
Intelligent Control and Automation, 2016, 7, 129-144
http://www.scirp.org/journal/ica

ISSN Online: 2153-0661
ISSN Print: 2153-0653

DOI: 10.4236/ica.2016.74012 November 15, 2016

Exploring Deep Reinforcement Learning with
Multi Q-Learning

Ethan Duryea, Michael Ganger, Wei Hu

Department of Computer Science, Houghton College, Houghton, USA

Abstract
Q-learning is a popular temporal-difference reinforcement learning algorithm which
often explicitly stores state values using lookup tables. This implementation has been
proven to converge to the optimal solution, but it is often beneficial to use a func-
tion-approximation system, such as deep neural networks, to estimate state values. It
has been previously observed that Q-learning can be unstable when using value func-
tion approximation or when operating in a stochastic environment. This instability
can adversely affect the algorithm’s ability to maximize its returns. In this paper, we
present a new algorithm called Multi Q-learning to attempt to overcome the instabil-
ity seen in Q-learning. We test our algorithm on a 4 × 4 grid-world with different
stochastic reward functions using various deep neural networks and convolutional
networks. Our results show that in most cases, Multi Q-learning outperforms Q-
learning, achieving average returns up to 2.5 times higher than Q-learning and hav-
ing a standard deviation of state values as low as 0.58.

Keywords
Reinforcement Learning, Deep Learning, Multi Q-Learning

1. Introduction

Reinforcement learning is a form of machine learning in which an agent attempts to
learn a policy that maximizes a numeric reward signal [1]. In reinforcement learning,
an agent learns by trial and error and discovers optimal actions through its own expe-
riences. Unlike supervised learning, the agent does not learn by comparing its own ac-
tions to those of an expert; everything it learns is from its own interactions with the en-
vironment. Reinforcement learning attempts to solve optimization problems that are
defined by a Markov Decision Process (MDP) [1]. A Markov Decision Process defines
the behavior of the environment by mathematically defining the environment’s one-

How to cite this paper: Duryea, E., Ganger,
M. and Hu, W. (2016) Exploring Deep Rein-
forcement Learning with Multi Q-Learning.
Intelligent Control and Automation, 7, 129-
144.
http://dx.doi.org/10.4236/ica.2016.74012

Received: August 9, 2016
Accepted: November 12, 2016
Published: November 15, 2016

Copyright © 2016 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/ica
http://dx.doi.org/10.4236/ica.2016.74012
http://www.scirp.org
http://dx.doi.org/10.4236/ica.2016.74012
http://creativecommons.org/licenses/by/4.0/

E. Duryea et al.

130

step dynamics. There are three main categories of reinforcement learning algorithms:
dynamic programming, Monte Carlo, and temporal-difference (TD) [1]. Temporal-
difference learning algorithms are central to the domain of reinforcement learning and
will be the focus of this paper.

Q-learning is one of the most popular TD algorithms [1]. Like many other rein-
forcement learning algorithms, Q-learning is model-free, which means it learns a con-
troller without learning a model. To learn this controller, Q-learning trains an ac-
tion-value function that returns the expected value for taking action a in state s. The
agent will use this function to form a policy which will maximize returns. The Q-value
for a state-action pair is given by the Bellman equation

() ()*, max ,
a

Q s a E r Q s aγ
′

 ′ ′= +  
 (1)

where r is the observed reward after performing a in s, γ is a constant discount factor
0 1γ≤ ≤ , and s′ is the transition state after performing a in s. Q-learning updates its
Q-values by comparing its new estimates to its existing estimates; the new estimate
(target) for Q-learning is

()1 1max ,t ta
r Q s aγ+ ++ (2)

where t is the current time-step during training. Thus, the update for the Q-value of the
state-action pair (),t ts a becomes

() () () ()1 1, , max , ,t t t t t t t ta
Q s a Q s a r Q s a Q s aα γ+ +

 ← + + −  
 (3)

where α is the learning rate.
Q-learning is a critical algorithm in reinforcement learning and has been successfully

applied to a large number of tasks, but it has also been observed that the algorithm will
sometimes overestimate the optimal Q-values. This overestimation occurs when the
reward function of the MDP is stochastic. Double Q-learning is a variation to Q-
learning that addresses this problem [2]. The overestimation is due to Q-learning’s use
of the max operator to select and evaluate the actions of the next state. Double
Q-learning attempts to fix this issue by using two Q functions, AQ and BQ to de-
couple the selection and evaluation of the action in the next state. To accomplish this,
Double Q-learning uses the value of BQ to update AQ , so the update for AQ be-
comes

() () () (), , , argmax , ,A A B A A

a
Q s a Q s a r Q s Q s a Q s aα γ  ′ ′← + + −    

 (4)

The roles of AQ and BQ are switched when updating BQ . Double Q-learning of-
ten develops better value estimates and achieves greater performance compared to
Q-learning on certain stochastic tasks [2].

