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Abstract 
This paper is focused on studying an important concept of the system analy-
sis, which is the regional enlarged observability or constrained observability of 
the gradient for distributed parabolic systems evolving in the spatial domain 

.Ω  We will explore an approach based on the Hilbert Uniqueness Method 
(HUM), which can reconstruct the initial gradient state between two pre-
scribed functions 1f  and 2f  only in a critical subregion ω  of Ω  with-
out the knowledge of the state. Finally, the obtained results are illustrated by 
numerical simulations. 
 

Keywords 
Distributed Systems, Parabolic Systems, Regional Enlarged Observability,  
Gradient Reconstruction, HUM Approach 

 

1. Introduction 

Control problem of partial differential equation (PDE) arises in many different 
contexts and engineering applications. A prototypical problem is that of 
observability, which is one of the most fundamental concepts in mathematical 
control theory, and has been the object of various works (see [1], [2], [3]), whose 
the aim is the possibility to reconstruct the initial state of the distributed system 
based on partial measurements taken on the system by means of tools called 
sensors. This concept depends on a very sensitive way of the class of PDE under 
consideration, in particular, the case of the heat and wave equations. 

For distributed parameter systems, the concept of regional observability was 
introduced by El Jai et al. and interesting results have been obtained, whose 
target of interest is not fully the geometrical evolution domain ,Ω  but just in 
an internal subregion ω  of Ω  (see [4], [5]) or on a part of the boundary ∂Ω  
of Ω  (see [6], [7]). Later the notion of regional gradient observability was 
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developed (see [8]); it concerns the reconstruction of the initial state gradient 
only in a critical subregion of the system without the knowledge of the state. 
This concept finds its applications for many real problems. For example, the 
problem of estimating the energy exchanges between a casting plasma on a plane 
target which is perpendicular to the direction of the flow sub-diffusion process 
from measurements carried out by internal thermocouples. 

Here we are interested in the concept of the regional enlarged observability of 
the gradient, which consists in reconstructing the initial gradient state between 
two prescribed profiles 1P  and 2P  only in a critical subregion interior of the 
evolution domain without the knowledge of the state. The introduction of this 
concept is motivated by many real problems. This is the case, for example, of the 
biological treatment of wastewater using a fixed bed bioreactor. The process has 
to regulate the substrate concentration of the bottom of the reactor between two 
prescribed levels. This concept was studied using two approaches where the first 
one is based on subdifferential techniques and the second one uses the 
Lagrangian multiplier method (see [9], [10]). In this work, we solve this problem 
using an extension of the Hilbert Uniqueness Method (HUM) developed by 
Lions (see [11], [12]). 

The paper is structured as follows. Section 2 we recall the regional enlarged 
gradient observability of a linear parabolic system, then we give some definition 
and properties related to this notion. Section 3 concerns a reconstruction 
approach using an extension of the Hilbert Uniqueness Method. Section 4 we 
develop a numerical approach, which is illustrated by simulations that lead to 
some conjectures.  

2. Problem Statement  

Let Ω  be an open bounded domain in n  ( 1,2,3n = ), with a regular 
boundary .∂Ω  For 0,T >  let’s consider [ ]0,Q T= Ω×  and [ ]0, .TΣ = ∂Ω×  
We consider the following system  

( ) ( )

( ) ( )
( )

0

,
,   in    

,0        in    

, 0               on    ,  

y x t
Ay x t Q

t
y x y x

y tξ

∂
= ∂ = Ω

 = Σ


                    (1) 

where A  is a second-order linear differential operator with compact resolvent 
which generates a strongly continuous semi-group ( )( ) 0t

S t
≥

 on the Hilbert 
space ( )2 .L Ω  We assume that ( )1

0 0y H∈ Ω  is unknown. The observation 
space is ( )2 0, ; .qL T=   

The measurements are obtained by the output function given by  

( ) ( ) [ ]., ,   0, ,z t Cy t t T= ∈                     (2) 

where C  is called the observation operator, linear (possibly unbounded) 
depending on the structure and the number q  of the considered sensors, with 
dense S-invariant domain ( ) ( )1

0 .D C H⊆ Ω  One of the most popular examples 
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equations with unbounded observation operator is a system of a linear partial 
differential equation which describes by pointwise sensors. 

