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Abstract 
Induction motor (IM) is commonly used in various industrial applications. 
Reliable online IM health condition monitoring systems are critically needed 
in industries to improve operational accuracy and safety of the IMs and the 
machinery. A new evolving algorithm is proposed to provide more deci-
sion-making transparency, as well as better classification and processing effi-
ciency. The effectiveness of the developed intelligent classifier is examined by 
simulation and experimental tests. 
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1. Introduction 

Induction motors (IMs) are widely used in industrial applications such as 
pumping stations, manufacturing facilities, electric vehicles, etc. IMs have simple 
construction and high efficiency relative to other types of motors [1]. On the 
other hand, IMs consume about 40% of the electrical power generated in the 
world [2]; consequently, there is a strong incentive to ensure that IMs operate 
efficiently and do not break down unexpectedly. To achieve this goal, research 
has been conducted over decades to develop technologies and tools to detect IM 
faults at their incipient stage, prior to reaching more serious levels, so as to pre-
vent performance degradation, malfunction, or even catastrophic failures of the 
IMs and the related driven facilities. This active monitoring process is known as 
condition monitoring [3], which serves as a form of predictive maintenance 
strategy. IM defects include imperfections in support rolling element bearings, 
stator systems, rotor bars, etc. Condition monitoring should be performed piece 
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by piece to improve accuracy. This work focuses on broken rotor bar fault diag-
nostics.  

An IM health condition monitoring system consists of three general modules: 
1) data acquisition, 2) fault feature extraction, and 3) automatic diagnostic clas-
sification. This work focuses on the automatic diagnostic classification. 

Pattern classification is a means to classify features obtained by appropriate 
signal processing techniques into different IM health categories. To automati-
cally perform pattern classification, multiple soft-computing-based methods 
have been proposed in literature, such as support vector machines [4], principle 
component analysis [5], k-nearest-neighbors, and artificial neural networks [6]. 
However, these methods have a disadvantage of being black box processing 
where its decision-making process is either unclear or the results are difficult to 
explain, and hence is less suitable for IM fault diagnosis in industrial applica-
tions.  

An adaptive neuro-fuzzy-inference-system (ANFIS), has a clear deci-
sion-making process by using linguistic fuzzy reasoning structure [7]. It uses er-
ror back-propagation to automatically adjust fuzzy inference system (FIS) para-
meters with its training data. However, expertise is required to set up the num-
ber of membership functions (MFs) in advance and for training error control. 
For example, if a user-specified error threshold is too low, it tends to lead to 
overtraining. Under these conditions, the FIS cannot accurately assess subse-
quent testing inputs if these inputs have a large divergence from the training da-
ta [8]. In addition, if dynamics of the monitored system change dramatically, 
parameter adjustment alone may not ensure an ANFIS classifier to have a rea-
sonable decision-making accuracy. 

To solve the parameter and expertise-related problems of ANFIS-based clas-
sifiers, an evolving FIS system can be used for classification, where both system 
parameters and linguistic fuzzy reasoning structure are evolved iteratively. Such 
clustering can be achieved with evolutionary algorithms based on measures such 
as data potential (a measure of data density) [9] [10]. However, the basis of this 
data potential calculation on a previous datapoint at (k − 1) may cause the re-
sulting clusters to be less accurate since they do not reflect the most recent data-
point at k. In addition, aggressive clustering schemes can cause overly-simplified 
reasoning structures which in turn, generate a deficit of rules that cannot ade-
quately describe all the possible output classes. 

Insufficient reasoning structures will reduce the interpretability of the diag-
nostic results, which in turn decrease the clarity of reasoning behind false or 
missed alarms. 