Often times, the Q-values of Q-learning and Double Q-learning are stored in a loo-
kup table. It has been proven that Q-learning will converge to the optimal value when
the Q-values are stored in this manner [3]. These lookup tables perform well when
faced with an environment that has a finite number of states and actions, but due to the
curse of dimensionality, they do not scale well for MPDs with continuous states and ac-

E. Duryea et al.

131

tions. In the case of a high-dimensional MDP, function approximation is generally used.
Q-learning, as well as other off-policy TD algorithms, can be unstable with linear/
non-linear function approximation [4] [5] [6] [7].

Artificial neural networks are one effective method of function approximation. These
neural networks are mathematical models made up of parameters that are tuned using
back-propagation. Deep learning is a variety of artificial neural networks and has seen
great success in learning from high-dimensional data, specifically image recognition [8],
Natural Language Processing [9], and facial recognition [10]. The artificial neural net-
works used in deep learning have many layers of parameters which can be either fully
connected, convolutional, or recurrent layers [11]. Coupling deep learning with rein-
forcement learning allows agents to find optimal policies for complex, high-dimen-
sional tasks. This has enabled agents to learn using raw pixels as input, which allows for
the agents to learn a variety of tasks without needing to tune parameters or adjust the
state representation for each individual task. Deep neural networks have brought us
closer to the goal of creating a general purpose artificial intelligence.

AlphaGo is a computer program developed by Deep Mind that utilized deep learning
along with a Monte Carlo search tree to play Go [12]. Go is an ancient Chinese game
where the number of possible board configurations is 2.08168199382 × 10170. Without
the use of deep learning AlphaGo would never have been so successful at playing such a
complex game. Apart from AlphaGo, two of most widely-known successes of rein-
forcement learning are TD-gammon; a program that learned how to play backgammon
at a super-human level [13], and DQN; a Q-learning algorithm that used a deep neural
network to achieve a super-human level of play at several Atari 2600 games [14]. Both
of these algorithms demonstrated the benefits of using artificial neural networks as val-
ue functions.

Deep reinforcement learning has also been successfully applied to continuous control
problems. By combining deep neural networks with the actor-critic algorithm [1], the
Deep DPG algorithm was able to learn competitive policies for a variety of physics tasks
including cart-pole swing-up, car driving, legged locomotion, and others [15]. The ad-
vantages of using deep learning with reinforcement learning are great, which is why it is
important to have an algorithm that is capable of remaining stable when using deep
neural networks as value functions.

As mention earlier, the instability of value estimates is one of the biggest challenges
to overcome when using linear/nonlinear value function approximation. To combat
this instability issue, algorithms that use neural networks as their Q functions often
train using (), , ,s a r s′ experiences randomly sampled from an experience replay buf-
fer [15]. By randomly sampling experiences from memory, the behavior distribution is
averaged out over the previous states, there by breaking up the correlation between the
samples and thus reducing the variance of the updates [16]. Double Q-learning also
uses a target Q network to improve stability. The target network is copied from the on-
line Q network after an arbitrary number of steps and is used to give consistent targets
during training. There are additional ways to make the Q network more robust, but
most depend on adjusting parameters.

E. Duryea et al.

132

Instead of using any of the previously mentioned techniques, we attempt to achieve
robust value estimates by introducing a new TD algorithm called Multi Q-learning. Our
algorithm outperforms Q-learning and Double Q-learning in our tests and provides
more stable Q-values throughout the training process. Multi Q-learning also works well
with a diverse range of neural network implementation, making the algorithms benefi-
cial when the ideal network structure is unknown. We find the Multi Q-learning algo-
rithm to be an effective alternative to Q-learning due to its robustness and stability.

