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Abstract 
In the first paper of the tensor-centric warfare (TCW) series [1], we proposed 
a tensor model of combat generalizing earlier Lanchester-type systems with a 
particular emphasis on contemporary military thinking, including the distri-
buted C4ISR system (Command, Control, Communications, Computing, In-
telligence, Surveillance and Reconnaissance). In the present paper, we extend 
this initial tensor combat model with entropic Lie-derivative machinery in 
order to capture some aspects of this deep uncertainty, while, in the process, 
formalizing into our model military notion of symmetry and asymmetry in 
warfare as a commutator, also known as a Lie bracket. In doing so, we have 
sought to shift the question from the prediction of outcomes of combat, upon 
which previous combat models such as the Lanchester-type equations have 
been typically constructed, towards determining the uncertainty outcomes, 
using a rigorous analytical basis. 
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1. Introduction 

It is generally agreed in military and defence research circles that the older 
strictly hierarchical manner of organization of military forces and force design 
decision-making oriented around considering capability in terms of collections 
of platforms leave something to be desired. In particular, such arrangements 
make effective and fluid coordination between different force elements difficult 
at best and impossible at worst, and leave force design susceptible to overlooking 
both gaps and opportunities afforded by bringing functions housed within dif-
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ferent platforms together. Historically, however, the ability to address these li-
mitations of hierarchical, platform-centric structures has been retarded by a va-
riety of factors, including education and training but particularly sharp limita-
tions on the ability to communicate in operational settings. Modern communi-
cations, information and autonomous systems technologies seem to provide a 
basis for finally dissolving rigid crystalline military organizations to yield more 
flexible forces—better combined effects from heterogeneous capabilities, ability 
to adapt to rapidly changing operational circumstances, and less prone to cas-
cading failure—by enabling close coordination horizontally across traditional 
structural boundaries. While the topic has been the subject of much theorizing 
(for instance, see [2]), explanations have manifested deep methodological flaws 
with wide-reaching practical implications [3] [4]. 

These problems with determining how to utilize the emerging technology to 
best effect, and just with explaining what this effect is and how it comes about, 
may be perhaps best seen in terms of the distinctions drawn between so-called 
“tame” problems and “wicked” problems [5]. Military theorizing has largely fol-
lowed the pattern of long-established classical system engineering-type methods, 
which have proven successful in dealing with tame problems but which are also 
known to not generalist adequately to problems that manifest incomplete and 
contradictory requirements, non-stationarity, complex interwoven interdepen-
dencies, unpredictability of future states, and are effectively unique. 

Yet these considerations are nothing new: even the founding intellectuals of the 
Military Enlightenment understood war and battle as manifesting complex, mes-
sy phenomena and thus grappled with what this means for rational theory devel-
opment. The two main figures of the period differed considerably in their subse-
quent answers. Jomini [6] established the search for a universal theory of war and 
battle, which has been dominant in military thinking ever since. Jomini’s recogni-
tion that not everything is predictable and tame and thus not everything will fit 
into such a theory resulted in his splitting the domain of the complex and uncer-
tain away from rational theory; this split between the “science” of war, dealing in 
certainties, from the “art” of war, dealing in the ambiguous, messy and uncertain, 
continues to haunt the field to the present. Clausewitz [7] denied the existence of 
such a fixed universal theory and emphasized instead problem solving method for 
dealing with what we now call wicked problems. 

Against this backdrop, we developed the TCW model [1], comprising a gene-
ralized tensorial union of the classical Lanchester-Osipov combat equations [8] 
[9] [10]) and distributed C4ISR systems, towards a combat model able to capture 
the basic notion of collaboratively oriented and functionally individuated net-
worked military forces, under the broad aim of capturing some of the features of 
uncertainty in a formal model that have proven so challenging to model in the 
past. In this paper, we extend this formalism with using entropic Lie-derivative 
to advance the representation of uncertainty in our approach, and to capture the 
notion of symmetry in warfare; opposing forces that are widely different in 
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composition, strategy and operating methods are said to be asymmetrical. 

2. Review of the Tensor Combat Model  

The basic attrition equations include two forces, Red/Attacker’s strength:  
( ) :R R t= →� �  and Blue/Defender’s strength: ( ) :B B t= →� � , governed 

by two basic types of dynamics:  
1) Lanchester square law: 

( )( )
( )( )

0

0

, with 0 , 0 ,

, with 0 , 0 ,
R R

B B

R k B R R k

B k R B B k

= − = >

= − = >

�

�
              (1) 

(where Rk  and Bk  denote individual combat-rate coefficients for the Red 
and Blue forces, respectively); and 

2) Lanchester linear law: 

( )( )
( )( )

0

0

, 0 , 0 ,

, 0 , 0 ,
BR BR

RB RB

R k BR R R k

B k RB B B k

= − = >

= − = >

�

�
              (2) 

(where BRk  and RBk  denote mixed combat-rate coefficients) 
In our first paper [1], we generalized and combined Lanchester Equations 

(1)-(2) while seeking to capture the broadly agreed theme of contemporary mili-
tary thinking, which seeks to provide a highly distributed C4ISR system, where 
information can be readily shared and distributed. 

The basic TCW development in [1] was also motivated by the recent paper by 
McLemore et al. [11], so both system inputs and outputs are comparable with 
inputs and outputs of the Air Campaign Scenario simulation presented in [11]. 
Our scaled-down 9 aircraft system input is formulated in standard fashion. Our 
Red forces are given by a Bipartite graph including 4 Fighter aircraft and 5 Sen-
sor aircraft (see Figure 1 in [1]), and our Blue forces are given by a Tripartite 
graph including 3 Fighter aircraft, 3 Sensor aircraft and 3 New aircraft (see 
 

 
Figure 1. Sample simulation of the basic tensor combat Equation (4) for 10 
time units with random initial conditions: monotonic dynamics of Blue forces. 
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Figure 2 in [1]). 
The Red and Blue aircraft configurations are defined by the adjacency matric-

es (with the local feedback-loops): 
no self-loops

0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1

Red : 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 0 0
1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0
1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0
1 1 1 1 0 0 0 0 0 1

 
 
 
 
 
 
 ⇒
 
 
 
 
 
 
 

including local self-loops

,

1 1 1 0 0 0 0 1

a
b

 
 
 
 
 
 
  ≡
 
 
 
 
 
 
 

  

no self-loops

0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1

Blue : 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1
1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 0 0 0

 
 
 
 
 
 
 ⇒
 
 
 
 
 
 
 

including local self-loops

.

