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ABSTRACT 

In recent years, the increasingly complexity of the logistic and technical aspects of the novel manufacturing environ- 
ments, as well as the need to increase the performance and safety characteristics of the related cooperation, coordination 
and control mechanisms is encouraging the development of new information management strategies to direct and man- 
age the automated systems involved in the manufacturing processes. The Computational Intelligent (CI) approaches 
seem to provide an effective support to the challenges posed by the next generation industrial systems. In particular, the 
Intelligent Agents (IAs) and the Multi-Agent Systems (MASs) paradigms seem to provide the best suitable solutions. 
Autonomy, flexibility and adaptability of the agent-based technology are the key points to manage both automated and 
information processes of any industrial system. The paper describes the main features of the IAs and MASs and how 
their technology can be adapted to support the current and next generation advanced industrial systems. Moreover, a 
study of how a MAS is utilized within a productive process is depicted. 
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1. Introduction 

The current industrial systems are destined to become 
environments even more technologically advanced in 
every aspect. This is due to several reasons: the complex- 
ity of the new manufacturing processes, the need to op- 
timize costs, the increasing of the complexity in manag- 
ing resources, the need to improve performances, the 
aspects tied to the information exchanges, the manufac- 
ture of complex products, the need to ensure advanced 
safety standard, and so on. All these aspects imply a con- 
tinuous and growing renovation of the current industrial 
activities. Artificial Intelligence (AI) techniques [1,2], 
utilized to overcome these new qualitative and quantita- 
tive challenges bring from the next industrial age, seem 
to provide the more suitable support since they naturally 
have all these technical features (e.g., adaptability, rea- 
soning, learning) required from the new manufacturing 
processes [3]. In particular, the use of AI based strategies 
allow to the industrial environments to adopt autonomous, 
dynamic and intelligent procedures to face expected and 
unexpected issues. The IAs and MASs are technologies 
that can play an important role in every aspect involved 
in the development of the next generation of the ad- 
vanced industrial systems. In fact, these systems have to 
be designed to include intelligent, autonomous and ev- 

olvable entities in turn composed by different sub-entities 
having the same features. The number of levels (i.e., en- 
tities, sub-entities) and the complexity of each entity and 
sub-entity depend on the specific kind of the industrial 
system. The mentioned features are strongly tied to the 
IAs and MASs paradigms [4,5]. Moreover, several IAs 
and MASs have been just adopted in a wide range of 
applications that are connected to advanced industrial sys- 
tems, such as: Robotic, artificial vision, production plan-
ning, systems control, engineering, information exchang- 
ing, and so on. In what follows, we describe the main 
features of the IAs and MASs and how their technology 
can be adapted to support the current and next generation 
advanced industrial systems. 

The paper is organized as follows. Section 2 intro- 
duces the general aspects of the logical architecture of 
the current industrial systems. Section 3 describes the 
main features of the IAs and MASs to be adapted to 
support industrial systems. Section 4 provides a study of 
how a MAS is utilized within a productive process. In 
particular, the section discusses the different MASs algo- 
rithms highlighting their use to support the real-time 
production process. Section 5 shows the principles of the 
hybrid systems and presents the main characteristics of a 
case study. Section 6 concludes the paper. 
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2. Current Industrial Systems Architecture 

The logical architectures of the current industrial systems 
can be seen as a correlated set of connected crucial proc- 
esses that have to achieve a prefixed objective taking into 
account the current elaboration state of every other proc- 
ess. All the processes are aimed to reach a common tar- 
get: The Artifact. In our context, the last mentioned term 
has to be considered both a physical object (e.g., techni- 
cal or mechanical device, industrial product) and an ab- 
stract object (e.g., general service, immaterial product). 
The concepts regarding the creation or delivery of an 
artifact can be generalized to provide a common descrip- 
tion of current industrial system architectures. 

Each process deals with a specific activity (or part of it) 
of the whole industrial process. In fact, a generic Indus- 
trial system includes heterogeneous activities, such as: 
economical planning, quality and test control, real-time 
production control, internal activities, processes moni- 
toring, robot control, sales planning, and so on. For this 
reason, the specification of a process can be completely 
different from another. As shown in Figure 1, a process 
is an autonomous entity characterized by internal rules 
and protocols. Every process works in coordination with 
others by taking into account their internal state. 