Moreover, the system (1) is autonomous the output function can be expressed 
by  

( ) ( ) ( ) [ ]0 0 , 0, ,z t CS t y K t y t T= = ∈                  (3) 

where ( )1
0:K H Ω →  is linear operator. To obtain the adjoint operator of 

,K  we have 
Case 1. C is bounded (e.g. zone sensors) 
We denote ( )1

0: ,qC H Ω →   and *C  its adjoint. We get that the adjoint 
operator of K  can be given by  

( )
( ) ( )

* 1
0

** * *
0

:

       d .
T

K H

z S t z t t

→ Ω

→ ∫


 

Case 2. C is unbounded (e.g. pointwise sensors) 
In this case, we have ( ) ( )1

0: ,qC D C H⊆ Ω →   with *C  denote its adjoint. 
Based on the works (see [13], [14], [15]), to state our results, we have to make 
the following assumptions:  

( )1H  ( )CS t  can be extended to a bounded linear operator ( )CS t  in 
( )( )1

0 , ;H Ω   
( )2H  ( )*CS  exists and ( )* * *.CS S C=  
Extend K  by ( ) ( )0 0 ,K t y CS t y=  with ( )( )1

0 , .K H∈ Ω   Then the 
adjoint operator of K  can be defined as 

( ) ( )

( ) ( )

* * 1
0

* * * *
0

:

                      d .
T

K D K H

z S t C z t t

⊆ → Ω

→ ∫


 

For ω  a subregion of Ω  with a positive Lebesgue measure, let ωχ  be the 
restriction function defined by  

( )( ) ( )( )2 2:

                  ,

n n
L L

y y y
ω

ωω

χ ω

χ

Ω →

→ =
 

with the adjoint *
ωχ  given by  

* in
0 in \ .
y

y
ω

ω
χ

ω


=  Ω
 

Let’s consider the operator  

( ) ( )( )1 2
0

1

:

             , , .

n

n

H L

y yy y
x x

∇ Ω → Ω

 ∂ ∂
→∇ =  ∂ ∂ 



 

Its adjoint is given by  

( )( ) ( )* 2 1
0

*

:

                     ,

n
L H

y y v

∇ Ω → Ω

→∇ =
 

where v  is the solution of the following Dirichlet problem  
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( )div in
0 on .

v y
v
∆ = − Ω


= ∂Ω
                    (4) 

We recall that a sensor is conventionally defined by a couple ( ),D f , where 
D  is its spatial support represented by a nonempty part of Ω  and f  is the 
spatial distribution of the information on the support .D  Then the output 
function (2) can be written in the following form  

( ) ( ) ( ), d .
D

z t y x t f x x= ∫                     (5) 

A sensor may be pointwise (internal or boundary) if { }D b=  with b∈Ω  
and ( ). ,f bδ= −  where δ  is the Dirac mass concentrated in ,b  and the 
sensor is then denoted by ( ), .bb δ  In this case, the operator C  is unbounded 
and the output function (2) can be written in the form  

( ) ( ), .z t y b t=                         (6) 

We also recall that the system (1) together with the output (2) is said to be 
exactly (respectively weakly) gradient observable in ω  if ( ) ( )( )* 2Im

n
K Lωχ ω∇ =  

(respectively ( ) ( )( )* 2Im
n

K Lωχ ω∇ = ). For more details, we refer the reader to 
(see [8]). 

Let ( )( ) 1
.

n
i i

α
=

 and ( )( ) 1
.

n
i i

β
=

 be two functions defined in ( )( )2 n
L ω  such 

that ( ) ( ). .i iα β≤  a.e. in ω  for all 1 .i n≤ ≤  Throughout the paper we set  

( ) ( )

( ) ( )( ) ( ) ( ) ( ) { }{ }2
1

. , .

