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Abstract

The aim of this work is to study the notion of the gradient observability on a subregion @ of the
evolution domain Q for a class of semilinear hyperbolic systems. We show, under some hypo-
thesis, that the gradient reconstruction is achieved following sectorial approach combined with
fixed point techniques. The obtained results lead to an algorithm which can be implemented nu-
merically.
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1. Introduction

The regional observability is one of the most important notions of system theory, and it consists in reconstruct-
ing the initials conditions (initial state and initial speed) for hyperbolic systems only in a subregion @ of the
system evolution domain €. This concept was largely developed (see [1] [2]) for parabolic systems and for
hyperbolic systems (see [3] [4]). Subsequently, the concept of regional observability was extended to the gra-
dient observability for parabolic systems (see [5] [6]) and for hyperbolic systems (sees [7]), which consist in re-
constructing directly the gradient of the initial conditions only in a critical subregion interior @ without the
knowledge of the initial conditions. This concept finds its application in many real world problems.

The aim of this paper is to study the regional gradient observability of an important class of semilinear
hyperbolic systems. We will focus our attention on the case where the dynamic of the system is a linear operator
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and sectorial. This approach was examined for semilinear parabolic systems to reconstruct the initial gradient
state ([8]) and for semilinear hyperbolic systems to reconstruct the initial state and the initial speed. For obser-
vability problem when one is confronted to the question of reconstructing the gradient state and the gradient
speed, it is important to take into account the effects of non-linearity. For example, approximate controllability
of semilinear system can be obtained when the non-linearity satisfies some conditions (see [9] [10]), and the
used techniques combine a variational approach to controllability problem for linear equation and fixed point
method. The techniques are also based on linear infinite dimensional observability theory together with a variety
of fixed point theorems.

The plan of the paper is as follows: Section 2 is devoted to the presentation of the problem of regional gra-
dient observability of the considered system. Section 3 concerns the sectorial approach. Numerical approach is
developed in the last section.

2. Problem Statement

Let Q be an open bounded subset of IR"(n=1,2,3).
For T >0, we denote Q= Qx]O,T[, Y= 8Q><]0,T[ and we consider the following semilinear hyperbolic
system

2

%(x,t)=Ay(x,t)+Ny(x,t) inQ

y(x.0)=y°(x), %(X,O):yl(x) inQ 1)
y(&1)=0 onx

where A4 is a second order elliptic linear operator, symmetric generating a strongly continuous semigroup
(S(t))t>0 and A isanonlinear operator assumed to be locally Lipshitzian.

Let (y%) e F =H;(Q)xH;(Q) denotes the solution of system (1) (see [11]) and the function of mea-

surements is given by the output function
z2(x,t)=Cy(xt) @

where C is a linear operator from F to the space IRY, and depends on the number and the nature of the
considered sensors.

Let @, a basis of eigenfunctions of the operator .4, with Dirichlet conditions and the associated eigenva-
lues A, of multiplicity r, .

m

Forany (y,,Y,)eE=L"(Q)xL*(Q) thesemigroup (S(t))_, isgiven by

ZZ[(yl, m]>cosrt+r<y2, mj>sm\/7t]<l>mJ

s = n ‘
(yJ ZZ[—M(yp@mj)Sm At +(¥5, @y Y e0s =2 t] 0, ()

m j=1

Without loss of generality we note: y(t):=y(x;t) and we associate to the system (1) the linear system

D-ay®) o
¥(0)=y". 2(0)=y" in© @
y(t)=0 onx




A. Khazari, A. Boutoulout

The system (3) admits a unique solution y e C(0;T;Hg (Q))NCH(0;T; L (Q2)) (see [12]).

Let denote Vz(y,%j, A(YY,)=(Ya0 Ay,) for all (y,,y,)eD(A)=(H;(Q)NH?(Q))xL*(Q) ,

_ 0
N (Y., ¥,)=(0,My,) and ¥° =[y°,%: ylj .
The system (1) may be written as

Y 0)=A7(t)+ Ny(t) o<t<T

ot (4)
y(0)=V°
and the system (3) is equivalent to
oy —
—(t)=Ay/(t O<t<T
XO=2() o<t o
y(0)=V°
Systems (4) and (5) are augmented with the output function
7(t)=Cy(t) with C=(C,0) (6)
The system (1) can be interpreted in the mild sense as follows
y(1)=S(t)y° +[,S(t-2)N'y(z)dz 7)

and the output equation can be expressed by
Z(t)=CS(t)y° =K (t)¥°, te]0,T[
Let K be the observation operator defined by
K:F—>0=L(0T;IR)xL*(0,T;IR)
7—CS()Z
which is linear and bounded with the adjoint K"
Consider the operator V given by

VI HE(Q)x HI (@) - (L2(Q)) x(L2 ()
(Y1’ Y2) = §(Y1' yz)z(VY1*vy2)
where
ViHE(Q) - (L (Q))
oy oy

V" is the adjoint of V. 3

The initial condition y° and Vy° its gradient are assumed to be unknown.

