. This is a convenient, low level implementation of agent based modeling 
where the agent only has the tasks of identifying possible moves and selecting 
one at each game state. The mathematical description of the optimization prob-
lem would be difficult without the agent based simulation. This is because the 
determination of possible moves, the selection of a move at each game state and 
even the number of moves required to complete an individual game simulation 
vary from simulation to simulation. The mathematical formulation for this par-
ticular implementation may be expressed as follows: 

( )Minimize Number of pegs remaining at stage f x p=           (9) 

where 

[ ]T1 2 3 14, , , ,x x x x x=                         (10) 

And 

{ }1 1first peg removed to start the game; 1, 2,3, ,15x x= ∈         (11) 

{ }moves

peg movement option from list of possible moves at game simulation step ,
1, 2,3, ,14; 1, 2, ,

n

n

x n
n x n

=

= ∈ 

 (12) 

and nmoves is defined as the maximum moves available at any game state and p is 
defined as the game state where no more moves are available. Note the design 
variables in the encoding are integer in nature and are only known as the simu-
lation progresses from game state to game state. Since the only goal is to minim-
ize the number of pegs remaining after all moves have been made, the formula-
tion given by Equations (9)-(12) is equivalent to the formulation given by Equa-
tions (1)-(4). The agent utilization, coupled with an evolutionary optimization 
algorithm allows for a straightforward implementation of the intelligent decision 
support structure. 

With most agent implementations, intelligence can be introduced to guide the 
decision making of the agent. The difficulty with this approach is that the impact 
of local decisions made at each game state are difficult to relate to the final game 
execution result. This situation is common in a wide range of applications where 
local decisions, made with local information may lead the enterprise far from the 
global or system optima. Specific examples include trailer packing for a LTL op-
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eration, truck fleet routing, pick-up and deliveries, home care medical staff 
scheduling and routing, and many others. The efficacy of local decision making 
can be improved through the coupling to an evolutionary optimization algo-
rithm which is capable of making local decisions in a global, multiple goal objec-
tive context. A post optimal analysis can be executed to extract key characteris-
tics of sound local decisions that led to the optimal global solution. This infor-
mation can be utilized to improve the local intelligence of the agent. Over time 
the decisions at the local level can be split between the agent acting indepen-
dently and the genetic algorithm enforcing decisions. 

An evolutionary or genetic algorithm is well suited to deal with the general 
agent based decision support problem. It can easily handle integer valued va-
riables as well as a variable number of moves, or game steps in this case, for each 
simulation or objective function evaluation. Another positive feature of the algo-
rithm is that it can handle solution spaces with many local minima which is 
common in decision support applications. Coupled with a goal programming 
formulation, multiple objectives can be handled which is another common trait 
of this problem class. The optimization begins with randomly selected decisions 
for the agent at each move and continually refines the decisions until a single 
peg remains at the end of a game simulation. These decisions constitute the op-
timal decisions for the game playing agent. The decisions can then be evaluated 
for global characteristics that could possibly be built into the stand alone agent 
intelligence in future implementations. 

The procedure described above was implemented for the fifteen peg game and 
a solution was generated within thirty generations with a population of two 
hundred decision strategies for the game agent in each generation. In order to 
track the solution, the holes on the game board are numbered and this number-
ing scheme is shown in Figures 2-4 document the final decision strategy utilized 
by the agent in a move by move fashion. 

The post optimal analysis for this example is difficult due to the elementary 
nature of the decision options. However, it can be noted that the optimal deci-
sion strategy did seem to be centered around both keeping the number of choic-
es at each step as large as possible and to maintain some semblance of grouping  

 

 
Figure 2. The peg game board. 
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Figure 3. First 9 moves for the 15 peg game solution. 

 

 
Figure 4. Final 6 moves for the 15 peg game solution. 

 
of the pegs at each game step. Both of these characteristics are aligned with the 
anticipated solution strategy for the peg game. As the applications become more 
complex, this simple correlation between decision strategy and results is not ex-
pected, but useful information may be gathered as a number of scenarios are ex-
ecuted. 