2. Methods

In this paper we discuss a new TD algorithm that extends upon Q-learning and Double
Q-learning called Multi Q-learning. The main idea behind this new algorithm comes
from Double Q-learning’s use of two estimators to find the maximum expected value
for each action. Instead of simply using two Q functions: QA and QB, Multi Q-learning
uses an arbitrary number of Q functions to estimate the action values. The algorithm
updates one Q function at each time-step using the average value of all the other Q
functions. So when Multi Q-learning contains a list of n Q-functions, and { }1, 2, ,A n∈ 
then the update for QA becomes

() () ()1
1,

1, , arg max , ,
1

n
A A b A A

t t t t t
ab b A

Q Q s a r Q s Q s a Q s a
n

α γ+
= ≠

  ′ ′= + + −  −   
∑ (5)

The purpose of using multiple Q functions is to better stabilize the target value.
Double Q-learning uncouples the selection and evaluation of an action, creating an un-
biased estimate for the value of that action. But any drastic change in one Q function
will greatly affect the other. Multi Q-learning addresses this problem by using the aver-
age action-value of many Q functions to update a specific Q function. If there is a dras-
tic change in an action-value of one Q function, its effect on the other Q functions will
be minimal. This helps when a substantial amount of noise exists in the environment,
specifically in the environment’s reward function. Our Multi Q-learning algorithm is
presented in Algorithm 1 below.

Algorithm 1. Multi Q-learning.

1: Initialize 1 2 ,, , nQ Q Q

 arbitrarily
2: for episode = 1, M do
3: Initialize s
4: Repeat

5: Choose AQ where { }1,2, ,A n∈  using probability
1
n

6: Choose a from s using policy derived from AQ (e.g., ε-greedy)

7: Take action a, observe ,r s′

8: ()* arg max ,A

a
a Q s a′=

9: () () ()*

1,

1, , ,
1

n
A A b A

b b A

Q Q s a r Q s a Q s a
n

α γ
= ≠

 ′← + + − − 
∑

10: s s′←
11: until𝑠𝑠 is terminal
12: end for

E. Duryea et al.

133

The algorithm for Multi Q-learning is quite similar to Double Q-learning. The key
difference is the use of n Q functions opposed to only two. At each step in a training

episode, we choose a single Q function to update based on the probability 1
n

 so that

each Q function is chosen to be updated with an equal probability. After the training is
finished, the Q-value for each state-action pair becomes the average Q-value of all the Q
functions.

Similarly to Q-learning and Double Q-learning’s extension to DQN and Double
DQN [17], Multi Q-learning can naturally be extended to utilize deep neural networks.
The benefits of deep reinforcement learning have been realized by many studies [11].
Pairing deep neural networks with Multi Q-learning allows for stability while learning
complex relationships between the features of a state.

In the original Double DQN algorithm, the weights of a target network tθ
− were

used to estimate the value of the greedy-policy and update the weights of the online
network tθ . The target network weights were simply copied from the online network
every τ steps. The target used by Double DQN is

()Double DQN
1 1 1, arg max , ; ,t t t t t t

a
Y r Q s Q s aγ θ θ −

+ + +
≡ + 
 
 

 (6)

For the Deep Multi Q-learning algorithm, we created an independent neural network
for each Q. This fully decouples the selection and evaluation of an action, unlike Double
DQN which only was partially decoupled. The target used by the Deep Multi Q-learning
algorithm for a network characterized by weights Aθ where { }1, 2, ,A n∈  is

()Deep Multi Q
1 1 1

1,

1 , argmax , ; ;
1

n
A b

t t t t t t
ab i A

Y r Q s Q s a
n

γ θ θ+ + +
= ≠

≡  
 


+
− ∑ (7)

For our Deep Multi Q-learning algorithm, show in Algorithm 2 below:

Algorithm 2. Deep Multi Q-learning.