1 1 1 1 1 1 0 0 1

a
b

 
 
 
 
 
 
  ≡
 
 
 
 
 
 
 

A  

From the adjacency matrices a
b  and a

bA  the corresponding combat-tensors1 
are defined as:  

( ) ( ) ( ) ( )Red : , , , Blue: , , .a a b a a a
b b c b b bt T t t t= =x x x xN A    

 

 

1A more formal definition of the combat-tensor can be given as follows. Recall that a metric graph 

(possibly with feedback loops) is a graph ( ),Γ =    such that:  

• Each edge e∈  is assigned a finite length el ;  

• The edge e is identified with the interval 0, el   ; and  

• A dynamic coordinate ( )= 0,e e ex x t l∈    is associated with each edge e∈ , so that 

( ) ( ) ( ) ( ){ }1 2= , ,a
b e e

t x t x t x t= �x . 

Any defence sensor, communications and information system network can be defined by the 
adaptive connectivity matrix of a metric graph:  

( ) ( ) , vert. , are adjacent,
,

0, otherwise.

a a
b ba a

b b

w x t a b
C C t

= = 


x  

The weights a
bw  are trainable by Hebbian, backpropagation, or deep learning, thus making 

( ),a
bC tx  into a neural network.  

The combat-tensor is now formally defined as a linear combination of a number of connectivity 
matrices of various operational networks (communications, sensors and information systems, etc.):  

( ) ( ) ( )
1

combat-tensor : ,
m i ia a a a

b b i b i b
i

t c C c C
=

= = =∑  x  

where the last term introduces Einstein’s summation convention over repeated indices. 
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Figure 2. Sample simulation of the basic tensor combat Equation (4) for 10 
time units with random initial conditions: monotonic Red-Blue phase plots. 

 

here ( ),a
bT tx  and ( ),a

b tx  are Power tensors with 9 × 9 components 
defined by the bell-shaped spatiotemporal ( )Sech , tx  functions, implemented 
in Mathematica as:  

[ ] [ ] [ ] { } { },Table 0.1 , Sech 2 3 RandomReal , , , , ,a b a b t a n b n  = −     

[ ] [ ] [ ] { } { },Table 0.1 , Sech 3 4 RandomReal , , , , .a b a b t a n b n  = −  N A  

In this way constructed Red and Blue combat-tensors ,a b  and ,a bN  still 
retain the configuration of zeros in the adjacency matrices a

b  and a
bA , with 

ones replaced by the random-weighted Sech-functions (which are here, for 
simplicity, only temporal, not spatial, so we remain within the ODE-framework; 
see discussion in subsection 4). 

3. TCW Stage: Battle-Manifold with Dynamics of Vector and  
Tensor Fields on It  

3.1. The Battle-Manifold  

Both in geometrical dynamics of natural complex systems [12] [13] [14] and in 
modern autonomy of sociotechnical complex systems [15], a set of all active and 
controllable degrees-of-freedom (DOFs), with some additional geometric condi-
tions, of an arbitrary complex system comprises the configuration manifold2 for 

 

 

2Informally, a smooth manifold Mn is a smooth nonlinear n-space which is locally (at each point) 
equivalent to the linear Euclidean n-space n� . Formally, Mn is defined via compatible Euclidean 
charts:  

( ): ,n n
i i i iM U x x Vϕ ϕ⊃ ∈ ⊂� �  

for all points nx M∈  and comprising a smooth atlas (for technical details, see [12] [18] and the 
references therein). 
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that system. Following this fundamental manifold prescription, any battlespace 
(see [16] and the references therein) in TCW can be formally defined as the bat-
tle-manifold, or its subset—the battle-submanifold. 

Two simple examples of autonomous battle-submanifolds are (see [12]): 
1) A 3D configuration manifold of a simple UGV: ( )2M SO= ×� , coordinated 

by { }, ,x y θ=x ; 

2) A 4D configuration manifold of a car: ( ) 22M SO= ×�  with 

{ }, , ,x y θ φ=x , where ( )2SO  is the group of rotations in the Euclidean plane 
2� , coordinated by { },x y=x . 

Two more complex autonomous submanifolds are (see [12]): 
3) A 15D configuration manifold for an artificial hand (only flexion/extension in  

all three joints of all fingers) is defined as the Cartesian product: ( )1515 2 i
iM SO=∏ ; 

4) An nD configuration manifold for a humanoid robot is the set of all movable  
joint angles, defined as the Cartesian product: ( )3n in

iM SO=∏  of n rotational 

( )3SO -groups for all joints, where ( )3SO  is the group of rotations in 3� . 

We give two examples of more realistic battle-submanifolds. 
• A 3nD human socio-political manifold 3

SG
nM , representing a generic social 

game played among n bargaining agents, according to Bueno de Mesquita’s 
socio-political models (see [17] for a recent review), can be formally defined as:  

( )3
SG

1
2 .

n
in

i
M SO

=

=∏  

Similar configuration manifolds might be constructed for financial markets, 
multinational companies, political and military coalitions, and trade consortiums. 
• A 6nD robotic cyber-physical-cognitive manifold 6

CPC
nM , representing a 

dynamic configuration of a generic swarm of cyber-physical-cognitive robots, 
is defined as:  

( )6
CPC

1
3 ,

n
in

i
M SE

=

=∏  

where each robot is mechanically defined as the Euclidean group ( )3SE  of 
rigid motions in 3�  (consisting of translations and rotations in 3� ; see [15] 
and the references therein).  