, , . . .     a.e. in  1, , .
n

n i i iy y L y i n

α β

ω α β ω

  

= ∈ ≤ ≤ ∈ ∀
 

Definition 1. The system (1) together with the output (2) is said to be 
( ) ( ). , .α β   -gradient observable in ω  if  

( ) ( ) ( )*Im . , . .Kωχ α β∇ ∩ ≠ ∅    

Definition 2. The sensor ( ),D f  is said to be ( ) ( ). , .α β   -gradient 
strategic in ω  if the observed system is ( ) ( ). , .α β   -gradient observable in 

.ω   
Remark 1.  
• If the system (1) together with the output (2) is ( ) ( ). , .α β   -gradient 

observable in 1ω  then it is ( ) ( ). , .α β   -gradient observable in any subregion 

2 1.ω ω⊂  
• If the system (1) together with the output (2) is exactly gradient observable 

in ω  then it is ( ) ( ). , .α β   -gradient observable in .ω  
Proposition 1. We have the equivalence between the following statements.  
1. The system (1) together with the output (2) is ( ) ( ). , .α β   -gradient 

observable in .ω  
2. ( ) ( ) ( ) { }* * . , . 0 .Ker K ωχ α β∇ ∩ =     

Proof. (1) ⇒  (2)  
We shall show that 
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( ) ( ) ( ) ( ) ( ) ( ) { }* * *Im . , . . , . 0K Ker Kω ωχ α β χ α β∇ ∩ ≠ ∅ ⇒ ∇ ∩ =        

Suppose that 

( ) ( ) ( ) { }* * . , . 0Ker K ωχ α β∇ ∩ ≠    

Let’s consider ( ) ( ) ( )* * . , . ,y Ker K ωχ α β∈ ∇ ∩     such that 0.y ≠  Then 

( )* *y Ker K ωχ∈ ∇  and ( ) ( ). , . .y α β∈     We have ( ) ( )* * *Im ,Ker K Kω ωχ χ
⊥

∇ = ∇  
thus ( )*Imy Kωχ

⊥
∈ ∇  such that 0.y ≠  

Therefore ( )*Im .y Kωχ∉ ∇  
Then  

( ) ( ) ( ) ( )( ) ( )* * 2 *. , . \ Im .
n

Ker K L Kω ωχ α β ω χ∇ ∩ ⊂ ∇    

Hence  

( ) ( )( ) ( ) ( )( ) ( ) ( )* 2 * * 2Im \ \ . , . .
n n

K L Ker K Lω ωχ ω χ ω α β∇ ⊂ ∇ ∪     

We have  

( ) ( )( ) ( )* 2 * *Im \ ,
n

K L Ker Kω ωχ ω χ∇ ⊂ ∇  

accordingly  

( ) ( )* * *Im ,K Ker Kω ωχ χ∇ ∩ ∇ = ∅  

then  

( ) ( ) ( )* *Im Im     Absurd .K Kω ωχ χ
⊥

∇ ∩ ∇ = ∅  

Since  

( ) ( )( ) ( ) ( )* 2Im \ . , .
n

K Lωχ ω α β∇ ⊂     

we have  

( ) ( ) ( ) ( )*Im . , .    Absurd .Kωχ α β∇ ∩ = ∅    

Consequently  

( ) ( ) ( ) { }* * . , . 0 .Ker K ωχ α β∇ ∩ =    

(2) ⇒  (1) 
We shall show that 

( ) ( ) ( ) { } ( ) ( ) ( )* * *. , . 0 Im . , .Ker K Kω ωχ α β χ α β∇ ∩ = ⇒ ∇ ∩ ≠ ∅        

Suppose that 

( ) ( ) ( ) { }* * . , . 0 .Ker K ωχ α β∇ ∩ =    

Let’s consider  

( ) ( ) ( )* * . , . ,y Ker K ωχ α β∈ ∇ ∩     

then  

( ) ( ) ( )* *   and   . , . ,   such that   0.y Ker K y yωχ α β∈ ∇ ∈ =    

We have  
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( ) ( ) ( )* * * *Im ,   so  Im   such that  0,Ker K K y K yω ω ωχ χ χ
⊥ ⊥