1: Initialize 1 1, , ,n nθ θ θ−


 arbitrarily

2: for episode = 1, M do
3: Initialize s
4: Repeat

5: Choose Aθ where { }1,2, ,A n∈  using probability
1
n

6: Choose a from s using policy derived from (), ; AQ s a θ (e.g., ε-greedy)

7: Take action a, observe ,r s′

8: ()* arg max , ; A

a
a Q s a θ′=

9: ()*

1,

1 , ;
1

n
A b

b b A

y r Q s a
n

γ θ
= ≠

′= +
− ∑

10 Train network using , ,A Ay sθ

11: s s′←
12: until𝑠𝑠 is terminal
13: end for

E. Duryea et al.

134

3. Results

In this section, we analyze the performance of Q-learning, Double Q-learning, and
Multi Q-learning. The metrics we focus on are the value estimates, the average returns,
and the success rates. Our results show the robustness of Multi Q-learning when faced
with stochastic rewards and that this robustness increases the performance of the algo-
rithm. We also show the instability of Q-learning and Double Q-learning and how that
instability can negatively affect the overall performance of the algorithm.

A 4 × 4 grid world (Figure 1) was used to evaluate the algorithms. Each state has 4
actions, corresponding to the directions the agent can move. The world has 2 terminal
states, a pit and a goal, which return rewards of −10 and 10 respectively. A wall was
added to the grid which blocks the movement of the agent into that location. If the
agent took an invalid action, such as moving into the boundary or wall, the agent did
not move and simply remained in the same position. The objective of the agent was to
navigate from its starting position to the goal in the shortest amount of moves without
falling into the pit. Every non-terminal state returned an average reward µ with
standard deviation σ . To compare, we show the difference between algorithms for
rewards with deterministic distribution ()| 1p sµ = , and stochastic distribution of two
values () ()| | 0.5p s p sµ σ µ σ+ = − = where { }7,9,11, ,19σ ∈  . We also trained
the algorithms using two different behavior policies. One policy was strictly exploratory
while the other was ε-greedy. For the ε-greedy policy, ε was initialized to 1 and reduce
by 1/100,000 at the end of each episode until ε = 0.1.

The grid world was initialized to the same state at the start of every game. A training
episode ends when the agent reaches a terminal state, whether it is the goal or the pit.
The algorithms trained for 100,000 episodes and at the end of each episode, we ran the
learned policy on the task and recorded the total return and the number of steps taken.
If the agent fell into the pit, or took more than 10 steps, a 0 was record for the number
of steps taken. The results were averaged over every 100 episodes in order to smooth
the graphs.

3.1. Neural Network Results

In the following section, we evaluate our algorithm using a neural network with two
hidden layers for the value function. One-hot encoding was used to represent the state
as a 64 vector where the position of each object corresponded to a 16 element slice of

Figure 1. A 4 × 4 grid world used to test the algorithms discussed in this paper. The grid is initia-
lized in the same state at the start of every epoch. A is the agent, P is the pit, W is the wall, and G
is the goal.

E. Duryea et al.

135

that vector. The vector representation of the state was used as the input to our neural
network. Both hidden layers were fully connected and consisted of 150 rectifier units.
The output layer was a fully connected linear layer with an output for each move. We
used the RMSProp gradient descent algorithm [18] to optimize the network and trained
after each time-step.

Figure 2(a) and Figure 2(b) show the value estimates of both Double Q-learning
and Q-learning. These values estimates are for the initial state of the grid world and
were averaged out over every 100 episodes in order to smooth the graph. Both Double Q-
learning and Q-learning converged toward the true value of 3.1 quickly when the re-
ward function was deterministic (Figure 2(a)). But when faced with a stochastic reward
(7σ =), the value estimates contain a substantial amount of oscillation (Figure 2(b)).
When using the ε-greedy behavior policy, the oscillation of the value estimates was re-

(a) (b)

(c) (d)

Figure 2. Value estimate for Q-learning, Double Q-learning, and Multi Q-learning. (a) The value estimate of the initial state where
1µ = − , 0σ = and the behavior policy is random; (b) Value estimate of the initial state where 1µ = − , 7σ = and the behavior policy

is random; (c) Value estimate of the initial state where 1µ = − , 7σ = and the behavior policy is ε-greedy; (d) Value estimate of 3 Multi
Q-learning algorithms of the initial state where 1µ = − , 7σ = and the behavior policy is random.