The union of a large number of similar submanifolds can form a realistic 
battle-manifold. In case of a very large battle-manifold Mn, it can be approximated 
with n� , where n, the total number of DOFs, can be in millions (using 
computational framework outlined in the Appendix). 

Complex warfighting dynamics on such battle-manifolds is naturally defined as 
an interplay of spatiotemporal vector and tensor fields flowing on them (see [1]). 

3.2. Warfighting Actors: Vector and Tensor Fields on the  
Battle-Manifolds  

On any battle-manifold Mn we can observe a dynamic interplay of various 
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Actors, all defined by various vector and tensor fields, depending on their 
complexity. 

Simpler Actors are formally defined as spatiotemporal vector-fields, ( ),a av v t= x , 
similar to velocities and forces from classical mechanics, or flow-velocities and 
vortices from fluid mechanics, or Hamiltonian vector-fields from generalized 
mechanics [12] [18], or Hopfield-Grossberg vector-fields from neurodynamics [19]. 

The main Actors on any battle-manifold Mn are the Red and Blue vector-fields, 
( ),aR tx  and ( ),aB tx , respectively, which represent either the Red-Blue 

populations, or any other power measure of the Red-Blue forces. 
More complex supporting Actors on Mn are defined as various spatiotemporal  

tensor fields (tensors, for short): ( ) ( )1

1
, ,p

q

a a
b bT T t T t= =x x�
�  of different orders  

(or tensor ranks). 
The supporting warfighting tensors may include:  
1) 2nd-order tensors, similar to metric/inertia tensors from mechanics, or 

stress and strain tensors from elasticity, or stress-energy tensors from 
electrodynamics and gravity; other 2nd-order tensors are usually constructed 
directly from vector-fields, either as their outer products, or as their gradients: 

( ) ( ), ,a a
b bT t v t= ∇x x . 
The main supporting Actor is the combat-tensor ( ),a

b tx , defined earlier, 
which belongs to this category; a

b  commutes with any other 2nd-order 
tensor field of the same covariance on the same battle-manifold Mn (e.g.  

( ) ( ), , ,a a
b bT t S tx x )—they can be added together as linear machines:  

a a a a
b b b bT S= ± ± ±�   
2) More complex, fourth-order tensors, similar to the Riemann curvature tensor, 

( ),a a
bcd bcdR R t= x , as well as various tensors from thermo-visco-elasto-plasticity.  
All these tensor fields are spatiotemporal dynamical objects. Using time 

derivatives and Lie derivatives of these tensor fields, we will construct various 
generalizations of the Lanchester combat equations. 

4. Tensor Combat Equations  

As already mentioned, we assume the simple 9D battle-manifold 9 9M ≈ � , 
coordinated by ( )1 9, ,x x=x � , although all the calculations would equally work 
for any manifold dimension (up to millions, using the computational framework 
outlined in the Appendix). We start the TCW modeling with the tensor 
Lanchester square law, which is the following vector/tensor generalization of 
Equation (1):  

Red : ,

Blue : ,

a a b
b

a a b
b

R kA B

B C Rκ

=

=

�

�
                      (3) 

where the Red and Blue forces are then defined as vector-fields, ( ),a aR R t= x  
and ( ),a aB B t= x , and their effectiveness coefficients are denoted by k and κ. 
The tensor fields ( ),a a

b bA A t= x  and ( ),a a
b bC C t= x  represent the sum of their 

combat-tensors ( a
b  and a

bN ), their total power (or stress-energy) tensors 
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( ( ),a a
b bS S t= x  and ( ),a a

b b t= x  ), and the Red and Blue swarming matrices, 
( ),a a

b b t= x   and ( ),a a
b b t= x   from [11] (provided the swarming matrices 

have dimension of dim M ):  
R-C2 R-Power R-McL

Red : ,a a a a
b b b bA S= ± ±   

B-C2 B-Power R-McL

Blue : .a a a a
b b b bC = ± ±N    

All tensor calculations in this paper are derived using Mathematica® tensor 
package xTensor [20]3. 

Assuming, for simplicity, the coordinate independence ( const=x ), both sets 
of expanded Lanchester equations represent sets of coupled nonlinear ODEs, 
which can be directly numerically solved, for any given Red and Blue initial 
conditions: ( ) 00a aR R= , ( ) 00a aB B= , using any adaptive Runge-Kutta ODE- 
solver (e.g. Cash-Karp, Fehlberg and Dormand-Prince integrators), or their 
corresponding manifold/Lie-group integrators (e.g. Runge-Kutta Munthe-Kaas). 

In the general case of explicit coordinate dependence ( ( )t=x x ), we would be 
actually dealing with the set of the first-order nonlinear PDEs, which would all 
require spatial discretization (e.g., using the Method of Lines, as implemented in 
Mathematica), after which the above mentioned ODE-solvers can be used again. 

The same computational algorithms will apply, in both cases (ODEs and 
PDEs), also for the extended tensor Lanchester equations, formulated as follows. 