4. Multi-Objective Bin Packing: A More Challenging Example 

The bin packing problem fits in well with the decision support framework where 
agents are utilized with partial intelligence supplied by an evolutionary optimi-
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zation algorithm. Both the two and three dimensional bin packing have been 
studied extensively, and remains as NP hard problems. Solution approaches have 
been generated through simulated annealing by Rao [13] as well as through the 
application of genetic algorithms [14] [15] [16] [17]. None of these solution ap-
proaches considered a multi-objective solution. An agent based approach was 
proposed by Lau [18], and heuristic approaches by Epstein [19] and Lim [20] 
provide insight to potential agent based logic and behavior. In a multi-objective 
form, the problem formulation can be utilized to address critically important 
aspects of the transportation industry. The operation of a less than full load 
(LTL) business involves the packing of semi-trailers with individual shipments 
which are then transported through a series of hubs. At each hub, shipments are 
generally unloaded from one trailer and reloaded in another. Upon reaching the 
final hub destination, the shipment is delivered locally through a separate opera-
tion termed pick-up and delivery. One of the highest skill labor jobs is the loader 
as the efficiency of the business is highly dependent on the placement of each 
shipment in the trailer as well as the load fill of the trailer before leaving the hub. 
The loader in this example will be represented by an agent. The genetic optimi-
zation algorithm will provide global decision making ability to the loading agent. 
The traditional bin packing solution would focus on trailer fill, but in this exam-
ple other factors or goals are considered as well. Among these factors are place-
ment of top-loads, priority loads, front loading common hub destination ship-
ments and the center of gravity of the trailer after loading. 

The maximum fill condition is astraightforward one. Trailer fill refers to the 
amount of total volume in the trailer filled by shipments. Any unfilled space 
represents lost efficiency, as the trailer will execute the appointed route whether 
or not it is completely filled. As trailer fill increases, it potentially reduces the 
number of trailers required to transfer all shipments through the hub network to 
their final destinations. The only caveat is that the trailer may weigh out, rather 
than cube out. The term cube out refers to filling the trailer volume to capacity, 
while the term weigh out refers to the total loaded weight of the shipments being 
equal to the maximum allowed, even though there may be unused volume. LTL 
shipments may be pallet based or individual items, and as a general rule, most 
are rectangular in shape. Top load shipments are those that are fragile and can-
not have any other shipments placed on top of them. These loads will generally 
be placed at the very top of the trailer. Priority loads are those shipments which 
must progress through the hub network as quickly as possible. An additional 
charge is associated with priority shipments and this charge is only justified if 
the shipment arrives when promised. In order to facilitate a reduction in time 
for priority loads, they are ideally placed near the rear of the trailer so they may 
be unloaded and reloaded as soon as a hub is reached. 

Front loading is a term which is used when a number of shipments with the 
same hub destination following the current one, or the same final destination are 
loaded in the front of the trailer. This allows the trailer to be unloaded, leaving 
these shipments untouched as the inbound trailer becomes the outbound trailer 
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to the next destination. Each reduction in handling for a shipment reduces the 
risk of damage as well as a savings in time and labor. Finally, the center of gravi-
ty of a loaded trailer is important. If the center of gravity is too high or not cen-
tered in width or toward the front in length, a bad handling condition may occur. 
The possibility of a roll over as a corner is traversed at speed is also a possibility. 
Each condition added beyond the traditional maximum fill adds complexity to 
the optimization problem solution. On the other hand, significant value is added 
to the transportation firm. A single trailer example is considered here in order to 
demonstrate the approach. The extension to all trailers in service at an LTL is 
certainly possible, particularly with the parallel nature of the process. 

In order to model the agent based trailer loading example, the trailer is sub- 
divided into a series of small rectangular solids. The size of each rectangular sol-
id may be decreased in order to increase the accuracy along with the associated 
level of computational complexity for solving the problem. In this example a 
grid of 4 × 5 rectangular solids is introduced at each of 12 individual sections 
along the length of the trailer as shown in Figure 5. This subdivision results in a 
total of 240 individual loading volumes. With this simplification, a set of loads or 
shipments may be placed in the trailer by the loading logic resident in the local 
loading agent. To take the example a step further, consider the set of shipments 
listed in Table 1. Each of the individual 23 shipments has dimensions, weight, 
next hub destination, priority and an indication of the shipment being a top load 
only load. The next hub destination (7 total) represents the hub the shipment is 
to be sent to after processing at the current hub destination for the trailer. The 
priority (1, 2 or 3), is an indication of a shipment which must be processed as 
quickly as possible as it is a premium shipment. The shipments with a priority of 
one are the highest priority shipments. In this example, the total volume of all 
shipments is equal to the total trailer volume. 

The goals utilized in the formulation for this example are as follows: The total 
volume fill should be as great as possible. All top loads should have no load 
placed on top of them. The high priority loads should be located in the rear of 
the trailer and shipments with the same next destination should be consolidated 
as a head load in the front of the trailer. Finally, the center of gravity should be 
as low as possible, as near to the center of the trailer width as possible and as far 
forward in the trailer as possible. The goal programming formulation for this  

 

 
Figure 5. Trailer volume division. 
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Table 1. Shipment data for example problem. 