To tackle the aforementioned problems, an evolving fuzzy (EF) classifier is 
developed in this work to integrate features from several fault detection tech-
niques for a more reliable IM rotor bar fault diagnosis. It is new in the following 
aspects: 1) A new updated clustering algorithm is proposed for an evolving fuzzy 
system; 2) a new strategy is suggested to implement the proposed EF classifier 
for an IM rotor bar condition monitoring application. 
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The remainder of this paper is organized as follows. Section 2 discusses the 
development of the EF classifier. The effectiveness of the proposed technology is 
verified in Section 3. Some concluding remarks are summarized in Section 4. 

2. The Proposed EF Classifier 

A first-order Takagi-Kang-Sugeno (TSK-1) fuzzy inference architecture is se-
lected as the reasoning platform in this proposed EF classifier, due to its ability 
in effective data modeling [7]. For such an intelligent system to be functional, 
two general processes must be completed, a training phase followed by perfor-
mance evaluation. These processes will be detailed in the proceeding sections.  

2.1. System Training Overview 

The procedure for training an EF system is illustrated in Figure 1. 
The training procedures can be described in the following steps: 
1) Cluster inputs with an evolutionary algorithm. 
2) Project clusters into fuzzy MFs. 
3) Process inputs with MFs to determine each rule’s firing strength. 
4) Normalize all firing strengths, as a measure of the rules’ contributions to 

the final output. 
5) Formulate an input matrix by multiplying normalized firing strengths and 

inputs into a TSK-1 model. 
6) Update the TSK-1 consequent parameters using available training data 

pairs. 
Assume that an input to the fuzzy classifier has the form ( ),x j k , where 

1,2, ,j J=  , and J is the number of dimensions or attributes of the input; 
1,2, ,k K=   represents the instance of normalized datapoint inputs to the 

classifier system. Each output class (i.e., healthy motor, faulty motor) corres-
ponds to one or more rules in the fuzzy system. As an illustration, consider a 
fuzzy classifier with only two dimensions or 1, 2j = . Then the ith rule, jR , can 
be represented as [7] [8]: 

( ) ( ) ( ) ( )
( ) ( )

IF 1, is 1 AND 2, is 2
:

THEN is
Fi Fi

i
i

x k M x k M
R

y k O k

               (1) 

where ( )jO k  is the classifier output of rule jR ; FiM  is a fuzzy MF 
representing a degree of belongingness of an input along the jth dimension. De-
tails for obtaining the results of the fuzzy classifier will be discussed in the pro-
ceeding sections. 

2.2. Input Clustering 

The clustering takes two steps: 1) evolve cluster centers, and 2) compute cluster 
spreads after evolution. The clustering in the input spaces can be achieved with 
an evolutionary algorithm based data potential, a measure of data density. Based 
on the fundamental definition of potential in [9], a recursive computation of the 
data potential is proposed as: 
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Figure 1. Training with respect to system layers. 
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where, 

( ) ( ) ( )
1

1
, ,

k

a
B k x j a x j k

=

=

= +∑ ,                   (3) 

and, 

( ) ( ) ( )
1 2 2

1 1 1
, ,

k J J

a j j
D k x j a x j k

=

= = =

= +      ∑∑ ∑ .             (4) 

( )B k  and ( )D k  are variables representing the relationship between the pre-
vious datapoints up to k-1, and the present data point at k. 

In cluster center identification, from Equation (2), the initial (i.e., the first) 
cluster center is established at the first datapoint. With subsequent datapoints, 
the potential of the mth existing cluster center can be recursively updated by: 

( )
( ) ( ) ( ) ( )2

1 1
1 , 2 ,

m J J

m m
j j

kP k
k x j c x j c B k D k

= =

=
    + − +   
   

∑ ∑
,     (5) 

where ( ), mx j c  is the datapoint corresponding to a cluster center. 
A new cluster center is established when the data potential at datapoint k, 
( )P k  is larger than the data potential of any other existing cluster center, or 

1,2,m∃ =  , ( ) ( )mP k P k≥ . Once the data potential and cluster centers of 
every datapoint have been computed, the spread is determined with an algo-
rithm [10] expressed as: 

( ) ( ) 2

1
, ,

J

m
s j

m
d

x j c x j s

S
σ =

 − 
=

∑∑
,                 (6) 

where dS  is the data scatter, or the number of datapoints that have the shortest 
Euclidean distance to a cluster center ( ), mx j c . From the known training out-
put data, each cluster center is assigned to its respective class, for example, the 
cluster “1” represents a healthy motor condition, cluster “2” represents a faulted 
motor condition, etc. 