Next, to include the Lanchester linear law Equation (2) into Equation (3), 
while keeping their covariance (so that each term represents a vector-field), we 
need to extend them with quadratic terms of the Lanchester unaimed-fire 
equations (linear law) as:4  

Red : ,

Blue : ,

a a b ab c d
b b cd

a a b ab c d
b b cd

R kA B k F B R

B C R G B Rκ κ

= +

= +

�

�
              (4) 

where the fourth-order tensors ab
cdF  and ab

cdG  represent more complex, 
strategic, tactical and operational, Red and Blue capabilities, which can be 
defined either as the outer products of various matrices from [11], or composed 
as triple tensor sums:  

Red Red Red

Blue Blue Blue

strat tact oper ,

strat tact oper .

ab ab ab ab
cd cd cd cd

ab ab ab ab
cd cd cd cd

F

G

= ± ±

= ± ±
                (5) 

For our readers’ convenience, we replicate here the sample simulation (see Figures 
1-3) of the tensor Lanchester combat Equation (4) performed in Mathematica  

 

 

3Similar calculations could be performed also with other tensor packages, like ccgrg [21]. 
4The Basic Red and Blue tensor combat Equations (3)-(4) are valid for any linear/flat manifold M9. 
In case of a strongly nonlinear/curved manifold M9, they would need the additional connection 
coefficients (i.e., Christoffel symbols)—which can be neglected for our purpose, as an unnecessary 
over-complication. With this view in mind, in the following sections we will introduce more com-
plex dynamics and nonlinear control concepts into Equations (3)-(4), without introducing any geo-
metric connection (e.g., Levi-Civita connection on Riemannian manifolds)—which can always be 
added to the battlespace system as additional nonlinear complexity (see [13]). 
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Figure 3. Sample simulation of the basic tensor combat Equation (4) for 10 
time units with random initial conditions: monotonic dynamics of Red 
forces. 

 
for 10 time units (to match the simulations given in [11]) and random initial 
conditions. 

Interpretation of this simulation and comparison with the results reported in 
[11] are given in [1]. Briefly, Red (bipartite) is loosing (Figure 3), Blue (tripartite) 
is winning (Figure 1), and all individual conflicts are concentrated in the 
left-upper corner of the phase-plane (Figure 2). 

5. Modeling Uncertainty and Symmetry of Warfare: From  
Clausewitz to Entropic Lie Derivative  

In this section, we propose a Clausewitz-type warfare uncertainty principle at 
work [7], which is, in spirit, akin to the fundamental Heisenberg uncertainty 
principle in quantum mechanics. Unlike Heisenberg, Clausewitz did not have 
the mathematical tools available at the time, or even the language to describe the 
full warfare complexity at times, but he definitely grappled with uncertainty in 
war and battle as his most fundamental core intellectual construct. The nature of 
this uncertainty amounts to the consequences of Gödel’s incompleteness 
phenomena in mathematical logic and its real-world applications, meaning that 
it is due to the presence of (often hidden or disguised) logical paradoxes. 
Mathematically, the hidden nature takes the form of fixed-point solutions in 
axiomatic formulations, but it is not difficult to relate them directly with 
paradoxes long studied in philosophy. It happens whenever we have the 
potential for self-reference, which is basically any time we don’t assume a 
mathematically “trivial” system. In our view, both Clausewitz- and Heisenberg- 
type uncertainties are the outcome of a set of Gödelian paradoxes, arising in the 
theory because of the built-in possibility of self-reference: one effects the result 
of the observation by the making of the observation because it is set up from the 
start with the notion that one is observing from within the system, not peering 
into it from outside. This notion of hidden self-reference in quantum mechanics 

https://doi.org/10.4236/ica.2018.92003


V. Ivancevic et al. 
 

 

DOI: 10.4236/ica.2018.92003 39 Intelligent Control and Automation 
 

is also quite close to the way in which Clausewitz conceived of his uncertainty. 
The rest of Clausewitz’s work is about how to both deal with it on the one hand 
in terms of avoiding exposure to the worst kind of failures one does not want to 
happen, and how to take advantage of it through the opportunities it proves, on 
the other. 

Regarding the warfare symmetry, we remark that the scalar Lanchester models, 
(1)-(2), are symmetric, i.e., automorphic under a swap of R and B variables5. In 
our general warfare modeling, it is important to properly address the warfare 
symmetry issue, which we present in this section. 

5.1. Entropic Lie-Derivative Machinery  

The Lie derivative operator, denoted by vL  is the simplest tensor derivative (see 
Appendix for technical details) on any smooth manifold M, which does not require 
connection (or, any other geometric structure) on the manifold (see [12] [18] and 
the references therein). vL  generalizes two familiar cases from mechanics and 
nonlinear control: the directional derivative of a scalar function (i.e., scalar field) 
along a vector-field and the Lie-bracket commutator of two vector-fields6. 

For an arbitrary geometric/physical object, T, or specifically, any ( ),q p

-tensor field 1

1

p
q

a a
b bT T M= ∈�
� , its Lie derivative, vTL , along the flow7 of a  

certain vector-field av M∈ , measures in what degree the geometric object T 
moves along with the flow of va (i.e., allows for the “ Lie dragging” along the flow 
of va), or resists to move with the flow of va (i.e., resists the Lie dragging). 

This notion of Lie dragging with/without resistance represents the core 
concept for our modeling of complex warfighting under uncertainty. Physically 
speaking, it is related to Prigogine’s entropy S of any open non-equilibrium 
thermodynamical system, which considers irreversible systems/processes that 
exchange both energy and matter with their environment. Prigogine’s Extended 
Second Law of Thermodynamics (see [24] [25]) formally reads:  

d d
0 for ,

d d
i e

t t
S SS S
t t

∂ ≥ ∂ = +  

where diS  is the internal entropy production within the system, and deS  (=0 
for an isolated system) is the external entropy flux (due to the exchanges with 

 

 

5For example, the scalar Lanchester models (1)-(2) can be seen as special cases of the non-symmetric 
Lotka-Volterra predator-prey model (see [22]):  

( )( )0, with 0 , , 0 ,R BR R BRR k R k RB R R k k= − = >�  

( )( )0, with 0 , , 0 .B RB B RBB k B k RB B B k k= − + = >�  

6For a popular visualization of the Lie derivative, see Figs. 14.13-14.16 in [23]. 
7From the fluid-dynamics perspective (where vL  is called the Liouville operator), a vector-field va 

is an infinitesimal generator of its flow tφ  and the flow tφ  is an integral curve of its vector-field va. 
From the dynamical-systems perspective, the vector-field (e.g., Hamiltonian vector-field) is de-
fined by the set of ordinary differential equations (e.g., Hamiltonian equations of motion), and its 
flow is the solution for some initial conditions. The existence of the flow for some vector-field is 
insured by the existence theorems for differential equations. See next footnote for additional 
technical details. 
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the environment). 
The non-equilibrium thermodynamics has the following Lie-derivative 

analogy:8  
Lie dragging with resistance: 0 0v tT S> ≈ ∂ >L : growth of entropy; and 
Lie dragging with nonresistance: 0 0v tT S= ≈ ∂ =L : conservation of entropy, 

from which we can infer that the warfare uncertainty, as measured by the 
non-equilibrium entropy, grows with resistance; when resistance stops, the 
warfare uncertainty stays constant. 

