Using Rapid Prototyping Data to Enhance a Knowledge-Based Framework for Product Redesign

Stefano FILIPPI¹, Ilaria CRISTOFOLINI²

¹DIEGM Department, University of Udine, Viale delle Scienze Udine, Italy ²DIMS Department, University of Trento, Via Mesiano Trento, Italy Email: filippi@uniud.it, Ilaria.Cristofolini@ing.unitn.it

Abstract

The particular characteristics of Rapid Prototyping technologies, both in terms of constrains and opportunities, often require the reconfiguration of the product model to obtain the best compliance with the product functionalities and performances. Within this field of research, a knowledge-based tool named Design GuideLines Collaborative Framework (DGLs-CF) was developed to support both the designers defining the product consistently with the manufacturing technologies and the manufacturers defining the building setup consistently with the product requirements. Present work is focused on enhancing the DGLs-CF knowledge base and on updating the DGLs-CF knowledge management by using the information gathered on some RP technologies. The added-value of this research is represented by an improvement in the Redesign/Reconfiguration Package, the final result of the DGLs-CF adoption. This is a list of actions to be performed on the product model and on the process parameters to avoid the limitations of the technology and to exploit at best its opportunities.

Keywords: rapid prototyping, knowledge-based engineering, product redesign, collaborative engineering

1. Introduction

The increasing complexity of design tasks and continuous developments in technology require the improvement of designers' problem-solving capabilities, through the development of Design for X (DfX) methods and tools accordingly. Moreover, they must be flexible enough to allow an easy customization according to the evolution of the technologies that they address. Up to now, several examples of DfX appeared in the research landscape, as described in [1-11] The next research step was to investigate the possibility of merging several DfXs together in an integrated framework able to generate design guidelines related to more than one phase of the product lifecycle. In this context, the Design GuideLines Collaborative Framework (DGLs-CF) was developed as a knowledge-based tool to help designers defining the product consistently with manufacturing and verification technologies. The aim of the DGLs-CF is to evaluate the feasibility of the product (model) with available manufacturing technologies, to exploit the particular characteristics of them and to measure the conformity of the product to the requirements with specific verification technologies [12].

Purpose of this work is enhancing the DGLs-CF knowledge base and updating the DGLs-CF knowledge management by exploiting the information related to several Rapid Prototyping (RP) technologies. The goal is to generate richer and more effective guidelines information for the designers. RP technologies build physical models starting directly from their CAD representations, as this way costs and times are drastically reduced. They are a very powerful tool in product development. New products normally develop in Concurrent Engineering environments where many actors play different roles; in these scenarios it is of great help having a physical prototype of the product, something tangible, which may help communicating different skills and developing new ideas [2,13-20]. The specific characteristics of the RP technologies, however, are not so widely known in depth and thus it is worthwhile customizing the DGLs-CF for them. This may be a good way of helping non-expert designers in exploiting the opportunities of RP technologies.

The paper opens with a short description of the DGLs-CF and then goes on to describe the four RP technologies selected for this research. The core section of the paper concerns the data collection and their elaboration to get

compatibility with the knowledge base format inside the DGLs-CF. Some considerations about the use of these new pieces of information relating with specific classes of products close the paper.

2. The DGLs-CF

The DGLs-CF is a decision support methodology aimed at effectively helping and leading the activities of designers, manufacturers and inspectors for product redesign and process reconfiguration. The initial consideration is that designers are not necessarily experts in manufacturing and verification processes; likewise, manufacturers and inspectors are not experts in design. A detailed description of the DGLs-CF appears in [12,21–23]The DGLs-CF structure is shortly described in the next paragraph using IDEF0 formalism [24]. IDEF0 is preferred to more sophisticated description methods (UML, for example) because its simplicity makes it a good tool for sharing information in a concurrent engineering environment, especially for non-expert users.

2.1. The DGLs-CF Roadmap

Shortly speaking, the DGLs-CF considers the set of available technologies and the product to be redesigned and suggests a list of actions – the Redesign/Reconfiguration Package – to get the best compatibility.

The easiest way to describe this methodology is by using the so-called DGLs-CF roadmap. It puts in the correct logical order all the activities required by the DGLs-CF adoption as well as the related algorithms and modules. Figure 1 shows the main level of the IDEF0 diagram.

In the first setup phase (A1), the DGLs-CF is customized considering the characteristics of the class of the available manufacturing and verification technologies as well as the features characterising the product under study. Technological characteristics and product features are then related to each other using rules, which relate the limitations (but sometimes also the opportunities) of the technologies to each product feature. Rules are coupled with expressions, which are needed to evaluate

Figure 1. Main level of the IDEF0 diagram of the DGLs-CF roadmap

quantitatively the compatibility of the existing version of the product (model) with the available technologies. When the compatibility is not present, the rules suggest actions to be executed to overcome the limitations of the technologies and to exploit their opportunities. It must be noted that some actions may also affect different features when they are performed on a single feature to gain its compatibility. A "dynamic coefficient" is thus associated to the actions, with its value determined by the amount of features the action may affect. This value is decisive in defining the sequence of actions during the generation of the Redesign/Reconfiguration Package.

The Technological Configuration phase (A2) allows to set the parameter values of the manufacturing and verification characteristics, given the specific brands/models of the available equipments.

Finally, the Redesign/Reconfiguration Package Generation phase (A3) generates the list of actions (the Redesign/Reconfiguration Package) to be applied to the product (model) and to the technological process parameters by means of a recursive algorithm that evaluates time by time different product (model) configurations.

In this work the DGLs-CF knowledge base is enhanced with information related to some RP technologies; for this reason the main characteristics of the RP technologies considered here are described in the following.