Once the initial cluster centers and spreads have been computed, 
post-processing is undertaken to generate a single representative cluster per rule. 

Input
(training)
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Output
(training)
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Clustering
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Fuzzy
Inference

System
Parameters

Input
(training)
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2.3. Membership Function and Firing Strength Formulation 

To perform fuzzy reasoning, the inputs are fuzzified with Gaussian MFs, ex-
pressed as: 

( )
( ) ( )( ) ( ]

2

2

, ,
exp 0,1

2
m

Fi
m

x j k x j c
M j

σ

 − − = ∈
 
 

,            (7) 

where 1,2, ,i I=   is the rule associated with a cluster. From Equation (7), the 
MFs are derived from the cluster centers and spreads. To implement the fuzzy 
reasoning structure of Equation (1), the firing strength of the ith rule, ( )iw k  is 
as follows: 

( ) ( ) ( ) ( ){ }min 1 , 2 , ,i Fi Fi Fiw k M M M J=  ,               (8) 

where the min operator is a fuzzy t-norm operator (e.g., AND) [8]. 

2.4. Consequent Parameters for the Evolving Fuzzy Inference  
System 

The output of the classifier system, ( )O k , is computed as: 

( ) ( ) ( ){ } ( ) ( ) ( )1
1

, ;
i I

I
i i i i ii

i
O k w k f x j k w k w k w k

=

=
=

= =  ∑ ∑ ,      (9) 

where ( )iw k  is the normalized firing strength, which represents the contribu-
tion of the firing strength of the ith rule to the output. jf  is the TSK-1 conse-
quent function of the ith rule, represented as:  

( ) ( )0
1

, ,
J

i i ij
j

f x j k C x j k C
=

= +   ∑ ,                   (10) 

where 0 1, , ,i i iJC C C  are the consequent parameters of the ith rule of the EF 
classifier. These unknown linear consequent parameters can be estimated by 
training. For example, if ( )T k  is the target of the kth, training data pair, then:  

( ) ( ) ( ){ }
1

,
i I

i i
i

T k w k f x j k
=

=

=   ∑ ,                   (11) 

which can be expanded to, 

( )
( ) ( ) ( ) ( ) ( )

[ ]
1 1 1

T
10 11 1 0 1

1, 1, ,I I I

J I I IJ

w k w x k w x w k w x k w x J k
T k

C C C C C C

  
=

  

  

,(12) 

Equation (12) can be represented in a matrix/vector form: 

T C= Z


,                           (13) 

where T


, Z , and C


 are the target vector, input matrix, and consequent pa-
rameter vector, respectively. Since Z  is likely a non-square matrix and its in-
verse may not be computed directly, the singular value decomposition (SVD) 
will used to solve for C



. The SVD breaks down the Z  matrix into three 
components: 

TUDV=Z ,                         (14) 

where U and V are the respective left and right singular values, and D are the 
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singular eigenvalues of Z . From Equation (14), the Moore-Penrose pseu-
do-inverse [11] is computed by, 

TVD U+ +=Z ,                       (15) 

where D+ is the reciprocal of all non-zero elements of D. With Equation (15), the 
consequent parameters C



 can then estimated by 

T C C+ += ≅Z Z Z
 

.                    (16) 

It is noted that the entire training process is one-pass, without the need for a 
back propagation of error. Upon solving the consequent parameters of Equation 
(16), it is applied to Equation (9)-(10) for the testing inputs to determine the EF 
classifier’s output. 