The internal rules and protocols are highly dependent 
from the specific process. In general, the output of a 
process (i.e., artifact and information) regards a collec- 
tion of homogeneous activities, while the input (i.e., 
processes interaction) concerns the connection of several 
heterogeneous activities, such as: Technical and sched-
ulling information, control and manufacturing activities, 
data, artifact (or part of it). Every single process is com- 
posed of several different tasks (or sub-tasks) concerning 
a specific part of the whole industrial process. As shown 
in Figure 2, a task (or a sub-task) is an activity that can 
be solved, by decisional processes, using autonomous 
and intelligent methods without a specific knowledge of 
the surrounding processes. The depth of the tree depends 
 

 

Figure 1. A general scheme of a process. 

 

Figure 2. Process, tasks and sub-tasks hierarchy. 
 
on both the kind of process and its complexity. Usually, 
processes concerning long term economic planning and 
technical activities are more complex than others. 

The process at the root level (i.e., level 0) provides 
each of its tasks the needed input to accomplish the re- 
lated assignments. Likewise, each further task (i.e., level 
1) provides each of its sub-tasks the suitable part of the 
original input to accomplish the related sub-assignments. 
This activity of splitting input and assignments ends at 
the last level of the tree. The solution of each task and 
sub-task, by a decisional process, can require information 
or activities coming from different tasks and/or sub-tasks 
connected to any tree level. For this reason, the interac- 
tion mechanisms are a critical aspect of the current in- 
dustrial systems. A failure in a task can produce a critical 
crash of the related process, or of the connected proc- 
esses. Furthermore, the last mentioned aspect is funda- 
mental to establish the intelligent mechanisms to solve 
the heterogeneous activities belonging to the complex 
industrial systems (e.g., real-time monitoring, dynamic 
business planning, chain control, simulation environ- 
ments) and to overcome the expected and unexpected 
issues (e.g., breakdowns, environment changes, dam- 
ages). 

The decisional process that solves a task at the level 1 
of the hierarchy can interact with any other decisional 
process that solves any other task at the same hierarchical 
level. Subsequently, the decisional processes that solve 
sub-tasks on the others levels of the hierarchy (e.g., level 
2) have to directly interact only with the decisional proc- 
esses that solve a sub-task connected at the same task or 
sub-task at the previous hierarchical level. 

In others worlds, on each tree level, only the “broth- 
ers” can directly interact. If decisional processes belong- 
ing to different “fathers” have to interact, then the same 
“fathers” will accomplish the interaction activity. 

As shown in Figure 3, the artifact is the result of 
joined processes. Likewise the previously described co- 
operation strategy, each decisional process that solves a 
process within the level 0 can interact with any other 
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decisional process that solves any other process at the 
same level 0. Also in this case, if two decisional proc- 
esses, driving two different tasks (e.g., at level 1) be- 
longing to two different processes, have to interact, the 
same two processes will accomplish the interaction ac- 
tivity. This kind of hierarchical interaction serves to 
avoid disorder (i.e., anarchy) between tasks, sub-tasks 
and processes. Moreover, it is useful to allow the deci- 
sional process to have a total autonomy with respect the 
fixed assignment. 

Each decisional process involved in the solution of a 
process, task or sub-task has to have well defined fea- 
tures. These features specify the way (e.g., protocols of 
communication and execution, priority of the decisional 
tree, priority of the queues, relationships between tasks 
or sub-tasks) and the resources (e.g., technical, economi- 
cal, time planning, supply chain management) to carry on 
the activities. A generic decisional process can be con- 
sidered as a set of activities that can be carried on by an 
intelligent, autonomous and flexible entity. Technically, 
these entities can be seen as a set of interactive proce- 
dures able to learn and evolve according to their life cy- 
cle. For these reasons, the use of IA and MAS technolo- 
gies are considered the best solutions to these kinds of 
issues. As shown in Figure 4, each decisional process 
should be driven by a single IA. Each IA knows only the 
rules, the procedures and the protocols related to its spe- 
cific task. It has a limited point of view regarding the 
whole industrial process and it is able to adopt solutions 
only on its specific contextual environment. Moreover, 
the networked set of the IAs (i.e., MASs) should drive 
each process into the industrial system. This association 
between tasks, assignments and intelligent entities allows 
to implement independent customized solutions to solve 
global and local specific issues. 