3. RP Technologies

The RP technologies considered here are Fused Deposition Modelling (FDM), Stereolithography (SLA), Selective Laser Sintering (SLS), and Laminated Object Manufacturing (LOM). All of these systems build parts in multiple thin layers and their main characteristics, which are used in the DGLs-CF customisation, are summarised hereafter [25–27].

3.1. Fused Deposition Modelling (FDM)

This technology extrudes a molten thermoplastic filament (ABS, polyolefin, polyamide...) through a nozzle in the form of a thin ribbon and delivers it in computercontrolled locations appropriate for the object geometry, thus building the sections of the part. No high powered lasers are used. Typically, the delivery head moves in the horizontal plane while the support plane, where the part is built, moves vertically, so that each section is built over the previous one. The application temperature is such that the applied material bonds firmly with the previous layer. Some support material may be necessary to build the model, depending on the geometrical complexity of the part and on its orientation inside the workspace. The quantity and the shape of the support, which has to be removed from the final part, are calculated automatically. The first section is always built on a support plane, which section is slightly larger than the model to allow an easy removal of the part from the building platform. Precision and surface finishing of the parts are affected by the so-called"slicing" (the layering), which depends on the kind of equipment used, and can vary typically from 0.17 mm to 0.33 mm. The final parts do not need post-processing, except for support removal and some grinding for a better surface finishing.

3.2. Stereolithography (SLA)

A platform that can be lowered and elevated is usually located the thickness of a layer below the surface of a liquid photosensitive polymer contained in a tank. Each slice is etched onto the surface of the photosensitive polvmer that solidifies when exposed to the laser beam. Once the laser has covered the whole surface of the layer, the platform lowers to a depth of another layer thickness, allowing the liquid resin to flow over the previously cured layer. A re-coating blade passes over the surface to ensure that a consistent layer thickness is present before the beginning of the next layer. Different building styles for the prototypes can be used with a SLA system. Normal style involves building full resin prototypes while other styles leaves some resin in the liquid state for different purposes (stresses minimization, generation of models for investment casting, etc.). Supports are required when islands (portion of a layer that is disconnected from any other portion of the same layer), overhangs, or cantilevered sections exist in the part being built. SLA parts have good surface texture and dimensional accuracy, however the orientation of the model in the workspace (due to the staircase effect) and the presence of support can influence the surface finishing. At the end of the building phase the model is carefully removed from the platform and a post-curing phase is performed, in a UV-beam oven, to completely solidify the part.

3.3. Selective Laser Sintering (SLS)

Here the object is built over a platform, where a layer of plastic, metal or ceramic powder (particle size approximately 50μ m) is spread and kept heated. A laser beam melts the powder particles selectively. As the layer is finished, the platform moves down by the thickness of one layer (approximately 0.10–0.15 mm), and a new layer of powder is spread on the previous one. When the laser exposes the new layer, it melts and bonds to the previous one. The process repeats until the part is complete. Surrounding powder particles act as supporting

material for the objects but in any case additional structures are needed during the building of overhangs. SLS parts have average surface texture and dimensional accuracy, the quality being mainly influenced by the powder particle size. On completion, the built volume has to cool down to room temperature after which the processed objects can be removed from the powder bed by brushing away excess powder. Sandblasting or other finishing manufacturing techniques are used to remove all un-sintered particles and to improve the final accuracy of the sintered objects. Of course in this case the support removal is not straightforward and requires special machining and tools.

3.4. Laminated Object Manufacturing (LOM)

In this technology, a sheet of thick paper (coming from a feed roll) with a polyethylene coating on the reverse side is placed on a platform. The coating is melted by a heated roller making the paper adhere to the building platform that, just like the technologies described before, can lower and lift along the Z axis. A laser then cuts the paper following the boundaries of the section of the object. The laser also creates hatch marks, which generate a collection of cubes in the final building volume of glued paper. These cubes behave as a support structure for the overhangs of the model. When the laser has finished the layer, a new paper sheet is applied. At the end of the job, the model is captured within a block of paper. When all of the surrounding cubes have been removed, the unfinished part is sanded down. In the case of cavities problems could be faced in the removal of the paper cubes.

The natural sensitivity of the paper to humidity and temperature can be reduced by coating the model. The surface finishing and the accuracy of the model are not to the same standard as the other methods, however objects have the look and feel of wood and thus can be worked and finished like wood.

4. DGLs-CF Knowledge Base Enhancement

4.1. Collection of Data

The aim of this work is the enhancement of the DGLs-CF knowledge base with pieces of information coming from the RP field. The attention is focused on the manufacturing characteristics, in order to determine the compatibility between the RP technologies and the products. Interviews with expert users and to equipment manufacturers, the previous experience of the authors, papers, user manuals and brochures, etc., have been the sources used for data collection. The goal of this task is to collect the characteristics of the four RP technologies described previously and to identify the related parameters that will be used afterwards by the DGLs-CF users to describe the available equipments [28–38].

4.2. Insertion of Data in the DGLs-CF

The DGLs-CF data structure is organized in tables. Those concerned with in this research have a left side where the characteristics of the class of technology and the related parameters are listed and a right side where the values of the parameters are set, given the specific available equipment. In this research, only the left side is considered, given that the goal is to characterize classes of RP technologies and not specific equipments. The information concerning the four RP technologies considered in this paper are inserted in the DGLs-CF data structure, the result is reported in Table 1 (FDM), Table 2 (SLA), Table 3 (SLS), and Table 4 (LOM).

Some characteristics are common to all the RP technologies considered, as they are intrinsic to the "nature" of the technologies themselves, these being the volume of the manufacturing workspace, the slicing (all the technologies build the models by layers) and the kind of material. Another important issue to consider in determining the compatibility between the RP technology and the product is the need for support for all of them, except for the LOM. SLA and SLS also allow the definition of the building style, as hatching and contouring style, and this characteristic also affects the product features.