Load Hub Destination Weight Priority Top Load Dimensions (x/y/z) 

1 2 10.0 2 No 4/3/2 

2 3 8.5 3 No 4/5/2 

3 3 7.5 2 No 4/2/2 

4 4 5.0 1 No 2/2/2 

5 2 5.0 1 No 2/2/2 

6 2 8.0 2 No 2/2/2 

7 3 5.0 2 No 2/2/2 

8 4 2.0 2 Yes 1/1/1 

9 2 2.0 3 Yes 1/1/1 

10 5 2.0 3 No 1/1/2 

11 6 2.0 3 No 1/1/2 

12 7 2.0 2 Yes 1/1/2 

13 2 3.0 2 No 2/2/4 

14 5 3.0 3 No 2/2/3 

15 8 3.0 2 No 2/3/1 

16 9 5.0 1 Yes 2/1/2 

17 7 2.0 2 Yes 2/1/1 

18 3 4.0 2 No 2/3/4 

19 5 2.0 2 Yes 2/2/2 

20 6 2.0 2 Yes 2/2/2 

21 3 9.0 2 No 2/5/2 

22 4 3.0 2 No 2/4/2 

23 8 3.0 2 Yes 2/1/2 

 
problem statement is as follows: 

( )
( )

1 1 2 2 3 3 4 4 5 5

6 6 7 7 8 8 9

Maximize f x W d W d W d W d W d

W d W d d W d

+ + + + +

+ + − +

= + + + +

+ + + +
           (13) 

( ) ( )1 1 1
Trailer Fill0.95; where

Total Trailer Volume
G x d G x−+ = =           (14) 

( ) ( )2 2 20; where Number of Covered Top LoadsG x d G x+− = =        (15) 

( ) ( )3 3 30; where Inaccessible Priority 1ShipmentsG x d G x+− = =        (16) 

( ) ( )4 4 40; where Priority Shipments in Front Half Of TrailerG x d G x+− = =     (17) 

( ) ( )5 5 5
Front Load Fill0.25; where
Trailer Volume

G x d G x−+ = =              (18) 

( ) ( )6 6 6
Location0.33; where

Trailer Height
zCGG x d G x+− = =              (19) 

( ) ( )7 7 8 7

Location
0.50; where

Trailer Width
yCG

G x d d G x+ −− + = =            (20) 

( ) ( )8 9 8
Location0.50; where

Trailer Length
zCGG x d G x+− = =              (21) 
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The above formulation may look complex, but it is actually a straightforward 
statement of the goals of the trailer loading problem. The first goal constraint 
states that the loaded percentage of the trailer should be at least 95 percent. Any 
shortfall is represented by the underachievement deviational variable 1d +  which 
appears in the objective function to be minimized. No penalty is associated with 
a fill greater than 95 percent as expected. The underachievement variable ap-
pears in the objective function with a weight W1 which allows it to have a high 
priority (W1 large or a smaller priority) (W1 smaller or equal to other goal 
weights). The second goal constraint states that no top loads may be covered or 
the underachievement variable 2d +  will negatively impact the objective func-
tion by the number of covered top-loads multiplied by weighting factor W2. Us-
ing a similar interpretation, the third goal constraint states that all priority one 
loads must be immediately accessible on opening the trailer. The fourth goal 
constraint requires priority level two shipments to be located in the real half of 
the trailer. The fifth goal constraint requires a front load fill with a common next 
hub destination to be at least 25 percent of the total volume. The sixth, seventh 
and eighth goal constraints require the CG location to be lower than or equal to 
1/3 the trailer height, as close to the 1/2 the width (trailer center) as possible and 
closer to the front of the trailer than the rear. Any deviation from the desired 
goal constraint specifications results in a contribution to the objective function 
which penalizes that particular loading placement. It is extremely likely that no 
loading placement will satisfy all goals. However, the algorithm will do what it 
can to minimize underachievement of critical goals. The relative magnitude of 
the weighting factors may be adjusted to see what trade-offs are available among 
the various goal satisfaction levels. A priority based formulation may also be im-
plemented which requires higher priority to be completely satisfied before lower 
priority goals may be considered.  

The formulation represented by Equations (13)-(21) was coded and a solution 
was attempted with an evolutionary optimization algorithm. In order to execute 
the packing through an encoding which assists the loading agent implemented, 
the encoding structure was defined as follows: 

[ ]1 1 1 2 2 2 23 23 23, , , , , , , , ,a b c a b c a b cx x x x x x x x x x=                (22) 

The values which determine the placement of each individual shipment are 
ordered in triple valued groups. The first value of the three groups determines 
the loading order. The second group determines whether the shipment is placed 
starting from the right or left side of the trailer. The third determines the rota-
tion (90 degrees) of the shipment before loading. The three tiered value structure 
is repeated for each shipment to be loaded in the trailer. The agent transforms 
the encoding values into a sequence of operations, as defined by the encoding, 
which determines the location of each shipment and the finished loaded confi-
guration of the trailer. In order to place some of the intelligence at the agent, top 
loads were not allowed to have a load placed on top after they are placed. Also 
the agent logic prevents any two shipments from occupying the same volume 
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which is a difficulty with some bin packing algorithms.  
The solution located by the intelligent agent based optimization is shown in 