3. IAs and MASs in Industrial Systems 

The agent and multi-agent technologies have been widely 
adopted in robotic and automatic control system fields. 
The growing complexity of the current industrial envi- 
ronments and their affinity to the mentioned fields has 
encouraged the design of IAs and MASs aimed to direct 
 

 

Figure 3. Level 0: The processes. 

 

Figure 4. Decisional process and intelligent agent. 
 
each aspect of the industrial chain. The CI based tech- 
niques promise to be the best way to perform these his- 
torical changes. There are several similar definitions of 
intelligent agent [6,7]. Considering the set of these defi- 
nitions, in our context an intelligent agent can be de- 
scribed as: A social, autonomous and intelligent compu- 
tational entity capable to accomplish a definite objective 
through an adaptive reasoning. Regardless of how an IA 
is defined, it is characterized by several general features 
[8] that can be adapted to our context. These features, 
joined with the given definition, complete the IA para- 
digm. 

3.1. IA Properties Adapted to Industrial Systems 

There are five main properties belonging to the IA that 
have to be adapted to build a basic industrial oriented IA. 

3.1.1. Reactivity 
An IA is a reactive entity that continuously perceives and 
affects with its surrounding environment. In an industrial 
system this feature depends on the process on which the 
agent is applied. For example, in economical planning 
processes the reactivity can be considered a not active 
feature, i.e., the agent has a starting receptive state and it 
will tend to switch its condition only if it recognizes par- 
ticular changes in the environment. Instead, in technical 
processes the reactivity can be considered active, i.e., 
each change in the environment is considered an impor- 
tant event that has to be analyzed in real-time. 

3.1.2. Pro-Activity 
An IA has to operate in an expected way, but it can also 
take initiatives to overcome unexpected events. Usually, 
this feature does not depend on the process, it is tied to 
the environment in which the agent has to operate. The 
environments into the industrial processes can be classi- 
fied in deterministic and non-deterministic. At the first 
class often belong processes derived from economical 
tasks that are tied to several unexpected changes (e.g., 
economical plans, supply chain management). At the last 
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class almost always belong processes derived from tech- 
nical tasks that are usually scheduled and coordinated 
(e.g., test and control, robot interaction, real-time moni- 
toring). 

3.1.3. Autonomy 
An IA has to be capable of autonomous actions to ac- 
complish its objectives. There are several situations in 
which an agent has to autonomously decide what is nec- 
essary to do, and how it has to be done. The main issue 
of this feature is to decide which, how many and when 
specified actions/activities can be adopted by the IA. As 
general rule, an IA is authorized to take autonomous de- 
cisions only if there is the real possibility that the whole 
process crashes. These situations occur quite often in 
advanced industrial systems where several technological 
actors are involved. In fact, the introduction of complex 
systems in the industrial environments (e.g., real-time 
systems, on-line robot vision monitoring, automatic con- 
trol management) has led high level of entropy. Usually, 
a reasoning decision tree is used to decide the actions 
that have to be performed [9,10]. By the autonomy prop- 
erty each agent can interact with the environments or 
other agents without an external presence to ensure the 
achievement of the prefixed objectives. 

3.1.4. Flexibility 
An IA has to interact with the surrounding environment 
in different ways. It has to have the capability to adopt 
quickly itself to drastic changes into the relationships, 
environments or events. Sometimes conventional com- 
munication or interaction ways could be not sufficient to 
reach a prefixed objective. For example, an agent could 
want data from another agent in different way respect the 
standard protocols. For this reason, an agent has to man- 
age its characteristics (e.g., output, external interface, 
internal protocols). This property is particularly impor- 
tant in industrial systems because they are prone to dy- 
namic changes in management and technical levels. 