3. Performance Evaluation 

The effectiveness of the proposed EF classifier is first assessed with benchmark 
datasets [12] by simulation. Then it is implemented for IM rotor bar condition 
monitoring. For comparison, variants of both the proposed and evolving fuzzy 
classifier proposed in [9] will be evaluated. The variants differ primarily based 
on the requirements to form clusters: 1) Loose clustering: New clusters are 
formed when the data potential is larger than any existing cluster center [10];  

2) Strict clustering: New clusters are formed when the data potential is larger 
than all existing cluster centers [9]. 

The classifiers evaluated will be represented as follows: 
• Classifier #1: The proposed EF classifier using the proposed clustering algo-

rithm and a loose clustering variant;  
• Classifier #2: A comparison classifier, using the EF clustering algorithm and a 

strict clustering scheme;  
• Classifier #3: A comparison classifier using a classical clustering algorithm 

and a loose clustering scheme; 
• Classifier #4: A comparison classifier using a classical clustering algorithm 

and a strict clustering scheme. 

3.1. Simulation, Iris and Wine Datasets 

The Iris and wine datasets have four and thirteen inputs respectively, 
representing pertinent physical measurements, with more details found in Ref-
erence [12]. Both datasets have three outputs, representing the different classes 
of iris flower or wine types. The datasets used for simulation are summarized in 
Table 1. 

 
Table 1. Summary of datasets used for simulation. 

Dataset 
Number of 

classifications 
Number of 
attributes 

Total Number of 
datapoints used 

Iris [12] 3 4 150 

Wine [12] 3 13 144 
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3.1.1. Clustering and Identified Fuzzy Model 
The data and clustering across all attributes in one representative trial with the 
iris dataset are shown in Figure 2. It can be observed that the clusters closely 
correspond to the original data, showing clear distinctions between the different 
classes. Based on these clustering results, the resulting recognized fuzzy model is 
shown in Figure 3. 

3.1.2. Comparison and Discussion 
Results across the simulated datasets are shown in Table 2. 
 
Table 2. Summary of results for the Iris and Wine datasets each with 36 test samples per 
trial. All results are averaged over 100 trials. 

Evolving Fuzzy 
Classifier Variant 

Dataset 
Average 

Iris Wine 

Classifier #1 
Proposed 

(loose clustering) 

Accuracy (%) 99.81 94.92 

No. of clusters (average) 2.99 2.95 

Classes represented (%) 99.67 98.33 

Time/Sample (us) 84.95 91.74 

Classifier #2 
Comparison 

(strict clustering) 

Accuracy (%) 99.97 90.89 

No. of clusters (average) 2.02 1.27 

Classes represented (%) 67.33 42.33 

Time/Sample (us) 78.01 84.78 

Classifier #3 
Comparison 

(loose clustering) 

Accuracy (%) 99.67 97.25 

No. of clusters (average) 26.10 18.81 

Classes represented (%) 99.33 95.67 

Time/Sample (us) 119.95 127.79 

Classifier #4 
Comparison 

(strict clustering) 

Accuracy (%) 99.92 91.06 

No. of clusters (average) 5.26 3.66 

Classes represented (%) 66.67 41.00 

Time/Sample (us) 89.02 95.58 

 

 
(a) Training data                       (b) Resultant clusters 

Figure 2. (a) Training data; (b) Clustering results of the iris dataset, where 
green, red, and black, correspond to the three flower types. 
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Figure 3. Recognized fuzzy reasoning model of the Iris dataset. All inputs are normalized 
from [0.0, 1.0]. Approximations of membership functions are represented by “vs” (very 
small), “s” (small), “m” (medium), “l” (large), and “vl” (very large), denoting input ranges 
of [0.0, 0.2), (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], (0.8, 1.0], respectively. 
 