Figures 6-10. Each figure gives a top, side and rear view of the loaded trailer as 
specified by the optimal solution located through the application of the goal 
programming formulation. The position of all loads may not be able to be dis-
cerned in all figures, but the key shipment placements are visible. Figure 6 
simply presents the placement of each of the 23 individual shipments. The point 
of note here is that the trailer fill was 100 percent which actually overachieved 
the first goal constraint level. Figure 7 documents the fact that all top load 
shipments are located at the top of the trailer and have no loads placed on top of 
them. Once again, this was guaranteed by the intelligent agent placing the ship-
ments. Figure 8 documents the fact that all priority one loads are immediately 
accessible once the trailer doors are opened and that while all medium priority  
 

 
Figure 6. Shipment placement for optimal solution. 

 

 
Figure 7. Top load placement for optimal solution. 
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Figure 8. Priority shipment placement for optimal solution. 

 

 
Figure 9. Front load shipment loading for optimal solution. 

 

 
Figure 10. Center of gravity location for optimal solution. 
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loads are not in the rear half of the trailer. Most are packed as well as they could 
be. Figure 9 shows the frontload to represent a total of 52 individual volume 
elements (all to the hub represented by the color blue) which represents 21.6 
percent of the total fill. Finally, the CG location is documented in Figure 9. The 
top and back views show the CG is located in the center of the trailer with re-
spect to width, and is approximately one third of the height of the trailer. The 
CG location along the length of the trailer is slightly beyond the half-way point.  

The solution depicted by Figures 6-10 demonstrate the effectiveness of the 
overall solution approach. The only goals unmet include the medium priority 
placement which could not be completely met due to the number and volume of 
these shipments. The front fill goal was slightly under the desired level and the 
CG location was slightly farther back than desired. The overall packing, however, 
was amazingly effective in meeting the goals of the shipping company. A tradi-
tionally accepted solution for the bin packing problem would be a 100 percent 
fill, but the solution offered here not only provides the fill, but also meets a host 
of other importance performance criteria. A trade-off may be made between the 
intelligence implemented at the agent itself and how much intelligence is pro-
vided to the agent through the genetic optimization algorithm. This balance may 
be adjusted over time as the methodology is adjusted for a specific application. 
Extension to multiple trailer loading is a straightforward process. A post optimal 
analysis of the result simply points out the need to form a head-load, carefully 
place the priority and top loads and balance the distribution of the weight of the 
various shipments. A traditional human loader, or even an intelligent agent im-
plementation would have difficulty trading off the various objectives or goals 
without some computational support. 

5. Summary and Conclusions 

The use of a genetic or evolutionary algorithm to provide intelligent decision 
making for an agent was demonstrated for both a single objective and multiple- 
objective problems. The ability to deal with complex, high level goals or objec-
tives has been documented. The use of a goal programming formulation pro-
vided a straightforward means of addressing goals which translate directly into 
an increase in operational efficiency. The solution generated for both the peg 
game and trailer loading examples demonstrate the potential of the methodology. 
The coupling of a genetic algorithm and an agent based framework for modeling 
opens a wide range of applications for systems level optimization. This is signif-
icant as most optimization approaches to decision support look at local im-
provements. They seldom considers the multiple, competing objectives which 
are present in virtually every “real world” application.  

The peg game represents a simple but non-trivial application of the approach. 
It typifies a decision support problem as the ultimate success in solving the game 
is a result of each and every move made by the agent. At each move, the agent 
must consider a range of options, and the current positioning of the pegs is a 
result of all previous moves. In order to solve the problem, the optimizer must 
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provide the agent with the appropriate logic to generate the solution. A simple 
random approach, without any strategy will not solve the game in any reasona-
ble time. Being able to generate the solution with a small population and within 
a relatively few number of generations is an indication of the promise of the ap-
proach in a broader context. The solution of the trailer loading problem with 
consideration of goals including not only fill but head-load percentage, shipment 
priority, top-load location and center of gravity location documents the potential 
in solving real world applications which are currently handled in a sub-optimal 
way through human intervention. The result is a direct reflection on the poten-
tial impact in not only operational efficiency of a hub, but on the safety of the 
loaded trailer. It also demonstrates that the evolutionary optimization algorithm 
can support an agent which has a large number of competing goals or objectives.  

The use of a goal programming formulation allows for straightforward prob-
lem formulation, and the evolutionary optimization allows a global search to be 
conducted in a complex decision space. A post optimal analysis allows for local 
decision logic to be improved over time as well as distributing the intelligence 
between the agent and the optimizer. The ability of addressing multiple goals 
while solving a NP hard problem represents a significant achievement. Exten-
sions to other decision support problems such as logistics and scheduling are 
currently being investigated. 
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