∇ = ∇ ∈ ∇ =  

hence  

( ) ( ) ( )*Im  and . , . .y K yωχ α β∈ ∇ ∈     

Thus  

( ) ( ) ( )*Im . , . ,Kωχ α β∇ ∩ ≠ ∅    

which shows that the system (1) together with the output (2) is ( ) ( ). , .α β   - 
gradient observable in .ω  

3. HUM Approach  

In this section, we present an approach that allows the reconstruction of the 
initial gradient state in ( ) ( ). , . .α β    The approach constitutes an extension of 
the Hilbert Uniqueness Method developed by Lions (see [11]) to the case of 
regional enlarged observability of the gradient. Let the initial state gradient 
decomposed in the following form 

( ) ( )

( )( ) ( ) ( )

1
0

0 2 2
0

in . , .

in \ . , .
n

y
y

y L

α β

α β

   = 
Ω    

             (7) 

In the sequel our object is the reconstruction of the component 1
0y  in 

( ) ( ). , . ,α β    let G  be defined by  

( )( ) ( )( ) ( ) ( ){ } ( ){ }2 2 1
00  in  \ . , . .

n n
G g L g L f f Hα β= ∈ Ω = Ω ∩ ∇ ∈ Ω    (8) 

For ( )1
0 0 ,Hφ ∈ Ω  we consider the system  

( ) ( )

( ) ( )
( )

0

,
,     in   

,0           in   

, 0                  on   

x t
A x t Q

t
x x

t

φ
φ

φ φ

φ ξ

∂
= ∂ = Ω


= Σ



                  (9) 

which admits a unique solution ( )( ) [ ]( )2 1
00, ; 0,L T H C Tφ ∈ Ω ∩ Ω×  (see [16]). 

Let us go further in the state reconstruction by considering various types of 
sensors.  

3.1. Pointwise Sensors  

In this case, the output function is given by  

( ) ( ) [ ], ,  0,z t y b t t T= ∈                     (10) 

where b∈Ω  denote the given location of the sensor. 
For 0 ,Gφ ∈  there exists a unique ( )1

0 0Hφ ∈ Ω  such that 0 0 .φ φ= ∇  Then 
we consider the semi-norm on G  be defined by  

( )

1
2 2

0 0 0
1

, d ,
nT

G k k

b t t
x
φφ φ

=

  ∂ =  ∂   
∑∫ 


              (11) 
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where φ  the solution of (9). We consider the following retrograde system  

( ) ( ) ( ) ( )

( )
( )

*

1

*

,
, ,     in   

, 0                                                         in    

,
0                                                       on    ,

n

k k

A

x t
A x t b t x b Q

t x
x T

t

ψ φψ δ

ψ

ψ ξ
ν

=

 ∂ ∂− = + −
∂ ∂

 = Ω
∂ = Σ ∂

∑

       (12) 

which admits a unique solution ( )( )2 1
00, ;L T Hψ ∈ Ω  (see [16]). 

Let the operator Λ  be defined by 

( )( )
*

0 0

:

     0

G G
φ φ

Λ →

→Λ = Ψ  
                  (13) 

where *
ω ωχ χ=  and ( ) ( ) ( )( )0 0 , , 0 .ψ ψΨ =   

Let’s consider the system  

( ) ( ) ( ) ( )

( )
( )

*

1

*

,
, ,    in  

, 0                                                     in   

,
0                                                    on  ,

n

k k

A

z x t yA z x t b t x b Q
t x

z x T

z t

δ

ξ
ν

=

 ∂ ∂− = + −
∂ ∂

 = Ω
∂ = Σ ∂

∑

        (14) 

If 0φ  is chosen such that ( ) ( )0 0z ψ=  in ,ω  then the system (14) could 
be seen as an adjoint of the system (1) and our problem of the enlarged gradient 
observability is to solve the equation  