5. Discussion

The outcomes of the activities described previously are presented here as an overview of the added-value of this result of this research inside the DGLs-CF. As seen before, in the DGLs-CF all the technological characteristics and the product features are expressed in terms of the related parameters. These features are described in the DGLs-CF data structure in another important table where again the left side contains the parameters allowing to describe a class of products, while the right side is filled by the parameter values of the specific product under study. The analysis of the RP parameters of Tables 1,2,3, and 4 suggests to identify some classes of products, which can be specifically considered here to highlight the enhancement in the DGLs-CF knowledge base. Table 5 shows the collected product features describing plastic front covers, Table 6 for headlights, Table 7 for moulds for headlights and Table 8 for dashboards. The right side of these tables is different from the technology-related ones as there is more than one column to highlight that the information processing in the DGLs-CF comes in an

Parameter values of the Characteristic specific available Label Description Name Parameters equipment Workspace_x=... Volume of the manu-Workspace_x, Workspace_y, Workspace_z: dimensions M1 Workspace Workspace_y=... facturing workspace of the manufacturing workspace Workspace z=... Material *owire*: diameter of the wire Material *wire=*... Material σ : mechanical properties of the material Material σ =... (minimum strength) M2 Material Kind of material used Material tx=... Material tx, Material ty, Material tz: dimensional Material_ty=... tolerances related to the material Material_tz=... Slicing zmin: minimum thickness of the slice Slicing zmin=... Slicing_ox=... Material deposed slice Slicing_ox, Slicing _oy, Slicing _oz: mechanical properties M3 Slicing Slicing ______ by slice (minimum strength in the three dimensions) Slicing $\sigma z=...$ Slicing_Ra_z: minimum obtainable roughness in z direction Slicing_Ra_z=... Support_x=... Support_x, Support_y, Support_z: support dimensions Support_y=... Support needed when Support_z=... building overhangs/ M4 Support sloped surfaces or Support α : critical angle for supports removal (angle between the Support_ $\alpha = ...$ cavities vertical wall and the overhang) Support_Ra_xy: minimum obtainable roughness in xy plane Support Ra xy=...

Table 1. Parametric manufacturing characteristics for the FDM technology

Table 2. Parametric manufacturing characteristics for the SLA technology

			Characteristic	Parameter values of the
Label	Name	Description	Parameters	ment
M1	Workspace	Volume of the manufacturing workspace	Workspace_x, Workspace_y, Workspace_z: dimensions of the manufacturing workspace	Workspace_x= Workspace_y= Workspace_z=
			Material_ σ : mechanical properties of the material (minimum strength)	Material σ =
MO	Matarial	Kind of material	Material_Ra_xy: minimum obtainable roughness in xy plane related to the material	Material_Ra_xy=
IN12	Material	used	Material_tx, Material_ty, Material_tz: dimensional tolerances related to the material	Material_tx= Material_ty= Material_tz=
			Slicing_zmin: minimum thickness of the slice related to slicing	Slicing_zmin=
M3	Slicing	Material deposed slice by slice	Slicing_ σx , Slicing_ σy , Slicing_ σz : mechanical properties (minimum strength in the three dimensions) related to slicing	Slicing_σx= Slicing_σy= Slicing_σz=
			Slicing_Ra_z: minimum obtainable roughness in z direction related to slicing	Slicing_Ra_z=
	0	Support needed when building	Support_x, Support_y, Support_z: support dimensions	Support_x= Support_y= Support_z=
M4	Support	overhangs/sloped surfaces or cavi-	Support_ α : critical angle for supports removal (angle between the vertical wall and the overhang)	Support_α=
		ties	Support_Ra_xy: minimum obtainable roughness in xy plane	Support_Ra_xy=
		Different huilding	Building_style_ σx , Building_style_ σy , Building_style_ σz : mechanical properties (minimum strength in the three dimensions) related to hatching and contouring style	Building_style_ σx = Building_style_ σy = Building_style_ σz =
M5	style	styles	Building_style_Ra_xy: minimum obtainable roughness in xy plane related to hatching and contouring style	Building_style_Ra_xy=
			Building_style_Ra_z: minimum obtainable roughness in z direction related to hatching and contouring style	Building_style_Ra_z=

			Characteristic	Parameter values of the		
Label	Name	Description	Parameters	equipment		
M1	Workspace	Volume of the manufacturing workspace	Workspace_x, Workspace_y, Workspace_z: dimensions of the manufacturing workspace	Workspace_x= Workspace_y= Workspace_z=		
			Material_zmin: minimum thickness of the slice related to the particle size	Material_zmin=		
M2	Material	Kind of material	Material_ σ : mechanical properties of the material (minimum strength)	Material_ σ =		
		used	Material_Ra_xy: minimum obtainable roughness in xy plane related to the particle size	Material_Ra_xy=		
			Slicing_zmin: minimum thickness of the slice related to slicing	Slicing_zmin=		
M3	Slicing	Material deposed slice by slice	Slicing_ σx , Slicing_ σy , Slicing_ σz : mechanical properties (minimum strength in the three dimensions) related to slicing	Slicing_σx= Slicing_σy= Slicing_σz=		
				Slicing_Ra_z: minimum obtainable roughness in z direction related to slicing	Slicing_Ra_z=	
	Support	Support needed when building overhangs/sloped surfaces or cavities	Support needed	Support needed	Support_x, Support_y, Support_z: support dimensions	Support_x= Support_y= Support_z=
M4			Support_ α : critical angle for supports removal (angle between the vertical wall and the overhang)	Support_α=		
			Support_Ra_xy: minimum obtainable roughness in xy plane	Support_Ra_xy=		
			Building_style_ σx , Building_style_ σy , Building_style_ σz : mechanical properties (minimum strength in the three dimensions) related related to hatching and contouring style	Building_style_ σx = Building_style_ σy = Building_style_ σz =		
M5	Building style	Different building styles	Building_style_Ra_xy: minimum obtainable roughness in xy plane related to related to hatching and contouring style	Build- ing_style_Ra_xy=		
				Building_style_Ra_z: minimum obtainable roughness in z direction related to related to hatching and contouring style	Build- ing_style_Ra_z=	