3.1.5. Social Ability 
An IA has to interact with other agents (also humans). 
This feature is the core of the intelligent agent theory; 
through the interaction an agent can understand the 
events and adapt its characteristics to the dynamic situa- 
tions surrounding it. An IA needs to communicate with 
the internal and external environments to ensure several 
main activities (e.g., find out the state of other agents, 
sub-tasks synchronize, tasks scheduling, acknowledge- 
ment). Furthermore, it has to be considered that some 
agents (e.g., mediator agents, contractor agents, negotia- 
tor agents) have particular assignments that, more than 
others, need to interact with the surrounding entities. In 
industrial systems this feature takes a key value in busi- 

ness plans and technical activities. 
The last property introduces a main matter in the in- 

dustrial systems, i.e., the languages through which the 
agents exploit their own social ability. In general, the 
most important challenges in Agent Oriented Software 
Engineering (AOSE) is to use or create a suitable Agent 
Oriented Programming Language (AOPL) to allow the 
agents an effective and efficient interaction. There are 
several advanced tools that aid the developers in design- 
ing complex agent based software systems. Moreover, 
there are several powerful programming languages de- 
signed to facilitate the programming of agent entities. 
The chosen of the correct tool and language to achieve a 
prefixed assignment is a critical matter. Independently 
from the agent implementation there are some issues 
(e.g., debugging, validation, verification) that depend on 
the specific context in which the agents have to operate. 

In AOPLs the focus is on how to describe the behavior 
of an agent in terms of constructs [11] (e.g., plans, com- 
munication strategies, interaction patterns, goals, mes- 
sages). This agent description is aimed to specify the 
“reasoning state” of the agent during its activities. A 
typical example is AGENT-0 [12] a simple and powerful 
generic agent interpreter. This AOPL tends to program 
agents in terms of basic behavior, in this way the proper- 
ties of the agents can be developed by definite notions, 
such as: Reactions, communication ways, interactions, 
rules, and so on. Another interesting AOPL is dMARS 
(Distributed Multi-Agent Reasoning System) [13], which 
provides both a sophisticated monitor and manageable 
macros to develop interaction activity between agents. 
Moreover, this AOPL provides several functionalities to 
manage critical implementation steps (e.g., configura- 
tions of internal states, perception of events). The 
dMARS can be considered a reference technology to 
direct complex industrial systems since it has a wide 
range of high solutions that support the whole industrial 
processes. A last interesting AOPL considered to develop 
agents in industrial systems is JACK [14]. It is a versatile 
framework designed to create, by models, the concepts 
that drive the intelligent agents. This language has a wide 
use in industrial contexts since it provides powerful tools 
for the run-time support. Moreover, JACK has prede- 
fined structured patterns to manage critical situations 
(e.g., concurrency, reaction to events, failure). In the last 
years, there have been many efforts to support the IA 
communication in different fields, including the Indus- 
trial systems, the result has been a growing development 
of multi-purpose languages (e.g., 2APL, 3APL) [15]. An 
agent has several others features that can be considered 
implicitly included in the previous features (e.g., learn 
capability, reasoning, auto-improvement). 

In complex industrial systems there are several kinds 
of agents according to different processes or tasks. For 
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example, the communication-agents are specialized in 
communication-activities between sets of agents. They 
deal with strategies and protocols for the information or 
data exchange. Another example is the learning-agents 
that learn about the functionality and potentiality of the 
surrounding environment and transmit this knowledge to 
the other agents. Several others dedicated agents are de- 
veloped according to specific requirements. Beyond the 
potentiality of a single IA the algorithms that drive the 
industrial processes are multi-agent based. 

MASs can be considered as composed by heterogene- 
ous agents, which are aimed to achieve common objec- 
tives. Likewise to the intelligent agent definition, also in 
this case there are several similar definitions of MAS 
[16]. In our context a MAS can be described as a suitable 
and reasoning assemble of agents that, according to their 
features, achieve common objectives through connec- 
tions and teamwork intelligent mechanisms. Also the 
MASs have the same features observed for the intelligent 
agents: the main difference is the coordination and coop- 
eration processes that drive the agents. Moreover, a MAS 
has interaction properties that define the collective rea- 
soning of the whole system. Usually, each MAS has a set 
of rules and protocols that are inherited from each single 
agent. These last define the kind of collective intelligence 
characterizing each single MAS. These considerations 
conclude the paradigm definition of MASs. 

A complex MAS can be composed by different sets of 
MASs obtaining a system with high levels of communi- 
cation processes. In any case, these systems are charac- 
terized from more complex coordination, cooperation 
and teamwork mechanisms. Usually, no centralized con- 
trol methods are implemented, but specific strict rules 
and hierarchic behavior strategies are performed to en- 
sure the correct working of the system. The difficulty in 
the MASs management depends on the number of agents 
and their complexity. Figure 5 shows a typical MAS 
 

 

Figure 5. Simple MAS scheme. 

scheme where each process is driven by a set of agents 
that have different dedicated assignments. 