( )( )0 0 ,ZφΛ =                          (15) 

where ( ) ( ) ( )( )0 0 , , 0 ,Z z z=   with z  is the solution of the system (14).  
Proposition 2. If the system (1) together with the output (2) is ( ) ( ). , .α β   - 

gradient observable in ,ω  then the equation (15) admits a unique solution 

0 ,Gφ ∈  which coincides with the initial gradient state 1
0y  to be observed in 

( ) ( ). , . .α β     
Proof. 1. Firstly, we show that if the system (1) together with the output (2) is 
( ) ( ). , .α β   -gradient observable in ,ω  then (11) defines a norm on .G  

Let’s consider 0 ,Gφ ∈  we have  

( ) [ ]0 0
1 1

0 e , 0    a.e. in  0, .
n

t ii
iG i k k

b T
x

λ φ
φ φ ϕ

∞

= =

∂
= ⇒ =

∂∑ ∑  

Then  

( )0
1

, 0,    .
n

i
i

k k

b i
x

ϕ
φ ϕ

=

∂
= ∀

∂∑  

Since the observed system is ( ) ( ). , .α β   -gradient observable in ,ω  we 

obtain ( )
1

0,    .
n

i

k k

b i
x

ϕ

=

∂
≠ ∀

∂∑  
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Then 0 , 0,
i

φ ϕ =  hence 0 0.φ =  Consequently 0 0.φ =  Thus (11) is a norm. 
2. Now let us prove that (15) has a unique solution. Equation (15) admits a 

unique solution if the operator Λ  is an isomorphism.  

Indeed, multiplying (12) by 
kx
φ∂

∂
 and integrating the result over ,Q  we 

obtain  

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

*

2 2

21

, , , , , ,

, , , .

k kL Q L Q

n

lk l L Q

x t x t x t A x t
x t x

x t b t x b
x x

φ ψ φ ψ

φ φ δ
=

∂ ∂ ∂
= −

∂ ∂ ∂

∂ ∂
− −

∂ ∂∑
 

which gives 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )

2 2
0

*
0

2 1

, , , , , ,

, , , , , d .

T

k kL L Q

nT

lk k lL Q

x t x t x t x t
x x t

x t A x t b t b t t
x x x

φ φψ ψ

φ φ φψ

Ω

=

 ∂ ∂ ∂   −  ∂ ∂ ∂    

∂ ∂ ∂
= − −

∂ ∂ ∂∑∫

 

With the initial condition, we have  

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )

2 2

*
0

2 1

,0 , ,0 , , ,

, , , , , d

k kL L Q

nT

lk k lL Q

x x A x t x t
x x

x t A x t b t b t t
x x x

φ φψ ψ

φ φ φψ

Ω

=

∂ ∂
=

∂ ∂

∂ ∂ ∂
− −

∂ ∂ ∂∑∫
 

Using the Green formula, we obtain  

( ) ( )
( )

( ) ( )
0

2 1
,0 , ,0 , , d .

nT

lk k lL

x x b t b t t
x x x
φ φ φψ

=Ω

∂ ∂ ∂
=

∂ ∂ ∂∑∫  

Hence  

( ) ( )
( )

( ) ( )
0

21 1 1
,0 , ,0 , , d .

n n nT

k k lk k lL

x x b t b t t
x x x
φ φ φψ

= = =Ω

∂ ∂ ∂
=

∂ ∂ ∂∑ ∑ ∑∫  

Thus  

( )
2

0 0 0
1

, , d .
nT

l l

b t t
x
φφ φ

=

 ∂
Λ =  ∂ 

∑∫   

Then  
2

0 0 0, .
G

φ φ φΛ =    

We deduce that Λ  is an isomorphism, consequently the equation (15) has a 
unique solution 0 Gφ ∈  which corresponds to the initial state observed in 

( ) ( ). , . .α β     

3.2. Zonal Sensors  

Let us come back to the system (1) and suppose that the measurements are given 
by an internal zone sensor defined by ( ), ,D f  with D ⊂ Ω  and ( )2 .f L D∈  
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The system is augmented with the output function  

( ) ( ) ( ), d .
D

z t y x t f x x= ∫                   (16) 

In this case, we consider the system (9), G  is given by (8), and we define a 
semi-norm on G  by  

( )
( )