More precisely, this Lie-entropy analogy can be geometrically interpreted as: 
whenever we have resistance of the opposite side, we are dealing with a positive 
Lie derivative of the associated geometric object9, i.e., 0vT >L , which means 
that the non-equilibrium entropy of the underlying open system is growing, 
therefore the warfare uncertainty is growing. Otherwise, when the Lie derivative 
is zero, i.e., 0vT =L , that means the underlying entropy is conserved and the 
warfare uncertainty remains constant. 

As an introductory example, consider an abstract warfare scenario where 
some sociopolitical force, represented by the vector-field A, is dragging (either 
physically, or psychosocially as a “ threat” ) another sociopolitical structure of 
arbitrary complexity, represented by the general tensor field B (which can be 
another force, or another sociopolitical organization, etc.). This scenario is 
formally written as the Lie derivative ABL . So long as B is resisting, we have 

0AB >L , and correspondingly: 0t S∂ > . When resistance stops, it becomes: 
0AB =L , and correspondingly: 0t S∂ = . 

5.2. Measuring Warfare Symmetry: The [Red, Blue]-Commutator  

An important particular case of the general Lie-derivative, vTL , is the  
commutator, [ ]Red,Bluea

RB =L , also called the Lie-bracket, between the Red  

vector-field ( ),aR tx  and the Blue vector-field ( ),aB tx , which determines the 
global warfare symmetry. 

The Lie-bracket commutator is defined by the antisymmetric bracket  
[ ] [ ]Red,Blue Blue,Red= − , which measures the degree of non-commutativity of 
the Red-Blue composed flows:  

1) [ ]Red, Blue a aR B≡ � : flowing first along the Red flow (in which Blue is  

 

 

8Strictly speaking, these relations are formally valid only for positive-definite tensors (i.e., when the 
tensor expression vTL  is positive definite). In general, they hold for their corresponding absolute 
values: 

Lie dragging with resistance: 0 0v tT S> ≈ ∂ >L : growth of entropy; and 

Lie dragging with nonresistance: 0 0v tT S= ≈ ∂ =L : conservation of entropy. 

In other words, 0 0; 0 0v t v tT S T S≠ ⇒ ∂ > = ⇒ ∂ =L L . Also, our “Lie dragging with nonresistanc” 
is in geometrical literature usually called the “Lie transport.” 
9Such a thermodynamics analogy is not unique for our approach. In the specific framework of Rie-
mannian geometry, there is the so-called Ruppeiner metric, defined as a (negative) Hessian of the 
entropy function [26]. Since we are working in a more abstract, metric-free framework, such a me-
tric is not required. However, if our future work requires specializing to a Riemannian bat-
tle-manifold, its metric will naturally be the Ruppeiner metric. 
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dragged by Red) and then along the Blue flow (in which Red is dragged by Blue), 
versus 

2) [ ]Blue,Red a aB R≡ � : flowing first along the Blue flow (in which Red is  

dragged by Blue) and then along the Red flow (in which Blue is dragged by Red).  
The commutator is formally defined as:  

[ ]
[ ]

Red, Blue ,

, Blue,Red ,

a a a a a b a b
R B a a

a a

R B B R R B B R

B R

 = = = − = ∇ − ∇ 
 = − = − 

L L
 

0 0.a
R tB S≠ ⇒ ∂ >L  

In case the Red and Blue vector-fields do commute, their Lie-bracket 
commutator is zero and the corresponding entropy is conserved:  

[ ]Red,Blue 0 , 0, ora aR B = ⇔ =   

0,a a a a a a
R BR B B R B R= ⇔ = =� � L L  

0 0.a
R tB S= ⇒ ∂ =L  

In addition, the [ ]Red,Blue -commutator is associative:  

[ ] [ ]Red,Blue ,Red Red, Blue,Red and   =     

[ ] [ ]Blue,Red ,Blue Blue, Red,Blue .   =     

Its straightforward interpretation is that, all other quantities being equal, at each 
phase of warfighting: whoever strikes first has the advantage, and the opponent is  
left to play the catch-up game. Therefore, the [ ]Red,Blue -commutator effectively 
decides who wins and who loses at each phase of warfighting. 

More generally, the [ ]Red,Blue -commutator defines the Lie algebra of all  

possible vector-fields on the battle-manifold M, which satisfies the (circular) 
Jacobi identity:  

, , , , , , 0,a a a a a a a a aR B E E R B B E R          + + =            

where ( ),a aE E t= x  is an independent third-party vector-field (like e.g., 
United Nations). 