E. Duryea et al.

136

duced as the training progressed (Figure 2(c)) due to the decreased amount of explo-
ratory moves taken. Figure 2(d) shows the value estimates of three Multi Q-learning
algorithms using the same environment parameters as Figure 2(c). It is easy to see the
stability in the value estimates of the Multi Q-learning algorithm; the value estimates
quickly converge to the true value of the state, 3.1, and have small amount of oscillation.
In the early stages of learning, Figure 2(c) shows the significant amount of oscillation
in Q-learning’s value estimates. This oscillation is due to the stochastic reward function.
Like Multi Q-learning, Double Q-learning’s value estimate converges quickly to the
true value and remains relatively stable throughout the training process. Unlike Multi
Q-learning, Double Q-learning’s value estimate starts to decline at around 900 episodes.
While this is just a slight oscillation and the value estimate eventually rises back to the
true value, it does show that Multi Q-learning has an advantage over Double Q-learn-
ing in stability.

When the standard deviation of the reward function was increased, the deviation in
the value estimate increased for each algorithm. When using an 𝜀𝜀-greedy behavior pol-
icy, Q-learning and Double Q-learning eventually converged to the true value, but with
more oscillation compared to Multi Q, especially within the early stages of learning.
When actions were completely exploratory, the variance in the value estimates of Q-
learning and Double Q-learning greatly increased which caused both algorithms to
struggle in approximating the true value. Multi Q-learning’s estimates steadily con-
verged toward the true value and eventually stabilized even when faced with a greater
range of rewards (Figure 3(c) and Figure 3(d)). This stability increase can clearly be
seen in the decrease of standard deviation in the value estimates after 50,000 episodes
(Figure 3(e) and Figure 3(f)). The increase of estimators slowed the convergence rate;
this is due to only one network being trained at a time, so with the addition of more es-
timators the less frequent their respective network gets updated.

It is interesting to compare the graphs of Multi Q-learning with those of Double
Q-learning and Q-learning. The graphs in Figure 3(a) and Figure 3(c) were attained
by using the same behavior policy and reward function, the key difference between the
two were the algorithms that were used; Q-learning and Double Q-learning were used
in Figure 3(a) and Multi Q-learning were used in Figure 3(c). The Multi Q-learning
algorithms used in Figure 3(c) are clearly more stable than Double Q-learning and
Q-learning. In Figure 3(a), Double Q-learning suffers from two plummets in value es-
timates between 800 and 1000 episodes. These errors in estimation do not occur in the
Multi Q-learning algorithms tested on the same grid world environment. The bar chart
in Figure 3(e) also shows how little Multi Q-learning deviates after 500 training epi-
sodes compared to Double Q-learning and Q-learning, which both have high amounts
of deviation. Q-learning’s value estimates suffer from a standard deviation of 1.56 and
Double Q-learning’s values estimates have a standard deviation of 2.90. All of the Multi
Q-learning algorithms have value estimates with standard deviations of less than 1.
These graphs show that Multi Q-learning has more stable value estimates that approx-
imate the true value of a specific state more effectively than Double Q-learning and
Q-learning.

E. Duryea et al.

137

(a) (b)

(c) (d)

(e) (f)

Figure 3. Value estimates and their respective standard deviation of Single Q-learning, Double Q-learning, and Multi Q-learning. (a) (b)
Value estimates of Q-learning and Double Q-learning of the initial state where the behavior policy is ε-greedy, 1µ = − and 13,15σ =
for the respective figures. (c) (d) Value estimates of 3 Multi Q-learning algorithms of the initial state where the behavior policy is ε-greedy,

1µ = − , and 13,15σ = for the respective figures. (e) (f) The standard deviation of each algorithm’s value estimate where the behavior
policy for each algorithm was ε-greedy, 1µ = − , and 13,15σ = for the respective figures.

E. Duryea et al.

138

The oscillation in the value estimates had quite an effect on Q-learning and Double
Q-learning’s performance. Figure 4 shows the average return curve of all three algo-
rithms. When the standard deviation of the reward function was 7 and the policy was
exclusively exploratory, Q-learning and Double Q-learning both performed poorly.
Figure 4(b) shows the return curves of each algorithm when using the ε-greedy policy.

(a)

(b)

Figure 4. Average return curves for Q-learning, Double Q-learning, and Multi Q-learning. (a)
The average return curve for each algorithm where the behavior policy was random, 1µ = −
and 7σ = ; (b) The average return curve for each algorithm where the behavior policy was
ε-greedy, 1µ = − and 7σ = .