From these processing results, the accuracy of the proposed Classifier #1 is 
comparable to that of Classifiers #2, #3 and #4, but with additional significant 
advantages. Although Classifier #2 takes less processing times than Classifier #1, 
due to its the generation of fewer clusters, its resulting clusters do not sufficient-
ly represent the classes, with much lower class representation. As a result, Clas-
sifier #2 does not have a fully transparent fuzzy rule base for decision making. 
Furthermore, the proposed Classifier #1 outperforms Classifiers #3 and #4, in 
terms of class representation, with a significant advantage of having a more 
transparent rule base. In addition, Classifier #1 has lower processing times than 
#3 and #4 due to having fewer clusters. 

The proposed EF Classifier #1 demonstrates improvement in terms of 
processing time and class representation of the clusters, making it more suitable 
for an IM condition monitoring application as will be discussed in the next sec-
tion. Hence, the proposed EF classifier has been successfully validated with si-
mulation results. 

3.2. IM Condition Monitoring for Rotor Bar Fault Diagnosis 
3.2.1. Experimental Setup 
Five fractional horsepower IMs are tested, with varying defects: healthy #1, 
healthy #2, 1-bar, 2-bar, 3-bar fault tested under 4 loading conditions: decoupled, 
low, medium, and heavy load. These defects are representative of a motor with a 
gradually worsening state prior to reaching a catastrophic failure condition. In 
addition, the tests are conducted under 2 line frequencies of 50 Hz and 60 Hz, 
respectively. Data acquisition is performed with split-core current transformers 
with a custom-built wireless data acquisition system sampling 64,000 samples at 
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1 kHz. The fault feature extraction is based on the current spectrum analysis, 
involving sidebands to the fundamental line frequency [13] as well as higher 
magnetomotive force-based harmonics [14]. 

To serve as the inputs to the EF classifier, monitoring indices are created on 
the signal-to-noise ratio of the extracted fault features, where a higher index in-
dicates a higher severity of a faulted condition. An example of such a monitoring 
index is illustrated in Figure 4. The datasets used for implementation are sum-
marized in Table 3. 

In addition, it can be noted that the influence of noise of this EF classifier for 
this application has been mitigated by two factors: 1) the long data acquisition 
period that effectively averages out the influences of non-periodic noise signals, 
and 2) the clustering algorithm, where an outlier data input would have an in-
sufficient data potential to form the cluster required to influence the fuzzy rea-
soning of the EF classifier. 

3.2.2. Clustering and Identified Fuzzy Model 
The data and clustering across all attributes in one representative trial with the 
60 Hz rotor bar dataset are shown in Figure 5. It can be observed that the clus-
ters closely correspond to the original data, showing clear distinctions between 
the different classes. Based on these clustering results, the corresponding recog-
nized fuzzy models are shown in Figure 6. 
 

 
Figure 4. IM fault monitoring index examples, where green, red, black, blue, and purple 
lines correspond to healthy #1, healthy #2, 1-bar, 2-bar, and 3-bar faults, respectively. 
 

 
(a) Training data, 60 Hz.                (b) Resultant clusters, 60 Hz. 

Figure 5. (a) Training data; (b) Clustering results of 60 Hz rotor bar faulted data, where 
green, red, black, blue, and purple correspond to healthy #1, healthy #2, 1-bar, 2-bar, and 
3-bar faults, respectively. 
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Figure 6. Recognized fuzzy reasoning model of the 60 Hz faulted rotor bar dataset. All 
inputs are normalized from [0.0, 1.0]. Approximations of membership functions are 
represented by “vs” (very small), “s” (small), “m” (medium), “l” (large), and “vl” (very 
large), denoting input ranges of [0.0, 0.2), (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], (0.8, 1.0], respec-
tively. 
 
Table 3. Summary of datasets used for implementation of IM health condition monitor-
ing. 