Each process (X, Y, Z and others) is composed by 
some tasks that are accomplished by several agents. As 
presented in Figure 5, the process X is composed by four 
industrial activities (T1, T2, T3 and T4, where T = Task), 
and two service activities (E and I, where E = Executor, I = 
Interface). All the processes involved in the industrial 
environment, independently from their role, are aimed to 
reach the common target: the objective (artifact/activity). 

The agents tied to the industrial activities accomplish 
specific tasks tied to the industrial process, while the 
others two activities provide coordination and coopera- 
tion mechanisms. I-IA and E-IA work on the whole 
process. In fact, the first provides the result of the Indus- 
trial process (e.g., artifact or part of it, data, information) 
to the environment; the second uses a communication 
channel to interact with other processes (i.e., with the 
related I-IAs). Note that only the I-IA and E-IA can make 
actions outside their own process. The other four agents 
(T1-IA, T2-IA, T3-IA and T4-IA) can accomplish only 
internal assignments and can interact only with agents 
belonging to the same process. 

4. MASs: Approches and Algorithms 

The new generation of the industrial systems can be 
conceived like Distributed Artificial Intelligence (DAI) 
systems described as cooperative systems where a set of 
heterogeneous agents act jointly to solve a given problem 
[17]. A DAI system belongs to the Distributed Problem 
Solving (DPS) field where a problem is solved by using 
several modules [18] which cooperate in dividing and 
sharing knowledge about the common issue. All these 
factors influence the choice of the multi-agent architec- 
ture to drive the algorithms used into each agent and the 
related communication strategies. There are several multi- 
agent architectures used to perform the activities of a 
large set of heterogeneous environments; the most ef- 
fective are inspired by the distributed version of BDI 
(Belief-Desire-Intention) [19]. This architecture is based 
on the correspondence between beliefs, desires and in- 
tentions with reciprocal identifiable data structures. The 
BDI based systems have several features (e.g., agent scal- 
ability, real-time communication, acknowledge mecha-
nisms). They can be managed to be adapted in any envi-
ronment. In Figure 6 a general overview of the basic 
patterns to implement industrial architectures is given. 
They are based on the classical configurations used in 
others fields, the differences are came out during the im- 
plementation by considering the features of each agent in 
accordance to the specific industrial system. 

As a general rule, each task is assigned to a specific 
Task Master Agent (TMA) which, according to the spe- 
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Figure 6. Sample of architectural industrial system. 
 
cific architecture, can solve different assignments (e.g., 
safety and security, execution, coordination, cooperation). 
The TMA can work alone or supported by several sub- 
agents, depending on the nature and complexity of the 
task. These sub-agents deal with only a peculiar and ho-
mogeneous step of the task. Moreover, they are usually 
execution-oriented (i.e., executor agents) or informa- 
tion-oriented (i.e., acknowledger agents). Commonly, the 
sub-agents can have relationships only with sub-agents of 
the same task or with the related TMA. A particular kind 
of TMA, the Gateway Task Master Agent (GTMA), has 
to interact with all the TMAs belonging to a same proc- 
ess. Finally, the Process Master Agent (PMA) is used to 
allow interaction of different agents. Each GTMA can 
interact only with the related PMA, each PMA can inter- 
act with any other PMA. The communication activities 
are usually performed by well-known protocols and al- 
gorithms in the network field. Indeed, each communica- 
tion, in the MASs, tends to be implemented according to 
FIPA specifications [20]. It is the IEEE Computer Soci- 
ety organization that promotes agent-based technology 
and the interoperability of its standards with other tech- 
nologies. 

The MASs communication activity can be analyzed by 
graph theory [21], where each node is an intelligent agent 
and the edges between nodes are the communication 
channels. This allows to adopt the well-known algorithms 
to manage environments composed by multi-agent sys-
tems. The current MASs communication processes are 
inspired to the basic algorithms on network architectures 
[22]: Routing, broadcasting, and semi-group computa-
tion. 