Table 3. Parametric manufacturing characteristics for the SLS technology

Table 4. Parametric manufacturing characteristics for the LOM technology

	Parameter values of			
Label	Name	Description	Parameters	equipment
M1	Workspace	Volume of the manufacturing workspace	Workspace_x, Workspace_y, Workspace_z: dimensions of the manufacturing workspace	Workspace_x= Workspace_y= Workspace_z=
			Material_zmin: minimum thickness of the slice related to the paper thickness	Material_zmin=
	Material		Material_ σ mechanical properties of the material (minimum strength in the three dimensions)	Material_σ=
M2		Kind of material used	Material_Ra_xy: minimum obtainable roughness in xy plane related to the material	Material_Ra_xy=
			Material_tx, Material_ty, Material_tz: dimensional tolerances related to the material	Material_tx= Material_ty= Material_tz=
М3	Slicing	Material deposed	Slicing_ σx , Slicing_ σy , Slicing_ σz : mechanical properties (minimum strength in the three dimensions) related to slicing	Slicing_σx= Slicing_σy= Slicing_σz=
		slice by slice	Slicing_Ra_z: minimum obtainable roughness in z direction related to slicing	Slicing_Ra_z=

Table 5. Parametric product features for plastic front covers

		Produ	ct feature	Labels	Parameter values of the product (model)		
Label	Name	Description	Parameters		I	II	
		0 11 11 1		Bounding_box_X	=	=	
F1	Bounding box	of the product	Bounding_box_X, Bounding_box_Y, Bounding_box_Z: maximum dimensions	Bounding_box_Y	=	=	
		_		Bounding_box_Z	=	=	
			Minimum_dimensions_x, Minimum dimensions y: minimum	Minimum_dimensions_x	=	=	
F2	Minimum dimensions	Minimum Minimum dimensions in horizontal plan dimensions in the product	dimensions in horizontal plane	Minimum_dimensions_y	=	=	
			Minimum_dimensions_z: minimum thickness	Minimum_dimensions_z	=	=	
F3	Overhangs/ Sloped surfaces	Overhangs and protrusions	Overhangs/Sloped_surfaces_a: over- hangs/sloped surfaces angle (angle between the vertical wall and the overhang)	Overhangs/Sloped_surfaces_α	=	=	
				Cavities_x	=	=	
		Through and blind	Cavities_x, Cavities_y: minimum dimensions	Cavities_y	=	=	
F4	Cavities	Cavities	holes, undercuts and other cavities	Cavities_d: maximum depth	Cavities_d	=	=
			Cavities_β: angle between the vertical wall and the axis of the cavity	Cavities_β	=	=	
F5	Surface	Surface texture	Surface_finishing_Ra_xy_max: maximum allowable roughness in the horizontal plane	Surface_finishing_Ra_xy_max	=	=	
	mising		Surface_finishing_Ra_z_max: maximum allowable roughness in the vertical plane	Surface_finishing_Ra_z_max	=	=	
			Mechanical_properties_ σx ,	Mechanical_properties_ σx	=	=	
F6	Mechanical properties	Main mechanical properties	Mechanical_properties_oy, Mechanical_properties_oz: minimum	Mechanical_properties_oy	=	=	
			mechanical strength in the three directions	Mechanical_properties_ σz	=	=	
F7	Cylindrical shapes	Minimum curvature radius of cylindrical shapes	Cylindrical_shapes_rmin: minimum curvature radius	Cylindrical_shapes_rmin: mini- mum curvature radius	=	=	
		<u>a</u> 1 : 1 - 22 -		Shrinkage_tx	=	=	
F8	Shrinkage	Shrinkage effect of the material	Shrinkage_tx, Shrinkage_ty, Shrinkage_tz: Dimensional tolerances	Shrinkage_ty	=	=	
					Shrinkage tz	=	=

iterative way. The product (model) is analyzed for compatibility with the available technologies, some actions are performed and the resulting product (model) is processed from the beginning (new iteration).

Finally, Table 9, Table 10, Table 11, and Table 12 show the relations between the technological characteristics and the product features, expressed in a qualitative way, for each meaningful couple technology/product.

This result is important because, as stated in the section of the DGLs-CF overview, the following step of the DGLs-CF roadmap consists in generating the rules that will be the source of the actions to be performed on the product (model) to get the best compatibility. The values "Strong" and "Weak" drive the rule and action definition