Dataset 
Number of 

classifications 
Number of 
Attributes 

Total Number of 
datapoints used 

Rotor Bar, 50 Hz 5 3 1000 

Rotor Bar, 60 Hz 5 3 1000 

3.2.3. Comparison and Discussion 
Results across the implementation datasets are summarized in Table 4. 

For these processing results, it is seen that the accuracy of the proposed EF 
Classifier #1 performs the best in comparison with all the other three classifiers. 
This can be attributed to the new clustering algorithm’s improved tracking to 
changing data. Although Classifier #2 has faster average processing speed than 
Classifier #1, due to fewer clusters. As a result, Classifier #2 does not have a fully 
transparent fuzzy rule base for decision making. Likewise, the proposed EF Clas-
sifier #1 outperforms Classifiers #3 and #4, in terms of class representation of the 
clusters and the number of generated clusters; it also has a significant advantage 
of having a more transparent rule base and faster processing efficiency due to 
having less clusters.  

In summary, the proposed Classifier #1 has the best classification accuracy, 
improved processing time efficiency and class representation. With better trans-
parent cluster representation, missed and false alarms in a diagnostic application 
can be investigated upon, where it is possible to track the monitoring indices re-
sponsible for an incorrect classifier output.  
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Table 4. Summary of results for the 50 Hz and 60 Hz faulted rotor bar datasets, each with 
250 test samples per trial. All results are averaged over 100 trials. 

Evolving Fuzzy 
Classifier Variant 

Dataset 
Average 

50 Hz 60 Hz 

Classifier #1 
Proposed 

(loose clustering) 

Accuracy (%) 99.37 99.45 

No. of clusters (average) 5.00 4.75 

Classes represented (%) 100.00 95.00 

Time/Sample (us) 19.79 16.80 

Classifier #2 
Comparison 

(strict clustering) 

Accuracy (%) 92.30 88.47 

No. of clusters (average) 2.86 2.00 

Classes represented (%) 57.20 40.00 

Time/Sample (us) 14.20 13.18 

Classifier #3 
Comparison 

(loose clustering) 

Accuracy (%) 98.90 98.90 

No. of clusters (average) 115.02 106.99 

Classes represented (%) 100.00 87.60 

Time/Sample (us) 148.93 126.73 

Classifier #4 
Comparison 

(strict clustering) 

Accuracy (%) 94.44 86.25 

No. of clusters (average) 9.13 8.47 

Classes represented (%) 58.40 40.00 

Time/Sample (us) 23.54 21.59 

 
The processing time for each sample across all datasets is in the order of tens 

of microseconds. This is significantly faster than the generation of the inputs, 
which require processes such as data acquisition, signal processing, and moni-
toring index generation. Hence, this classifier demonstrates suitability for use in 
real industrial condition monitoring applications. 

3.2.4. Assumptions and Limitations 
For this application of the proposed EF classifier to IM condition monitoring the 
following are assumed: 1) The inputs are representative of the condition of the 
motor being monitored, 2) During the training process, there are known outputs 
corresponding to given inputs, so that the consequent parameters of Equation 
(16) can be estimated. 

The developed EF classifier could have the following limitations to be im-
proved: 1) The monitoring indices are based on the signal-to-noise ratio (SNR) 
of representative features, which could vary with the use of the data acquisition 
system and motor dynamics. 2) When the developed EF classifier is used in a 
new application, some test data are needed to update the initial classification ar-
chitecture. 

4. Conclusion 

An EF classifier has been developed in this work for IM health condition moni-
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toring. A new updated evolutionary clustering algorithm is proposed for fuzzy in-
ference reasoning and to formulate a rule structure accounting for multiple clus-
ters belonging to different output classes. Its effectiveness is verified by simula-
tion tests using some benchmark datasets. In addition, the EF classifier is im-
plemented for IM rotor bar fault diagnosis. Test results have shown that the de-
veloped EF classifier has improved classification accuracy, processing efficiency, 
and ability to produce distinct fuzzy clusters/rules to clearly indicate the reason-
ing process behind every classification. Due to these factors, the developed intel-
ligent IM monitoring system has the potential to be used in real industrial pre-
dictive maintenance applications. 
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