-2

-1

0

1

2

3

4

5

0 200 400 600 800 1000

A
ve

ra
ge

 R
et

ur
n

Episodes

1 Q 2 Q
3 Q 4 Q
5 Q 6 Q
7 Q 8 Q

-2

-1

0

1

2

3

4

5

0 200 400 600 800 1000

A
ve

ra
ge

 R
et

ur
n

Episodes

1 Q 2 Q

3 Q 4 Q

5 Q 6 Q

7 Q 8 Q

E. Duryea et al.

139

There was no noticeable difference between Double Q and Multi Q while Q-learning
clearly performed the worst. Multi Q-learning performed noticeably better when a
random action was always taken. Q-learning had an average return of 1.1, Double Q’s
average return was 2.4, and all the Multi Q algorithms had average returns above 3.5
when the behavior policy always choose a random action. This demonstrates Multi Q’s
stability regardless its behavior policy.

The high returns are due to Multi Q’s ability to consistently reach the goal through-
out its training. The success rates shown in Table 1 indicate Multi Q-learning per-
formed better than Q-learning and Double Q-learning. For a reward function with

7σ = and a strictly exploratory behavior policy, Q-learning failed to reach the goal
over 50% of the time. Double Q-learning did not fare much better and only succeeded
65.5% of the time, while 8 Q performed very well with a success rate of 94.2%. As stated
before, when using an ε-greedy policy, there was no noticeable difference between
Double Q-learning and Multi Q-learning. But when σ was increased, the success
rates of Q-learning, Double Q-learning, and Multi Q-learning became clearly different.
At the highest reward function deviation we trained on, 19σ = , Q-learning’s success
rate was 60.8%, Double Q-learning’s was 75.8%, and 3 Q-learning’s was 88.1%. We also
see that as σ increased, Multi Q-learning’s success rate decreased at a lower rate than
both Q-learning and Double Q-learning. This shows that Multi Q’s stable value esti-
mates result in more successful agents.

It is also interesting to note the smoothness of the return curve as the number of es-
timators increase. Using 4 or more estimators creates a much smoother curve than us-
ing 1, 2, or even 3. This smoothness can again be attributed to the stability of Multi Q’s
value function approximation. The algorithm steadily converges to the optimal value
estimate and has very little fluctuation.

In addition to the neural networks used above, we used three other network archi-
tectures to approximate each algorithm’s value function. We demonstrate the benefit of
adding convolutional layers to improve value approximation. The first architecture we
used had two fully connected hidden layers, both of size ten. The next network replaced
the first hidden layer with a convolutional layer. This convolutional layer had ten filters

Table 1. Success rates for each algorithm with different reward function standard deviations.

𝜎𝜎
Algorithm

1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Q

7 82.4% 93.3% 94.6% 95.4% 95.3% 93.2% 96.3% 94.6%

9 75.2% 88.3% 94.9% 94.8% 92.7% 93.2% 92.7% 92.6%

11 70.7% 85.9% 92.3% 90.1% 89.1% 92.5% 90.0% 91.4%

13 68.4% 81.3% 87.6% 93.4% 92.6% 93.1% 89.8% 91.0%

15 57.9% 81.7% 85.6% 87.3% 87.3% 90.9% 87.5% 84.7%

17 65.8% 77.9% 87.0% 83.7% 85.6% 87.5% 85.8% 81.2%

19 60.8% 75.8% 88.1% 86.0% 84.0% 80.5% 80.1% 88.0%

E. Duryea et al.

140

all with a length of five. The addition of a convolutional layer slightly improved upon
the network’s value estimates, leading to higher average returns. The final neural net-
work had three hidden layers. These hidden layers were all fully connected and had a
size of ten. Having three hidden layers did not improve upon any of the algorithms’ av-
erage returns. In fact, the addition of another layer actually performed worse than hav-
ing only two hidden layers. Figure 5 shows the comparison of the different network
architectures’ average returns.

The average returns of the algorithms demonstrate an important advantage Multi
Q-learning has over both Double Q-learning and Q-learning. The average returns of
both Double Q-learning and Q-learning decreased steadily with the different neural
network structures used. In our grid world environment, these two algorithms per-
formed the best with two fully connected layers. Using this structure, Q-learning had an
average return of 0.59 and Double Q-learning had an average return of 3.19. The algo-
rithms’ performances dropped when a network structure of one convolutional layer
and one fully connected layer was used. In this case, Q-learning had an average return
of 0.52 and Double Q-learning had an average return of 2.79. The algorithms perform
the worst when the network structure was made up of three fully connected layers.
With this structure, Q-learning’s average return was 0.02 and Double Q-learning’s av-
erage return was 1.86. The decrease in average returns of Q-learning and Double
Q-learning is in contrast Multi Q-learning. The Multi Q-learning algorithms did not
see any major decrease in average returns when faced with different neural networks.
This is a clear advantage of Multi Q-learning compared to Double Q-learning and Q-
learning. The Multi Q algorithm is not as easily effected by the type of network struc-
ture or function approximator used to estimate the value function.