The routing algorithms regard the processes used to 
visit a graph to reach a particular objective. In literature 
exists different algorithms to accomplish this task [23]. 
For example, the Dijkstra and Bellman-Ford algorithms 
research a shortest-path from a single source node to any 
other node in the graph. A variant of these algorithms is 

given by Floyd-Warshall and Johnson that provide 
strategies to research a shortest-path from multiple source 
nodes. Also the Prim and Kruskal algorithms (minimum 
spamming tree) and the Ford-Fulkerson and Karp algo-
rithms (maximum flow) are commonly used in routing 
issues. All these algorithms are used to allow the agents 
different communication strategies which are tied to sev-
eral factors, such as: type and aim of the interaction, kind 
of activity, kind of involved agents, and so on. 

The broadcasting algorithms provide a direct way to 
communicate to a node in a graph. These algorithms are 
based on one-to-all philosophy, where a single node (i.e., 
agent) has to send (i.e., interact) a message to all the 
nodes of the graph. The weighs in the graph can drive the 
communication process according to the specific objec- 
tive. They are usually represented by vectors that include 
a wide set of information (e.g., priority access value, 
identification value (ID), agent state value). In industrial 
contexts these algorithms are used to support control 
activities and to provide commands and scheduling steps 
to technical processes. 

The semi-group computation algorithms are based 
on the binary communication of the intelligent agents 
composing a definite and closed set of agents. In general, 
the binary communication is used to reach each node in 
the graph through a dynamic bridge that allows two 
agents to communicate according to some convenience 
rule (e.g., distance between the agents, cost of the con- 
nection, priority level). These algorithms are usually ap- 
plied, in industrial environments, where a strict intelli- 
gent agent structure is required. The particular structure 
of a semi-group of agent is suitable to implement systems 
able to react to non-deterministic events (e.g. external 
operations, unexpected broken events, sabotages). In ad- 
dition to the three mentioned basic algorithms (and their 
evolutions) on network architectures, there are several 
experience-based approaches for everyday use which pro- 
vide ad-hoc solutions allowing a qualitative improvement 
of the management standards. In this way, the human 
experience can be utilized to optimize the agent imple-
mentation improving the industrial process. 

Table 1 presents a brief description of the communi- 
cation algorithms according to the different main indus- 
trial environments. The physical connection of a MAS is 
a crucial point of the current and next generation Indus- 
trial environments, in fact the way in which sets of agents 
are connected each other can drive the chooses about the 
adopted interaction communication technologies. For 
example, in large-scale management processes central- 
ized and hierarchical architectures are preferred. On the 
contrary, in advanced manufacturing processes are used 
flexible, scalable and modular architectures. Figure 7 
shows that the architectures for industrial systems are 
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Table 1. Communication algorithms. 

Algorithms 
Industrial 

Environments Routing Broadcasting Semi-Group

Management 
and Strategies 

general 
spamming 

tree 

one-to-all 
one-to-set 
one-to-one 

And vice versa 

binary  
computation 

Supply Chain 
Management 

maximum 
flow  

shortest 
path 

one-to-all 
set-to-set and 

vice versa 

binary  
computation 

linear 
computation 

Control and 
Driving Tools 

minimum 
spamming 

tree  
maximum 
spamming 

tree 

one-to-all 
one-to-set and 

vice versa 

binary  
computation 

multiple 
computation 

Security  
Activities 

multiple 
shortest 

path  
general 

spamming 
tree 

one-to-one 
one-to-all and 

vice versa 

multiple 
computation 

 

 
(a)                            (b) 

 
(c)                            (d) 

Figure 7. (a) Star; (b) ring; (c) chain; (d) network structures. 
 
implemented with four approaches: Star, ring, chain and 
network. 

The star-structure is used in processes, tasks and sub- 
tasks where a centralized mechanism is needed. The ac-
tivities are managed by the central agent that can di- 
rectly interact with each node in the graph. A typical 
example of this architecture regards the interaction be- 
tween the interface intelligent agent (i.e., I-IA, the central 
node) and the other agents belonging to the same task. A 
different approach is provided by the ring-structure 
where a decentralized interaction mechanism is given. 
The responsibilities and the activities are subdivided be- 
tween the agents involved in the graph. A typical exam- 
ple is given in the processes managed from a large 

amount of heterogeneous agents. The chain-structure 
provides a hierarchical interaction structure. This ap- 
proach is commonly used to allow the communication 
between different levels. This interaction is the basic 
communication approach used in the industrial systems 
where every level has to solve different assignments. 
Each node can interact only with its own father or sons. 
The network-structure provides an interaction mecha- 
nism where each node can directly interact with any 
other. In this architecture the nodes have similar assign- 
ments. It is usually used to allow the agent of a same 
level to interact each other. 