The above linear and quadratic tensor Lanchester Equations (4) are extended  
with the [ ]Red,Blue -commutators as:  

Red : , ,

Blue : , ,

a a b ab c d a a
b b cd

a a b ab c d a a
b b cd

R kA B k F B R R B

B C R G B R B Rκ κ

 = + +  
 = + +  

�

�
           (6) 

which address the warfare symmetry. In case of nonzero [ ]Red,Blue -commu- 

tators, ,a aR B    and ,a aB R   , given their potentially decisive role in the 

warfare, we consider Equation (6) as the first realistic TCW model. 
The spatiotemporal Red and Blue vector-fields, ( ),aR tx  and ( ),aB tx , res- 

pectively, are implemented in Mathematica as: 

[ ] { }Table , , ,aX x t a n =    
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[ ] [ ] [ ] [ ] [ ] { }, , , ,1 1 1 1Table , , ,n n n n
a b b a b a b c d c d ab b c dk A B t x t kk F B t R t x t a n

= = = =
 + ∑ ∑ ∑ ∑  

[ ] [ ] [ ] [ ] [ ] { }, , , ,1 1 1 1Table , , .n n n n
a b b a b a b c d c d ab b c dC R t x t G B t R t x t a nκ κκ

= = = =
 + ∑ ∑ ∑ ∑  

Their Lie-bracket commutator is defined (from scratch) via Jacobian matrix, 
using the following functional definitions: 

[ ] [ ]JacMat _ , _ : Outer , , ,v List x List D v x=  

[ ] [ ] [ ]LieBrc _ , _ , _ : JacMat , JacMat , .u List v List x List v x u u x v= ⋅ − ⋅  

In such a way defined commutators are applied to the Red and Blue 
vector-fields as: 

CommutRB = LieBrc[RedVec, BlueVec, X],  
CommutBR = LieBrc[BlueVec, RedVec, X]. 
In our specific simulation case, both commutators evaluate to the 9-com- 

ponent zero vectors. Obtaining zero commutators means that we are dealing 
with the symmetric warfare. This also implies that the simulations of the basic 
tensor combat-Lanchester equations would not change. 

5.3. Entropic Lie-Dragging of Combat, Strategic, Tactical and  
Operational Objects 

Given this basis, we can explore general Lie-dragging of the opposite side 
combat-tensors, as well as arbitrary strategic, tactical and operational objects 
along the Red and Blue vector-fields. We begin with the Red and Blue combat- 
tensors, a

b  and a
bS , respectively. Their Lie-dragging by the opposite side 

vector-fields is defined as:  

,a c a a c c a
R b c b c b b cR R R= ∇ −∇ +∇L      

a c a a c c a
B b c b c b b cB B B= ∇ −∇ +∇L N N N N  

and measures the degree of resistance of the opposite side sensor/computer 
networks. In case of nonresistance, these equations reduce to:  

0 and 0.a a
R b B b= =L L N  

Including the Lie-dragging of the opposite side networks into the tensor 
Lanchester equations with [Red-Blue]-commutators (6), gives the following 
more realistic warfighting system:  

Red : , ,

Blue : , ,

a a b ab c d a a b a
b b cd R b

a a b ab c d a a b a
b b cd B b

R kA B k F B R R B R

B C R G B R B R Bκ κ

 = + + + 
 = + + + 

�

�

L

L N


      (7) 

where the Lie-dragging terms ( a
R bL   and a

B bL N ) are multiplied by the Red 
and Blue vector-fields (as b a

R bR L   and b a
B bB L N  terms) to preserve the 

covariance of the tensor equations. 
The Lie-dragged combat Equation (7) represent the realistic TCW model that 

we have been looking for, the general model which generalizes the Lanchester 
combat equations under a networked force view of military command arrangements, 
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and also address warfare symmetry and captures a notion of the deep uncer- 
tainty of military operational situations. Equation (7) are implemented in Ma-
thematica using the following two-step process. 

1) Lie-Dragging of the opposite side combat-tensors is computed using the 
xTensor package [20] as follows: 

 

 
 
2) The temporal tensor combat Equation (7) are implemented as follows: 
 

 
 
A sample simulation of this initial-value problem for 10 time units with 

random initial conditions is given in Figures 4-6. 
Comparing the Lie-dragged simulation (Figures 4-6) with the basic tensor 

combat dynamics (Figures 1-3) shows the subtle control action of the Lie- 
dragging effect on the overall combat Red-Blue dynamics. Specifically, Red 
(bipartite) forces are still loosing (Figure 4), with double amplitude. Blue 
(tripartite) forces are still winning (Figure 5), with double amplitude. All 
individual conflicts transparent in the phase plane are still present, now with 
double amplitude and spread uniformly along the diagonal of phase-plane 
(Figure 6), while in the initial tensor combat dynamics they were concentrated 
in the left-upper corner of the phase plane. 

Finally, we consider the Lie-dragging of more complex strategic, tactical and 
operational (STO) objects, similar to ab

cdF  and ab
cdG  tensors given by Equation 

(5), belonging to the Red and Blue sides and defined by the new (3,1) tensors, 
a

bcd  and a
bcdT , respectively (also composed as triple tensor sums:  

strat tact opera a a
bcd bcd bcd+ + ). Their Lie-dragging by the opposite side vector-fields 

is defined as: 

,a a a a a a a a a a a
R bcd a bcd bcd a acd b bad c bca dR R R R R= ∇ − ∇ + ∇ + ∇ + ∇L        

a a a a a a a a a a a
B bcd a bcd bcd a acd b bad c bca dB B B B B= ∇ − ∇ + ∇ + ∇ + ∇L T T T T T T  

and measures the degree of resistance of the opposite side STO objects. Again, 
in case of nonresistance, these Eqs. reduce to: 0a

R bcd =L   and a
B bcdL T  

Including the Lie-dragging of the opposite side STO objects into tensor 
Lie-Lanchester Equation (7) gives the following even more realistic warfighting 
system:  
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Figure 4. Sample simulation of the tensor combat Equation (7): 
time evolution of the Red forces Ra for 10 time units and random 
initial conditions. 

 

 
Figure 5. Sample simulation of the tensor combat Equation (7): 
time evolution of the Blue forces Ba. 