1
2 2

0 0
21

, d .
nT

G k k L D

t f t
x
φφ

=

  ∂  =   ∂   
∑∫             (17) 

With the system  

( ) ( ) ( )
( )

( )

( )
( )

*

21

*

,
, ,    in   

, 0                                                                      in   

,
0                                                              

n

D
k k L D

A

x t
A x t t f f x Q

t x

x T

t

ψ φψ χ

ψ

ψ ξ
ν

=

∂ ∂
− = +

∂ ∂

= Ω

∂
=

∂

∑

      on   ,







 Σ


    (18) 

we introduce the operator 

( )( )
*

0 0

:

    0 ,

G G
φ φ

Λ →

→Λ = Ψ  
                   (19) 

where *
ω ωχ χ=  and ( ) ( ) ( )( )0 0 , , 0 .ψ ψΨ =   

Let’s consider the system  

( ) ( ) ( )
( )

( )

( )
( )

*
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*

,
, ,     in   

, 0                                                                      in   

,
0                                                             

n

D
k k L D

A

z x t yA z x t t f f x Q
t x

z x T

z t

χ

ξ
ν

=

∂ ∂
− = +

∂ ∂

= Ω

∂
=

∂

∑

        on   .







 Σ


    (20) 

If 0φ  is chosen such that ( ) ( )0 0z ψ=  in ,ω  then the system (20) can be 
seen as an adjoint of the system (1) and our problem of the enlarged gradient 
observability is to solve the equation  

( )( )0 0 ,ZφΛ =                       (21) 

where ( ) ( ) ( )( )0 0 , , 0 ,Z z z=   with z  the solution of the system (20).  
Proposition 3. If the system (1) together with the output (2) is ( ) ( ). , .α β   - 

gradient observable in ,ω  then the equation (21) has a unique solution 0 ,Gφ ∈  
which coincides with the initial gradient state 1

0y  observed in ( ) ( ). , . .α β    
Proof. The proof is similar to the pointwise case.  

4. Numerical Approach  

We consider the system (1) observed by a pointwise sensor located in .b∈Ω  In 
the previous section, it was shown that the regional enlarged observability of the 
initial gradient state in ( ) ( ). , .α β    is equivalent, in all cases, to solving the 
equation 

( )( )0 0 ,ZφΛ =                         (22) 
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The numerical approximation of (22) is realized when one can have a basis 

( )i i
ϕ

∈
 of ( )( )2 n

L Ω  and the idea is to calculate the components ijΛ  of the 
operator .Λ  

Then we approximate the solution of (22) by the linear system  

0
1

    for   1, , ,
N

ij j i
j

Z i Nφ
=

Λ = =∑ 

                  (23) 

where N is the order of approximation and iZ  are the components of 
( )( )0Z  ( )1, ,i N=   in the basis considered.  

Let ( )i i
ϕ

∈  be a complete set of the eigenfunctions of the operator A  in 
( )1

0 ,H Ω  which is orthonormal in ( )2 .L Ω  We also consider a basis of 
( )( )2 n

L Ω  denoted by ( ) .
i i

ϕ
∈

 Then the components ijΛ  are the solutions of 
the following equation, for a pointwise sensor 

( )
( ) ( )

, 1 1 1

, 1

, , , , , ,

e 1

, 1, , .

k k l l
iji j

i j n n

Tk l n
k l

m pk l m p

x x x x

b b
x x

k l

λ λ

ϕ ϕ ϕ ϕ
ϕ ϕ

ϕ ϕ

λ λ

∞

=

+

=

 ∂ ∂ ∂ ∂   
 × Λ      ∂ ∂ ∂ ∂    

 ∂ ∂−=

+ ∂ ∂
 = ∞

∑

∑

 



      (24) 

In the case of a zonal sensor ( ), ,D f  we obtain  

( )

( ) ( )

, 1 1 1

, 1 2 2

,..., , ,..., ,

e 1 , , ,

, 1, , .