			Product feature		Param
Label	Name	Description	Parameters	Labels	(ite
				Deve l'un have V	Ι
F1	Bounding	Overall dimensions	Bounding_box_X, Bounding_box_Y, Bounding_box_Z:	Bounding_box_X	
I'I	box	of the product	maximum dimensions	Bounding_box_1	
				Minimum dimensione u	
БЭ	Minimum	Minimum	Minimum_dimensions_x, Minimum_dimensions_y: minimum dimensions in horizontal plane	Minimum_dimensions_x	
ΓZ	dimensions	product	Minimum dimensions at minimum thiskness	Minimum_dimensions_y	
			winnihun_unnensions_z. minnihun unckness	winning_dimensions_z	
F3	Overhangs/ Sloped surfaces	Overhangs and protrusions	Overhangs/Sloped_surfaces_α: overhangs/sloped surfaces angle (angle between the vertical wall and the overhang)	Overhangs/ Sloped_surfaces_α	=
			Cavities y Cavities y minimum dimensions	Cavities_x	=
		Through and blind	Cavides_x, Cavides_y. minimum dimensions	Cavities_y	=
F4	Cavities	holes, undercuts and other cavities	Cavities_d: maximum depth	Cavities_d	=
			Cavities_ β : angle between the vertical wall and the axis of the cavity	Cavities_β	=
F5	Surface	Surface texture	Surface_finishing_Ra_xy_max: maximum allowable roughness in the horizontal plane	Surface_finishing_ Ra_xy_max	=
15	finishing		Surface_finishing_Ra_z_max: maximum allowable roughness in the vertical plane	Surface_finishing_ Ra_z_max	=
			Machanical proportion or Machanical proportion or	Mechanical_properties_ox	=
F6	Mechanical properties	Main mechanical properties	Mechanical_properties_ox, Mechanical_properties_oy, Mechanical_properties_oz: minimum mechanical strength in the three directions	Mechanical_properties_oy	=
				Mechanical_properties_\sigmaz	=
F7	Cylindrical shapes	Minimum curvature radius of cylindrical shapes	Cylindrical_shapes_rmin: minimum curvature radius	Cylindrical_shapes_rmin: minimum curvature radius	=
		Shrinkage effect of	Shrinkage ty Shrinkage ty Shrinkage tz Dimensional	Shrinkage_tx	=
F8	Shrinkage	the material	tolerances	Shrinkage_ty	=
				Shrinkage_tz	=
			ence_of_environment_ox, Influ-	Influence of environment $\sigma_{\rm V}$	
		Facility of the Co	ence_of_environment_ σz : minimum mechanical strength in the three directions	Influence of environment σ_7	
FQ	Influence of	ence on materials		Influence of environment Av	
1)	environment	(humidity, tempera- ture,)	ence_of_environment_dy, Influ-	Influence of environment Av	
			ence_of_environment_ Δz : maximum deflection in the three directions	Influence of environment Az	=
			Influence of environment K _L : fracture toughness index	Influence of environment K _k	=
E10	Free-form	Complex shape			_
F10	surfaces	surfaces	rice-ioim_surfaces_c: curvature	rice-iorin_surfaces_c	
F11	Ribs/webs	Supports or net of	Ribs/webs_zmin:_minimum rib thickness	Ribs/webs_zmin	=
		supports	vertical wall and the rib inclination	Ribs/webs_y	=
F12	Pins	Small structures with circular or	Pins_\u03c6_eqmin: minimum equivalent diameter of a section	Pins__eqmin	=
		prismatic section	Pins_h/\phi_eq: height/ equivalent diameter of a section ratio	Pins_h/\peq	=

Parameter values of the product (model) (iterations)

II

=... =...

=...

=...

=...

=...

=...

=...

=...

=...

=...

=...

=...

=...

=...

=...

=...

=...

=... =...

=...

=...

=...

=...

=...

=...

=...

=...

=...

=...

=...

=...

Parameter values of the product (model)

(iterations)

Π

=... =...

Ι

=...

=...

Table 7. Parametric product features for moulds for headlights

Label	Name	Description	Parameters	Labels
F1	Bounding box	Overall dimensions of the product	Bounding_box_X, Bounding_box_Y, Bounding_box_Z: maximum dimensions	Bounding_box_X Bounding_box_Y Bounding_box_Z
			Minimum_dimensions_x,	Minimum_dimensions
F2	Minimum dimensions	Minimum dimen- sions in the product	dimensions in horizontal plane	Minimum_dimensions
		1	Minimum_dimensions_z: minimum thickness	Minimum_dimensions
F3	Overhangs/ Sloped sur- faces	Overhangs and protrusions	Overhangs/Sloped_surfaces_α: overhangs/sloped surfaces angle (angle between the vertical wall and the overhang)	Overhangs/Sloped_surfa
			Cavities_x, Cavities_y: minimum	Cavities_x
F4	Covities	Through and blind	dimensions	Cavities_y
Γ4	Cavities	other cavities	Cavities_d: maximum depth	Cavities_d
			Cavities_ β : angle between the verti- cal wall and the axis of the cavity	Cavities_β
F2	Surface	Surface texture	Surface_finishing_Ra_xymax: maximum allowable roughness in the horizontal plane	Surface_finishing_Ra_x
ГJ	finishing	Surface texture	Surface_finishing_Ra_zmax: maximum allowable roughness in the vertical plane	Surface_finishing _Ra_zmax
			Mechanical_properties_ox,	Mechanical_properties
F6	Mechanical properties	Main mechanical properties	Mechanical_properties_ σz ;	Mechanical_properties
			in the three directions	Mechanical_properties
F7	Cylindrical shapes	Minimum curvature radius of cylindrical shapes	Cylindrical_shapes_rmin: minimum curvature radius	Cylindrical_shapes_rr
F8	Shrinkage	Shrinkage effect of	Shrinkage_tx, Shrinkage_ty, Shrinkage_tz: Dimensional	Shrinkage_tx Shrinkage_ty
		the material	tolerances	Shrinkage_tz
			Influence_of_environment_ σx , Influence_of_environment_ σy ,	Influence_of_environme
			Influence_of_environment_ σz : minimum mechanical strength	Influence_of_environme
	Influence of	Environment influ-	in the three directions	Influence_of_environme
F9	environment	(humidity, tempera-	Influence_of_environment_ Δx , Influence_of_environment_ Δy ,	Influence_of_environmen
		ture,)	Influence_of_environment_∆z: maximum deflection in the	Influence_of_environmen
			three directions Influence_of_environment_KIc:	Influence_of_environme
E10	Free-form	Complex shape	Erea form surfaces as surveture	Erro form ourfe
F 10	surfaces	surfaces	Ding & agmin: minimum aguivalant	rice-ionin_surfaces_
F11	D.	Small structures	$\frac{1}{1}$ ms $_{\psi}$ -cquinit. Infinition equivalent diameter of a section	Pins __eqmin
FII	Pins	with circular or prismatic section	Pins_h/\phi_eq: height/ equivalent diameter of a section ratio	Pins_h/_eq