 

 
Figure 6. Sample simulation of the tensor combat Equation (7): 
Red-Blue phase plot. 
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Red : , ,a a b ab c d a a b a b c d a
b b cd R b R bcdR kA B k F B R R B R R B E = + + + + 

� L L   

Blue : , ,a a b ab c d a a b a b c d a
b b cd B b B bcdB C R G B R B R B R B Eκ κ  = + + + + 

� L N L T  

where, as before, the Lie-dragging terms ( a
R bcdL   and a

B bcdL T ) are multiplied 
by the Red-Ra, Blue-Ba and third party-Ea vector-fields (as b c d a

R bcdR B E L   and 
b c d a

B bcdR B E L T  terms) to preserve the covariance of the tensor equations, so 
that each term still remains the vector-field. 

6. Conclusions and Future Work  

We have extended the basic tensor-centric warfare, developed in [1] as a 
generalized tensor union of classical Lanchester equations under the modern 
notion of utilizing information and communications networks in military 
operations to enable greater collaborative decision-making across previously 
acicular hierarchical command arrangements. The extension to an entropic 
Lie-derivative provides a stronger notion of the uncertainty inherent in battle, 
and describes formally the notion of symmetry in war. 

Future work will examine more complex tensors, including high-dimensional 
Dirac-delta functions for modeling various delta-strikes and missiles, as well as 
tensors for learning with adoptions from deep learning/TensorFlow, and tensors 
of quantum origin, such as tensors from quantum computation and quantum 
graphs. Our research direction is motivated by the need for more realistic 
analytical combat models. We feel that the limited applicability of classical 
Lanchester-type models is less due to the limitations inherent to constructing 
formal models using a few idealized parameters and more to do with the 
intention of the model to provide predictions about combat outcomes. In other 
words, development of new formal combat models of greater utility hinges on 
the choice of problem that motivates the model in the first place; in place of 
earlier intentions to analytically predict outcomes, our research direction is 
oriented around trying to determine the uncertainty of outcomes, and particularly, 
to make predictions about the uncertainty or variability of outcomes for blue 
and red, where uncertainty is here taken in an entropic sense. We also intend to 
develop a richer lexicon of outcomes against which to make such entropic 
estimates. 

The reason this matters is that decision-making under uncertainty is oriented 
around uncertainty with respect to failure outcomes: blue wants to steer away 
from uncertainty with respect to failure outcomes for blue, but towards 
uncertainty around failure outcomes for red, and vice-versa. In terms of our 
modeling, we thus consider decision-making of the opposing forces to be a 
matter of control. 
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Appendix: Computational Framework  

Persistent Homology Algorithms  

A network-computational framework, with networks/tensors of up to millions of 
nodes, can be developed using the publicly available Matlab® toolbox supporting 
the cutting-edge topological research of brain cliques and cavities from com- 
putational neuroscience (the Blue Brain project [27] [28] [29]). It is based on the 
persistent homology algorithms on directed simplices [30]. 

General Lie Derivative Calculations  

For its definition, the Lie derivative vL  requires only the vector-field av M∈  
along which an arbitrary tensor T would flow or would resist the flow (i.e., 
would be “dragged” or would resist the “dragging” ). For most tensors, vL  is  
naturally expressed in terms of the gradient operator, { }a

a a x∇ = ∂ ≡ ∂ ∂ , for  

1, , dim 4a n M= = ≥� . Only in case of high-order exterior differential forms, a 
more natural/elegant would be vL  expression in terms of Cartan's exterior 
derivative d (see [12] [18] and the references therein). 

The following computations of the Lie derivative vTL  for all possible tensors 
T up to the order 4 are derived using the fast tensor package xTensor [20] for 
Mathematica®:  

a) The Lie derivative of a scalar field/function Mφ ∈  along the vector-field 
av M∈  is its directional derivative, i.e., the inner product of the gradient aφ∇  

and the vector-field av :  
1 2

1 2 .a a n
v a a nv v v v vφ φ φ φ φ φ= ∇ ≡ ∂ = ∂ + ∂ + + ∂�L  

For a pair of scalar fields/functions ( ), Mφ ϕ ∈ , the following two relations 
hold: 
• The Leibniz rule: 

( ) ( ) ( ) ,v v vφϕ ϕ φ φ ϕ= +L L L  and 

• The linearity relation: 

( )1 2 1 2 .v v vc c c cφ ϕ φ ϕ+ = +L L L  

These two rules can be extended to higher-order tensors. 
b) The Lie derivative (along the vector-field av M∈ ) of another vector-field  

au M∈  is their Lie bracket ,a av u M ∈   (or, commutator), which is yet 

another vector-field, given by:  

, ,a a a a a b a b
v u a au v u v v u u v = = = ∇ − ∇ L L  

and measures how non-commutative the composed flow is (i.e., first flowing 
down the one vector-field and then flowing down the other one), since in 
general a a a av u u v≠� � . 

The space of all vector-fields { }, , ,a a av u w M∈�  forms a Lie algebra with 

respect to the Lie bracket ,a av u   . This Lie algebra satisfies the Jacobi identity: 
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, , , .a a a a a a
v v vu w u w u w     = +     L L L  

For any ( ),q p -tensor field T M∈ , the following Lie-algebra representation 
holds:  

[ ] [ ][ , ] , , .v u v u u v v u u v v uv uT T T= − ⇒ = − =L L L L L L L L L L L L  

c) The Lie derivatives of the second-order tensor fields on M (these are the 
most common tensors, like the stress and strain tensors in elasticity, Maxwell 
tensor in electrodynamics, etc.) are defined as: 

In case of the covariant (0, 2)-tensor field abT M∈  we have:10 

;c c c
v ab c ab a cb a bcT v T v T v T= ∇ +∇ +∇L  

• In case of the mixed (1,1)-tensor field a
bT M∈  along av M∈  we have:  

;a c a a c c a
v b c b c b b cT v T v T v T= ∇ −∇ +∇L  

• In case of the contravariant (2, 0)-tensor field abT M∈  we have:  

.ab c ab a cb b ac
v c c cT v T v T v T= ∇ −∇ −∇L  

d) The Lie derivatives of low-dimensional differential forms (i.e., completely 
asymmetric covariant tensor fields obeying Cartan’s exterior calculus) are given 
by: 
• In case of the 1-form a Mθ ∈  (e.g., the canonical form of a Hamiltonian 

system) we have:  