In our context, an industrial process can be classified 
within one of the following classes: Planning and Strate- 
gies of Management Processes (PSMP), Driving and 
Control of Manufacturing Processes (DCMP), Advanced 
Analysis of Critical Processes (AACP). The PSMP term 
highlights the high level activities that drive the whole 
business processes. These activities cover each level of 
the industrial architecture and include a wide range of 
assignments (e.g., economical strategies and planning, 
coordination of internal and external activities, definition 
of policies and rules). A classical application of the 
MASs regards the Supply Chain Management (SCM) 
[24]. A supply chain is a network that deals with several 
activities (e.g., materials, services, logistic planning) to 
reach the distribution of a final artifact. The PSMP are 
usually directed by statistical and computational algo- 
rithms. Each agent in the system controls a specific algo- 
rithm. The aim of the agent is to elaborate the informa- 
tion about the environments to obtain numerical values 
and, then, computes the values through statistical models 
to obtain a numerical transposition of the real world in- 
volved in the coordination activities. An interesting kind 
of algorithms regards the deduction/cognition process. 
Usually, these algorithms are performed by a mathe- 
matical-agent that knows linear programming and poly- 
nomial approximation techniques, useful to derive de- 
ductions. Other classes of algorithms are available ac- 
cording to the specific process. 

Other important algorithms included in this processes 
class regard those to solve conflicts. The agents that ac- 
complish this kind of algorithms exploit the social ability 
feature. In particular, fuzzy logic approaches [25] are 
implemented into the agent to face different issues (e.g., 
reliability of events, flexibility, mediator activity). Table 
2 shows a brief description of the common algorithms 
used in PSMP class. 

The DCMP class regards all the activities concerning 
the manufacturing processes. This class deals with as- 
signments, such as: Robots collective control, industrial 
tools management, technical safety policies, and so on. A 
classical application of this class regards the manufac-
turing robots control [26,27]. These algorithms regard the 
real-time reactivity on runtime environments. In fact, 
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they must guarantee an immediate and solving interact- 
tion with the surrounding context. Indeed, in this class it 
is possible to distinguish two sub-classes of algorithms. 
The first regards the algorithms inside the industrial tools 
(e.g., firmware or machine level), the second is about the 
algorithms inside the technological structures of the 
manufacturing environments (e.g., workstation, data pro- 
cessing centre). The algorithms belonging to the first 
sub-class are designed to be independent and light. These 
algorithms do not have a high computational level, but 
they have more parallel mechanisms to avoid and over- 
come bad events (e.g., failures, accidents). The most im- 
portant agent is the interface-agent that controls and 
manages the interaction between the tool and the external 
world. In the second case the implemented algorithms are 
statistic-based. In particular, a large amount of control 
algorithms, and related agents, have knowledge about the 
discrete and continue random variables. In this way, for 
example, a prediction about a lot of targets can be done 
(e.g., life of a component, the state of an entity, the safety 
state of a tool). An interesting aspect related to the sec- 
ond sub-class of algorithms regards the simulation envi- 
ronment for manufacturing activities. These algorithms 
are used in modeling and simulation environments for 
improving or testing the different levels involved in the 
manufacturing activities. The algorithms used in this 
context regard the model understanding area (e.g., prob- 
abilistic models, prevision models). These algorithms are 
used to check the planning and scheduling strategies for a 
specific operative task. Moreover, they allow to the user 
to achieve simulations and predictions and to obtain dif- 
ferent information about the events that occur during the 
plan strategy [28]. Also in this case Table 3 shows a 
brief description of the main DCMP algorithms. 

The last class of processes, AACP, is referred to criti- 
cal tasks, sub-tasks and processes. This class considers 
each level of the industrial system, from technical up to 
economical issues. An interesting example is provided by 
the monitoring and diagnosis systems applied to sophis- 
ticate manufacturing environments (e.g., production of 
chips, production of complex artifacts, production of 
components, model testing). In this case the system pro- 
vides several run-time dependent functionalities that 
 

Table 2. PSMP algorithms. 