Bounding_box_Z	=	=
Minimum_dimensions_x	=	=
Minimum_dimensions_y:	=	=
Minimum_dimensions_z	=	=
$Overhangs/Sloped_surfaces_\alpha$	=	=
Cavities_x	=	=
Cavities_y	=	=
Cavities_d	=	=
Cavities_ _β	=	=
Surface_finishing_Ra_xymax	=	=
Surface_finishing _Ra_zmax	=	=
Mechanical_properties_ox	=	=
Mechanical_properties_oy	=	=
Mechanical_properties_oz	=	=
Cylindrical_shapes_rmin	=	=
Shrinkage_tx	=	=
Shrinkage_ty	=	=
Shrinkage_tz	=	=
Influence_of_environment_ σx	=	=
Influence_of_environment_ σy	=	=
Influence_of_environment_ σz	=	=
Influence_of_environment_ Δx	=	=
Influence_of_environment_ Δy	=	=
Influence_of_environment_ Δz	=	=
Influence_of_environment_KIc	=	=
Free-form_surfaces_c	=	=
Pins __eqmin	=	=
Pins_h/\peq	=	=

1	Δ
1	υ

		Product fea	ture		Paramet	er values
Label	Name	Description	Parameters	Labels	of the product (model) (iterations)	
					Ι	II
F1	Bounding box	Overall dimensions of the product	Bounding_box_X, Bounding_box_Y, Bounding_box_Z: maximum dimensions	Bounding_box_X Bounding_box_Y Bounding_box_Z	= = =	= = =
			Minimum_dimensions_x,	Minimum_dimensions_x	=	=
F2	Minimum dimensions	Minimum dimensions in the product	Minimum_dimensions_y: minimum dimensions in horizontal plane	Minimum_dimensions_y:	=	=
		-	thickness	Minimum_dimensions_z	=	=
F3	Overhangs/ Sloped surfaces	Overhangs and protrusions	Overhangs/Sloped_surfaces_a: overhangs/sloped surfaces angle (angle between the vertical wall and the overhang)	Overhangs/Sloped_surfaces_a	=	=
			Cavities_x, Cavities_y: minimum	Cavities_x	=	=
	a :::	Through and blind holes,	dimensions	Cavities_y	=	=
F4	Cavities	undercuts and other cavi-	Cavities_d: maximum depth	Cavities_d	=	=
		ties	and the axis of the cavity	Cavities_ _β	=	=
F5	Surface	Surface texture	Surface_finishing_Ra_xymax: maximum allowable roughness in the horizontal plane	Surface_finishing_Ra_xymax	=	=
	finishing		surface_finishing_Ra_zmax: maximum allowable roughness in the vertical plane	Surface_finishing_Ra_zmax	=	=
			Mechanical_properties_ σx ,	Mechanical_properties_ox	=	=
F6	Mechanical	Main mechanical proper-	Mechanical_properties_oy,	Mechanical_properties_oy	=	=
10	properties	ties	Mechanical_properties_ σz : minimum mechanical strength in the three directions	Mechanical_properties_oz	=	=
F7	Cylindrical shapes	Minimum curvature radius of cylindrical shapes	Cylindrical_shapes_rmin: minimum curvature radius	Cylindrical_shapes_rmin	=	=
F8	Pins	Small structures with circular or	Pins eqmin: minimum equivalent diameter of a section	Pinseqmin	=	=
	1 1115	prismatic section	Pins_h/\phi_eq: height/ equivalent diameter of a section ratio	Pins_h/\peq	=	=
			Influence_of_environment_ σx ,	$Influence_of_environment_\sigma x$	=	=
			Influence_of_environment_ σy ,	Influence_of_environment_oy	=	=
		Environment influence on	Influence_of_environment_oz: minimum mechanical strength in the three directions	Influence_of_environment_ σz	=	=
F9	Influence of	materials (humidity,	Influence_of_environment_ Δx ,	Influence_of_environment_ Δx	=	=
	environment	temperature,)	Influence_of_environment_ Δy ,	Influence_of_environment_ Δy	=	=
			Influence_of_environment_ Δz : maximum deflection in the three directions	Influence_of_environment_ Δz	=	=
			Influence_of_environment_K _{Ic} : fracture toughness index	Influence_of_environment_ K_{Ic}	=	=
F10	Free-form surfaces	Complex shape surfaces	Free-form_surfaces_c: curvature	Free-form_surfaces_c	=	=

Table 9. Relations between FDM manufacturing characteristics and the product features for plastic front covers

		F1	F2	F3	F4	F5	F6	F7	F8
	-	Bounding box	Minimum dimensions	Overhangs/ Sloped surfaces	Cavities	Surface finishing	Mechanical properties	Cylindrical shapes	Shrinkage
M1	Workspace	Strong							
M2	Material		Weak		Weak	Weak	Strong		Strong
M3	Slicing		Strong		Strong	Strong	Strong	Strong	Strong
M4	Support		Strong	Strong	Strong	Weak	Weak	Weak	

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

Table 10. Relations between SLA manufacturing characteristics and the product features for headlights

		Bounding box	Minimum dimensions	Overhangs/ Sloped surfaces	Cavities	Surface finishing	Mechanical properties	Cylindrical shapes	Shrinkage	Influence of environment	Free-form surfaces	Ribs/ webs	Pins
M1	Workspace	Strong											
M2	Material					Strong	Strong		Weak	Strong			
M3	Slicing		Strong		Weak	Strong	Strong	Strong		Weak	Strong	Strong	Strong
M4	Support		Strong	Strong	Strong	Strong		Weak			Strong	Strong	Strong
M5	Building style		Weak		Weak	Weak	Weak	Weak	Weak	Strong	Weak		