.b b
v a b a b av vθ θ θ= ∇ + ∇L  

• In case of the closed 2-form ab Mω ∈  (e.g., the symplectic form of a 
Hamiltonian system) we have:  

( )[ ]2 ,c
v ab a b cvω ω= − ∇L  

where [ ]abω  denotes the asymmetric part of abω .  

e) The Lie derivative of a general exterior p-form Mω∈  (e.g., exterior forms 
used in Hodge-de Rham theory) along av M∈  is defined in the coordinate- 
free form by “Cartan’s magic formula:”  

d d .v v vi iω ω ω= +L  

Here d M∈  is the exterior derivative, which commutes with the Lie 
derivative:  

 

 

10In particular, on a Riemannian manifold M, the Killing vector-field a Mξ ∈  has the property that 

Lie differentiation with respect to it annihilates the Riemannian metric abg M∈ :  

( )( )0 0, with .b
ab a b b a a b a abg gξ ξ ξ ξ ξ ξ= ⇔∇ +∇ ≡ ∇ = =L  

If the flow tφ  is a one-parameter group of isometries on M: t ab abg gφ∗ = , the vector-field aξ  

which generates tφ , is a Killing vector-field. The necessary and sufficient condition for tφ  to be a 

group of isometries is: 0abgξ =L . Consequently, the necessary and sufficient condition for aξ  to 

be a Killing vector-field is that it satisfies Killing’s equation: 0a b b aξ ξ∇ +∇ =  or 0a b b aξ ξ∇ +∇ = . 

More generally, for any Killing vector-field a Mξ ∈  and any conserved, symmetric (0,2)-tensor 

field abT M∈ , we have: ( ) 0a b a b
ab abT Tξ ξ∇ = ∇ = . 
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( )d d ,v vω ω=L L  

which in case of scalar functions (or, 0-forms) becomes:  

[ ],d 0.v =L  

vi Mω∈  is the contraction of the p-form ω and the vector-field av , which 
also commutes with vL . In case of a scalar field/function Mφ ∈ , Cartan's 
formula simplifies as:  

d .v viφ φ=L  
f) The Lie derivatives of the third-order tensor fields on M (which are 

gradients of the above second-order tensors and the strain gradients in 
micromorphic elasticity, etc.) are defined as: 
• Given a ( )3,0  tensor-field abcS , its Lie derivative abc

vSL  is given as  

.abc a abc abc a aac b aba c
v a a a aS v S S v S v S v= ∇ − ∇ − ∇ − ∇L  

• Given a ( )2,1  tensor-field ab
cS , its Lie derivative ab

v cSL  is given as  

.ab a ab ab a ab a aa b
v c a c c a a c c aS v S S v S v S v= ∇ − ∇ + ∇ − ∇L  

• Given a ( )1,2  tensor-field a
bcS , its Lie derivative a

v bcSL  is given as  

.a a a a a a a a a
v bc a bc bc a ac b ba cS v S S v S v S v= ∇ − ∇ + ∇ + ∇L  

• Given a ( )0,3  tensor-field abcS , its Lie derivative v abcSL  is given as  

.a a a a
v abc a abc abc a aac b aba cS v S S v S v S v= ∇ + ∇ + ∇ + ∇L  

g) The Lie derivatives of the fourth-order tensor fields on M (e.g., the 
Riemann and Weyl curvature tensors in gravity and the compliance and stiffness 
tensors in elasticity) are defined as: 
• Given a ( )4,0  tensor-field abcdR , its Lie derivative abcd

vRL  is given as  

.abcd a abcd abcd a aacd b abad c abca d
v a a a a aR v R R v R v R v R v= ∇ − ∇ − ∇ − ∇ − ∇L  

• Given a ( )3,1  tensor-field abc
dR , its Lie derivative abc

v dRL  is given as  

.abc a abc abc a abc a aac b aba c
v d a d d a a d d a d aR v R R v R v R v R v= ∇ − ∇ + ∇ − ∇ − ∇L  

• Given a ( )2,2  tensor-field ab
cdR , its Lie derivative ab

v cdRL  is given as  

.ab a ab ab a ab a ab a aa b
v cd a cd cd a ad c ca d cd aR v R R v R v R v R v= ∇ − ∇ + ∇ + ∇ − ∇L  

• Given a ( )1,3  tensor-field a
bcdR , its Lie derivative a

v bcdRL  is given as  

.a a a a a a a a a a a
v bcd a bcd bcd a acd b bad c bca dR v R R v R v R v R v= ∇ − ∇ + ∇ + ∇ + ∇L  

• Given a ( )0,4  tensor-field abcdR , its Lie derivative v abcdRL  is given as  

.a a a a a
v abcd a abcd abcd a aacd b abad c abca dR v R R v R v R v R v= ∇ + ∇ + ∇ + ∇ + ∇L  

h) In general, for a pair of arbitrary tensors ( )1 1

1 1
,q j

p k

a a a a
b b b bT T S S M= = ∈� �
� � , the 

Leibniz rule holds: 

( ) ( ) ( ).v v vS T S T S T⊗ = ⊗ + ⊗L L L  

In case that both tensors have the same rank, ( )1 1

1 1
,q j

p k

a a a a
b b b bT T S S M= = ∈� �
� � , the 

linearity relation also holds: 
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( )1 2 1 2 .v v vc T c S c T c S+ = +L L L  

All possible Lie-derivative expressions can be derived using the tensor package 
xTensor [20] for Mathematica. 

After Mathematica derivation, all tensor expressions can be completely 
evaluated (for manifolds of any dimension) using quasi-symbolic gradients 
computed by automatic differentiation, implemented either in C++, or in 
functional languages like Haskell (AD library) [31] and/or F-sharp (DiffSharp 
library) [32]. 
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