To further demonstrate the robustness of the Multi Q-learning algorithm, we show
the average return of the algorithms with neural networks of increasing depth. Figure 6

Figure 5. The average return of each algorithm while using different neural network structures.
Four different network structures where use, two of which had convolutional layers. The first
network had 2 fully connected layers with 10 rectified linear units in each. The second network
contained a convolutional layer with 10 filters with lengths of 5. The final neural network had
three fully connected hidden layers.

E. Duryea et al.

141

Figure 6. The average return of each algorithm using a neural network to approximate the value
function. Each layer of the neural network contains 85 rectified linear units and increases in
depth. This graph shows the stability of the Multi Q-learning algorithm regardless of the depth of
the network.

shows the average returns of each algorithm as the number of hidden layers in the net-
work increased. The behavior policy during these tests was exclusively random, so the
agent always took a random action throughout training. The performance of both
Q-learning and Double Q-learning declined as the number of layers in the network in-
creased. Contrarily, the performance of 6 Q, 7 Q and 8 Q remained relatively stable re-
gardless of the number of layers. The returns for 6 Q, 7 Q, and 8 Q began to decrease
once the network reached a depth of 5 hidden layers. This poor performance can likely
be attributed to the vanishing gradient problem with neural networks. This again shows
the stability and robustness of the Multi Q-learning algorithm; despite the depth of the
network, Multi Q-learning is still able to solve the problem and achieve high returns.

3.2. Tabular Results

We also ran the Multi Q-learning algorithm using Q-tables in addition to neural net-
works. The results of using Q-tables were less drastic then those found with the neural
networks, but we did find a slight advantage of Multi Q-learning. In the early stages of
training, Multi Q-learning appeared to have developed better policies than Q-learning
and Double Q-learning. Figure 7(a) shows the average return of each algorithm after
2000 episodes. At 2000 episodes, Q-learning had an average return of −1, meaning that
it has failed to reach the goal even once up to this point. Double Q-learning did much
better with an average return of 2.2. The performance of 5 Q was the best, having an
average return of 3.6 at 2000 episodes.

4. Conclusion

The paper presents and evaluates a new temporal-difference learning algorithm, Multi
Q-learning. Multi Q-learning attempts to increase value estimate stability by using
multiple action-value function approximations. We tested our algorithm on a grid
world environment and have shown the stability of Multi Q-learning compared to

E. Duryea et al.

142

(a)

(b)

Figure 7. The average return of Q-learning, Double Q-learning, and Multi Q-learning when us-
ing Q-tables. (a) Average return after 2000 episodes of each algorithm using Q-tables. In this ex-
periment 1, 11µ σ= − = and the behavior policy was random; (b) Average return curves of each
algorithm from the same experiment as (a).

Q-learning. In our tests, Multi Q-learning achieved better average returns compared to
Q-learning, reaching returns up to 2.6 times higher than Q-learning. We also ran Multi
Q-learning on various neural network structures, including deep, shallow, and convo-
lutional networks, demonstrating the algorithms ability to remain effective despite its
implementation. While Double Q-learning and Q-learning performance decreased with
ineffective implementation, Multi Q-learning was still able to retain good returns. We
see Multi Q-learning being most useful when the dynamics of a reinforcement learning
task are not well known. Multi Q-learning’s improved stability over Q-learning makes

-1

0

1

2

3

4

1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Q

A
ve

ra
ge

 R
et

ur
n

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50

A
ve

ra
ge

 R
et

ru
n

Episodes x100

1 Q 2 Q 3 Q

4 Q 5 Q 6 Q

7 Q 8 Q

E. Duryea et al.

143

it a more generalize algorithm, being able to solve a variety of tasks without the need to
tune its parameters.

Acknowledgements

We would like to thank the Summer Research Institute at Houghton College for pro-
viding financial support for this study.