Table 11. Relations between SLS manufacturing characteristics and the product features for moulds for headlights

		F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11
		Bounding box	Minimum dimensions	Overhangs/ Sloped surfaces	Cavities	Surface finishing	Mechanical properties	Cylindrical shapes	Shrinkage	Influence of environment	Free-form surfaces	Ribs/webs
M1	Workspace	Strong										
M2	Material					Strong	Strong	Strong		Strong		
M3	Slicing		Strong		Weak	Strong	Strong	Weak	Strong	Weak	Strong	Strong
M4	Support		Strong	Strong	Strong	Strong			Weak		Strong	Strong
M5	Building style		Weak		Weak	Strong	Weak	Strong	Weak	Strong	Weak	

Table 12. Relations between LOM manufacturing characteristics and the product features for dashboards

		F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
		Bounding box	Minimum dimensions	Overhangs/ Sloped surfaces	Cavities	Surface finishing	Mechanical properties	Cylindrical shapes	Pins	Influence of environment	Free-form surfaces
M1	Workspace	Strong									
M2	Material		Strong	Weak	Strong	Strong	Strong			Strong	
M3	Slicing		Weak	Weak	Strong	Weak	Strong	Strong	Strong	Weak	Strong

Table 13. Reconfiguration package for a headlight to be produced by SLA

			Actions		Relationships			
	Domain	Name Goals		Cost	Features	Technological characteristics	Weight	
			to make them	8		Slicing	Strong	
	Design	Over-dimensi	compatible with the need for supports the		Minimum dimensions	Support	Strong	
		on unit purto	slicing and the material		uniterioreno	Building style	Weak	
Reconfiguration			to avoid the need for	5		Material	Strong	
I ackage	Manufacturing	Orient the model	support on surfaces requiring best roughness		Surface finishing	Slicing	Strong	
						Support	Strong	
						Building style	Weak	
	Rotate and incline the measuring head		to obtain best accessibility to the overhangs and the minimum re-positioning	2	Overhangs/Sloped surfaces	Support	Strong	

by weighting the importance of the pieces of information inside the DGLs-CF data structure, thus leading to a more effective Redesign/Reconfiguration Package generation.

Table 13 shows an example of Redesign/Reconfiguration Package generated using the DGLs-CF during the redesign of a headlight to be built with SLA. The strongweak classification - degree of correlation - of the relationships between technological characteristics and product features has been exploited by the DGLs-CF algorithm used to generate this package. Moreover, the classification has been explicitly added to the package as a further help for the DGLs-CF users.

6. Conclusions

This paper describes the knowledge base enhancement and the knowledge management update of a method for product redesign and process reconfiguration named Design Guidelines - Collaborative Framework (DGLs-CF). Information collected using different strategies and from different sources (interviews, previous experiences, documentation, etc.) is formatted according to the data structure of this framework. These additional pieces of information enrich the knowledge base content of the method and make it tailored on the specific technologies. The specific characteristics of the RP technologies are in fact related to the product features and their relationships are weighted, thus allowing to privilege the actions determined by strong relationships in achieving the final result of the framework. Moreover, the analysis of these pieces of information suggested some interesting improvements of the knowledge management inside the DGLs-CF. An example of application of the DGLs-CF is shown: the Redesign/ Reconfiguration Package - a list of actions to be performed on the product (model) and/or on the process to get the best compatibility between the product and the manufacturing technology - related to a headlight to be produced by SLA.

In the future the same activities will be used for gathering data related to other technologies. In the meantime, this work suggests to evaluate all the parameters in the four tables of the technologies with respect to those in the four tables of the product features. In doing this, the affinity between some classes of technologies and some classes of products coming from experience could be confirmed or not.

7. Acknowledgments

Authors would like to thank for her precious help Dr. Barbara Motyl, researcher at the DIEGM dept. of the University of Udine, Italy.

8. References

- [1] F. Alizon, K. Khadke, H. J. Thevenot, J. K. Gershenson, T. J. Marion, S. B. Shooter, and T. W. Simpson, "Frameworks for product family design and development," Concurrent Engineering, Vol. 15, No. 2, pp. 187–199, 2007.
- [2] D. M. Andersen, "Design for manufacturability & concurrent engineering," Lafayette, CIM Press, CA, 2003.
- [3] E. K. Antonsson & J. Cagan, eds., "Formal engineering design synthesis," Cambridge University Press, Cambridge, UK, 2001.
- [4] J. C. Borg, X. Yan, and N. P. Juster, "Exploring decisions' influence on life-cycle performance to aid 'design for Multi-X'," Artificial Intelligence for Engineering Design, Analysis and Manufacturing, Vol. 14, pp. 91–113, 2000.
- [5] J. P. Clarkson & C. Eckert, (Eds.) "Design process improvement - a review of current practice," Springer, ISBN: 1-85233-701-X, 2005.
- [6] C. L. Dym and P. Little, "Engineering design: A project-based introduction," Wiley and Sons, 2003.
- [7] J. S. Gero, (eds.) "Artificial intelligence in design'02," Kluwer, Dordrecht, 2002.
- [8] K. Otto & K. Wood, Product Design, Prentice Hall. 2000.
- [9] G. Pahl & W. Beitz, "Engineering design: A systematic approach," Springer, 1995.
- [10] D. Ullman, The Mechanical Design Process, Mac Graw Hill, 2002.
- [11] K. T. Ulrich & S. D. Eppinger, Product Design & Development, Mac Graw Hill, 2000.
- [12] S. Filippi & I. Cristofolini, "The design guidelines (DGLs), a knowledge based system for industrial design developed accordingly to ISO-GPS (geometrical product specifications) concepts," Research in Engineering Design, Vol. 18, No. 1, pp. 1–19, 2007.
- [13] R. M. Baecker, "Readings in groupware and computersupported cooperative work," San Francisco, CA, Morgan Kaufmann Publishers, Inc, 1993.
- [14] R. Crabtree, M. S. Fox, and N. Baid, "Case studies of coordination activities and problems in collaborative design," Research in Engineering Design, Vol. 9, No. 2, pp. 70–84, 1997.
- [15] A. H. B. Duffy, M. M. Andreasen, and F. J. O'Donnell, "Design co-ordination," Proceedings of International Conference on Engineering Design (ICED'99), Vol. 1, pp. 113–118, 1999.
- [16] R. Houssin, A. Bernard, P. Martin, G. Ris, F. Cherrier, "Information system based on a working situation model for a new design approach in concurrent engineering," Journal of Engineering Design, Vol. 17, No. 1, pp. 35–54. 2006.
- [17] H. Hung, H. Kao, and K. Ku, "Evaluation of design alternatives in collaborative development and production of modular products," the International Journal of Advanced Manufacturing Technology, Vol. 33, pp. 1065–1076, 2007.
- [18] Y. E. Nahm & H. Ishikawa, "Integrated product and process modeling for collaborative design environment," Concurrent Engineering, Vol. 12, No. 1, pp. 5–23, 2004.