PSMP Algorithms 

Economical 
Planning 

deduction and reasoning, simulation, exhaustive 
research, linear approximations 

Supply Chain 
Management 

combinatory, linear programming, polynomial 
approximation, fuzzy logic 

Strategic  
Planning 

prediction, heuristic, comparison, numerical 
evaluation and synthesis 

Stock  
Management 

binary research, dictionary management,  
balanced trees, fuzzy logic 

perform activities as monitoring and diagnosis. These 
functionalities are accomplished by advanced algorithms 
(e.g., sensor understanding, pattern recognition, machine 
learning). If an agent has some doubts regarding the cor- 
rect execution of a task, it may ask to interrupt each ac- 
tivity of the process. For example, particular agents can 
be created to recognize particular features on images that 
represent welding on an artifact in control process. The 
agents work on the images and they give information 
about the quality of the welding to the industrial manu- 
facturing system. Table 4 presents the main algorithms 
belonging to the AACP class. 

5. Hybrid Systems: A Case Study 

An interesting opportunity regards the use of more than 
one computational intelligent (CI) approach to solve is- 
sues in industrial systems. For example, in [29] is de- 
scribed a DNA-MAS genetic programming system, 
which is designed for application-generic multi-agent 
simulation and generation using an advanced symbolic 
language built specifically for the use in a random muta- 
tion and crossover environment. Indeed, in industrial 
systems, the other techniques of artificial intelligence 
(e.g., genetic algorithms, neural networks) are used to 
improve specific features of an agent. For example, in a 
manufacturing environment, where the visual images of 
the artifact are important for the quality control, an agent 
could need to exploit the potentiality of a genetic algo- 
rithm (which approximates a set of solution to the opti- 
mal solution) to try a better identification of the mean- 
ingful features of the same images. There are several 
examples, not only in industrial systems, where hybrid 
 

Table 3. DCMP algorithms. 

DCMP Algorithms 

Driving 
real-time tracking models, interactive patterns, 

experience-based models 

Control 
discrete and continue random variables,  

prediction models, reasoning-based models 

Runtime 
real-time acknowledgment, scheduling of  

dynamic queues 

Simulation 
probabilistic models, prevision models, 

non-deterministic models 

 
Table 4. AACP algorithms. 

AACP Algorithms 

Control 
pattern recognition, deforming models, feature 

extraction, global and local operators 

Position 
tracking, scheduling, machine learning,  
feedback ranks, feedback management 

Driving 
feedback management, retroactivity strategies, 

experience-based models 

Simulation prediction, stochastic computation 
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architectures can result suitable to face critical problems. 
The purpose of this brief section is to highlight that the 
artificial intelligence techniques have a common root (i.e., 
the intelligent dynamic reasoning) that can be applied 
using different techniques to adopt a different representa- 
tion of the human reasoning for solving activity. 

An interesting case study, shown in [30], regards a hi- 
erarchically organized multi-agent system for production 
control of semiconductor wafer manufacturing facilities 
(wafer fabrication). The production control of wafer fab- 
rication is challenging from a complexity and coordina- 
tion point of view. The goal of semiconductor manufac- 
turing is the production of integrated circuits. This envi- 
ronment is characterized by several industrial tools that 
are managed, in different way, from a large amount of 
users. Moreover, the semiconductor manufacturing do- 
main is characterized by stochastic events like machine 
breakdowns and the change of customer related due dates 
of the lots. A flexible representation of the process con- 
ditions of semiconductor manufacturing domain has been 
defined with the purpose to develop the MAS architect- 
ture. Then, it has been provided modeling capabilities for 
agent hierarchies; moreover it has been provided to the 
system the capabilities to emulate a wafer fabrication 
represented by a discrete event simulation model for 
performance assessment of our agent-based production 
control system. Finally, it has been given a mechanism 
about integration capabilities for legacy software to use 
more advanced heuristics for staff agents. Through this 
implemented strategy an efficient complex industrial 
system has been developed. 

6. Conclusion 

The evolution of the current industrial systems and the 
challenges of the next generation ones are encouraging 
the development of new information management strate- 
gies to direct and manage the automated systems in- 
volved in the manufacturing processes. The technology 
tied to the CI approaches, like IAs and MASs, seem to 
provide a valid solution to this kind of issues. This paper 
presents an overview of how efficient, autonomous and 
intelligent entities can support a new point of view on 
each and every aspect regarding a complex industrial en- 
vironment. 
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