References
[1] Sutton, R.S. and Barto, A.G. (1998) Reinforcement Learning: An Introduction, Vol. 1. MIT

Press, Cambridge.

[2] Hasselt, H.V. (2010) Double Q-Learning. Advances in Neural Information Processing Sys-
tems, 2613-2621. http://papers.nips.cc/paper/3964-double-q-learning

[3] Watkins, C.J.C.H. and Dayan, P. (1992) Q-Learning. Machine Learning, 8, 279-292.
http://dx.doi.org/10.1007/BF00992698

[4] Baird, L. (1995) Residual Algorithms: Reinforcement Learning with Function Approxima-
tion. Proceedings of the Twelfth International Conference on Machine Learning, Tahoe
City, California, 9-12 July 1995, 30-37.

[5] Tsitsiklis, J.N. and Van Roy, B. (1997) An Analysis of Temporal-Difference Learning with
Function Approximation. IEEE Transactions on Automatic Control, 42, 674-690.
http://dx.doi.org/10.1109/9.580874

[6] Maei, H.R., et al. (2011) Gradient Temporal-Difference Learning Algorithms.
http://incompleteideas.net/rlai609/slides/gradient%20TD%20slides.pdf

[7] Sutton, R.S., Mahmood, A.R. and White, M. (2015) An Emphatic Approach to the Problem
of Off-Policy Temporal-Difference Learning. The Journal of Machine Learning Research,
17, 1-29.

[8] Simonyan, K. and Zisserman, A. (2014) Very Deep Convolutional Networks for Large-Scale
Image Recognition. arXiv preprint arXiv:1409.1556

[9] Collobert, R. and Weston, J. (2008) A Unified Architecture for Natural Language
Processing: Deep Neural Networks with Multitask Learning. Proceedings of the 25th Inter-
national Conference on Machine Learning, Helsinki, 5-9 July 2008, 160-167.

[10] Sun, Y., Wang, X. and Tang, X. (2014) Deep Learning Face Representation from Predicting
10,000 Classes. Proceedings of the IEEE Conference on Computer Vision and Pattern Rec-
ognition, Columbus, 23-28 June 2014, 1891-1898. http://dx.doi.org/10.1109/9.580874

[11] LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep Learning. Nature, 521, 436-444.
http://dx.doi.org/10.1038/nature14539

[12] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schritt-
wieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016) Mastering the
Game of Go with Deep Neural Networks and Tree Search. Nature, 529, 484-489.
http://dx.doi.org/10.1038/nature16961

[13] Tesauro, G. (1995) Temporal Difference Learning and TD-Gammon. Communications of
the ACM, 38, 58-68. http://dx.doi.org/10.1145/203330.203343

[14] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A.,
Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al. (2015) Human-Level Control through
Deep Reinforcement Learning. Nature, 518, 529-533.
http://dx.doi.org/10.1038/nature14236

http://papers.nips.cc/paper/3964-double-q-learning
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1109/9.580874
http://incompleteideas.net/rlai609/slides/gradient%20TD%20slides.pdf
http://dx.doi.org/10.1109/9.580874
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1145/203330.203343
http://dx.doi.org/10.1038/nature14236

E. Duryea et al.

144

[15] Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D. and Wierstra,
D. (2015) Continuous Control with Deep Reinforcement Learning.
arXiv preprint arXiv:1509.02971

[16] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. and Ried-
miller, M. (2013) Playing Atari with Deep Reinforcement Learning.
arXiv preprint arXiv:1312.5602

[17] Van Hasselt, H., Guez, A. and Silver, D. (2015) Deep Reinforcement Learning with Double
Q-Learning. arXiv:1509.06461 [cs.LG]

[18] Tieleman, T. and Hinton, G. (2012) Lecture 6.5-rmsprop: Divide the Gradient by a Running
Average of Its Recent Magnitude. COURSERA: Neural Networks for Machine Learning, 4,
26-31.

Submit or recommend next manuscript to SCIRP and we will provide best service
for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact ica@scirp.org

http://papersubmission.scirp.org/
mailto:ica@scirp.org

	Exploring Deep Reinforcement Learning with Multi Q-Learning
	Abstract
	Keywords
	1. Introduction
	2. Methods
	3. Results
	3.1. Neural Network Results
	3.2. Tabular Results

	4. Conclusion
	Acknowledgements
	References