k k l l
iji j

i j n n

Tk l n
k l

m pk l m pL D L D

x x x x

f f
x x

k l

λ λ

ϕ ϕ ϕ ϕ
φ ϕ

ϕ ϕ

λ λ

∞

=

+

=

 ∂ ∂ ∂ ∂   
 × Λ      ∂ ∂ ∂ ∂    


∂ ∂ −= ×
+ ∂ ∂


= ∞




∑

∑



      (25) 

Then, we have the following algorithm : 
Algorithm. 
Step 1: The subregion ,ω  the location of the sensor b. 
Choose the function ( ) ( )0 . , . .y α β∈     
Threshold accuracy .ε  
Step 2: Repeat 
  Solve the system (9) to obtain .φ  
  Solve the system (14) to obtain .z  
  Solve the equation (23) to obtain 0 .φ  

Until 
( )( )

2

0 0 2 .n
L

y
ω

φ ε− <  

Step 3: The solution 0φ  corresponds to the initial gradient state to be ob-
served in ( ) ( ). , . .α β    

5. Simulation Results  

Here, we present a numerical example which illustrates the previous algorithm. 
The obtained results are related to the initial gradient state and the sensors 
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location.  
Let’s consider the following one-dimensional system in [ ]0,1Ω =  excited by 

a pointwise sensor  

( ) ( ) [ ]

( ) ( )
( ) ( ) [ ]

2

2

0

, ,
0.01     in   0,

,0                   in   

0, 1, 0             in   0, ,  

y x t y x t
T

t x
y x y x

y t y t T

∂ ∂
= Ω×

∂ ∂ = Ω
 = =


             (26) 

augmented with the output function  

( ) ( ), , .z t y b t b= ∈Ω                      (27) 

The initial gradient state to be reconstructed is  
( ) ( )( )0 2 1 1 .y x x x x= − −  

We take 0.18b =  and 2,T =  with  

( ) ( )1 1 2 2 1 1     and    .
7 2 3 3 30 4

x x x x x xα β     = − − = − −     
     

 

Applying the previous algorithm, we obtain the following results: 
•  For ] [0.15,0.70ω =  

 

 
Figure 1. The estimated initial gradient state 0 .ey  

 
Figure 1 shows that the initial gradient state estimated 0ey  is between ( ).α  

and ( ).β  in ] [0.15,0.70 ,ω =  then the location of the sensor is ( ) ( ). , .α β   - 
gradient strategic in .ω  

The initial gradient state oey  is estimated with a reconstruction error  
2 3

0 2.84 10oey y −− = ×  

•  If the sensor is located in b = 0.32, we obtain the Figure 2. 
Figure 2 is showing that the initial gradient state estimated 0ey  is not 

between ( ).α  and ( ).β  in ] [0.15,0.70 ,ω =  this means that the location of 
the sensor is not ( ) ( ). , .α β   -gradient strategic in .ω  
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Figure 2. The estimated initial gradient state 0 .ey  

 
Here numerically we study the dependence of the gradient reconstruction 

error with respect to the subregion area of .ω  We have the following Table 1. 
 
Table 1. Relation between the subregion and the reconstruction error.  

Subregion The reconstruction error 

]0.15, 0.85[ 13.68 10−×  

]0.2, 0.7[ 11.11 10−×  

]0.35, 0.65[ 26.03 10−×  

]0.10, 0.35[ 22.44 10−×  

]0.20, 0.30[ 36.19 10−×  

 
Table 1 shows how the reconstruction error grows with respect to the subre- 

gion area. 
The following simulation results show the evolution of the observed gradient 

error with respect to the sensor location. 
 

 
Figure 3. Evolution of the estimated gradient error with respect to the sensor location b. 
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Figure 3 shows how the worst locations of the sensor correspond to a great 
error, which corresponds to the non-strategic sensor location.  

6. Conclusion  

In this work, we have considered the problem of regional enlarged observability 
of the gradient for parabolic linear systems. We explored an approach that leads 
to the reconstruction of the initial gradient state between two prescribed 
functions. The obtained results were applied to the head equation in a one- 
dimen- sional case and illustrated by numerical example and simulations. Future 
works aim to extend this notion in Γ  a part of the boundary ∂Ω  of the 
system evolution domain .Ω  
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