- [19] P. Wilson, "Computer supported cooperative work: an introduction," Kluwer Academic Publishers, 1991.
- [20] Z. Wu & A. Duffy, "Mutual knowledge evolution in team design," Workshop on Learning and Creativity, 7th International Conference on Artificial Intelligence in Design (AID'02), Cambridge, UK, 2002.
- [21] C. Bandera, I. Cristofolini, and S. Filippi, "Customizing a knowledge-based system for design optimization in fused deposition modeling RP-technique," AMST'05 Seventh International Conference on Advanced Manufacturing Systems and Technology, Springer Wien-New York, pp. 607–616, 2005.
- [22] I. Cristofolini, S. Filippi, and C. Bandera, "How rapid prototyping process parameters could affect the product design phase: a KBS approach," Proceedings IDETC/CIE 2006 - ASME International Design Engineering Technical Conferences & Computers and Information In Engineering Conference DETC 2006, Philadelphia, PA, ISBN 0-7918-3784-X, 2006.
- [23] S. Filippi, C. Bandera, and G. Toneatto, "Generation and testing of guidelines for effective rapid prototyping activities," Proceedings of "XII ADM International Conference on Design Tools and Methods in Industrial Engineering", Italy, 2001.
- [24] "Draft federal information processing standards, FIPS PUB 183," Standard for Integration Definition for Function Modeling (IDEF0), National Institute of Standards and Technology, Gaithersburg, MD, USA, 1993.
- [25] P. F. Jacobs, "Stereolithography and other RP&M technologies," American Society of Mechanical Engineers, New York, 1996.
- [26] D. T. Pham and S. S. Dimov, "Rapid manufacturing," Springer, Berlin Heidelberg, New York, 2001.
- [27] I. Raja, I. Vinesh, I. Fernandes and J. Kiran, Reverse engineering - An industrial perspective," Spinger-Verlag London, 2008.
- [28] P. S. Banerjee, A. Sinha, and M. K. Banerjee, "A study on effect of variation of SLA process parameters over strength of built model," Proceedings of the 2nd National Symposium on Rapid Prototyping & Rapid Tooling Technologies, pp. 79–84, 2002.
- [29] H. S. Byun and K. H. Lee, "A decision support system for the selection of a rapid prototyping process using the

modified TOPSIS method," the International Journal of Advanced Manufacturing Technology, Vol. 26, pp. 1338–1347, 2005.

- [30] W. Cheng, J. Y. H. Fuh, A.Y. C. Nee, Y. S. Wong, and T. Miyazawa, "Multi-objective optimization of part building orientation in stereolithography," Rapid Prototyp Journal, Vol. 1, No. 4, pp. 12–23, 1995.
- [31] K. Chockalingam, N. Jawahar, K. N. Ramanathan, and P. S. Banerjee, "Optimization of stereolithography process parameters for part strength using design of experiments," the International Journal of Advanced Manufacturing Technology, DOI 10.1007/ s00170- 004-2307-0, 2005.
- [32] R. Harris, N. Hopkinso, H. Newlyn, R. Hague, and P. Dickens, "Layer thickness and draft angle selection for stereolithography injection mould tooling," International Journal of Production Research, Vol. 40, No. 3, pp. 719–729, 2002.
- [33] I. Horv'ath, J. J. Broek, Z. Rus'ak, G. Kuczogi, and J. S. M. Vergeest, "Morphological segmentation of objects for thick-layered manufacturing," Proceedings of the 1999 ASME Conference on Design for Manufacturing," Las Vegas, pp. 18–24, 1999.
- [34] S. H. Masood and A. Soo, "A rule based expert system for rapid prototyping system selection," Robot Computer Integrated Manufacturing, Vol. 18, pp. 267–274, 2002.
- [35] X. Qian and D. Dutta, "Feature based fabrication in layered manufacturing," Transactions on ASME Journal Mechanism Design, Vol. 123, No. 3, pp. 337–345, 2001.
- [36] A. Rosochowski and A. Matuszak, "Rapid tooling: The state of the art," Journal of Materials Processing Technologies, Vol. 106, pp. 191–198, 2000.
- [37] Y. Tang, H. T. Loh, J. Y. H. Fuh, Y. S. Wong, and S. H. Lee, "An algorithm for disintegrating large and complex rapid prototyping objects in a CAD environment," International Journal of Advanced Manufacturing Technology, Vol. 25, 895–901, 2005.
- [38] R. E. Williams, S. N. Komaragiri, V. L. Melton, R. R. Bishu, "Investigation of the effect of various build methods on the performance of rapid prototyping (stereolithography)," Journal of Materials Processing Technology, Vol. 61, pp. 173–178. 1996.