For @< Q anopen subregion of € and of positive Lebesgue measure, let 7, be the restriction operator
defined by

Z, (2 (Q) (2 (@) - (12 (@) x(L2 (o))

(yl' yZ) = Zw(yll yZ):(lwyl’l(uyZ)

()

where
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2o (2(Q)) - (2(0)

Xl
;?w (resp. ;(;) is the adjoint of y_, (resp. yx,). and we consider the operator
H=7zVK
Let Vy® =(Vy°,Vy') be the gradient of the initial condition ¥° =(y°,y"), we have
_ V) inw
vy’ = {_10 _ ®)
Y, inQ\w
0 0
where y; :[ f,%= yi], V2 =[y2,%= yéj and
vy - Yy ina; vy Y i-na)
ys inQ\w y, inQ\w
Definition 1.

The System (3)-(2) is said to be exactly (respectively. weakly) G -observable in o if Im(l—_|) =(L2 (a)))n
(respectively. Im(H)= (L2 (a)))

Definition 2.

The semilinear system (1) augmented with output (2) is said to be gradient observable in @ (G -observable
in®) if we can reconstruct the gradient of its state and the gradient of its speed in a subregion @ of Q at
any time t.

The study of regional gradient observability leads to solving the following problem:

Problem 1.

Given the semilinear system (1) and output (2) on [0,T], is it possible to reconstruct Vy° :(VyO,Vyl)
which is the gradient of initial state and the gradient of initial speed of (1) in w ?

Let’s consider X' =L*(0,T;E) and we define, for te]0,T[, the operator L(.): X - X by

'—(I)Y(-)=£S_(t—s)7(s)ds, vte]o,T[ and 7:&}

2

n

then we have the following results:

Proposition 1.

If the system (3) is weakly G -observable, then the solution V() of the system (6) is a fixed point of the
mapping ®(.): X - X defined by:

(1)(v())=St)V'z, [I-T*]T (f(.)—CL(.)/\_/V(.)— K() 9§)+ S92+ LN V()

where [H_*JT is the pseudo inverse of the operator H™ and ¥> € F such that
¥ =V E 5
where S is the residual part.
Proof B _
_ The solution of the system (4) can be expressed by ¥ (t)=S(t)y°+L(t)N¥(.) thus,
Cy(t)=CS(t)y° +CL(t)N'¥(.) sowe have

R()¥" =7-CL)AY()

where 7 is the output function which allows information about the considered system. _

Using the second decomposition of initial condition we obtain K(.)(ﬁ*;?;yf +95 ) =Z-CL()NV whichis
equivalentto H'y) +K(.)y; =Z-CL()NV.

If the linear part of the system (1) is weakly G -observable in @, then we have

()
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v =[A"] (7-CLO)NY-K()5)
where [I—T*T = [I—TI—T*T H s the pseudo inverse of the operator H”*
Finally, solution of problem of G -observability in « is a fixed point of the following function: CD() XX
define by:
(D(t)(y(.)) = §(t)§*;7; [H_*}T (7(.)—5L(.)]\77(.)— K(.) 9§)+ S_(t) ¥o + L(t)J\_/V(.) =y(t) 9)

Proposition 2.
If ImH" isclosedin L2 (O,T; IRq) and if the function (9) has a unique fixed point y(.) such that

[7()-CL()NY()-K ()92 e ImH" (10)

then Vy(0)|, =Vy°|, istheinitial gradient to be observed in @ of system (4).
Proof
Let y(.) afixed point of equation (9), then

Cy()= [H*][H*]T (7(.)—C_L(.)/\77(.)— K(.)9§)+5§(t)9§ +CL(NY()=Y(t)
)

But the operator [H*] I-TT is the orthogonal projection of LZ(O,T;IR“I in ImH" and ¥(.) satisfy
condition (10), then Cy(.)=Z(.).

Finally 9y (0)], =9y°|, =% =[A"] (z()-CLONV()-K()9?)
which is the initial gradient to be observed in @ of system (4).

3. Sectorial Approach

In this section, we study Problem 1 under some supplementary hypothesis on .4 and the nonlinear operator
N .

With the same notations as in the previous case, we reconsider the semilinear system described by the equa-
tions (4) and (6) where one supposed that the operator A generates an analytic semigroup (S ('[))l>0 in the
state space E. -

Let’s consider A =.A+al such that Re(a(fll)) >8>0 with a isa positive real number and Re(a(ﬁl))

denotes the real part of spectrum of ﬁi Then for 0<a <1, we define the fractional power Zi “ asa closed
operator with domain E“ = D(Af‘) which is a dense Banach space on E endowed with the graph norm

e =4O,

.|
and consider V = Im(;?ﬂﬁlz*).

We consider Problem 1 in V endowed with the norm

-k =17l &
We have
||§(t)||E(E,E"’) <ctexp(a—a)t=g,(t)
where c¢ is a constant. For more details, see ([2] [6] [13])
For r,s>1, assume that
11

—+-—=1
r s (12)

g el (O,T)
And the operator N (O,T; E® ) -L (O,T; E) is well defined and satisfies the following conditions:
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|55, 10, << (LYY

N(0)=0 Wlth k:IR*xIR* — IR* (13)
suchthat  lim k(6,,6,)=0

(61,6,)—(0,0)

vx,yel (O,T; E“)

L'(O,T;E“)

Those hypothesis are verified by much important class of semi linear hyperbolic systems. For example the
equation governing the flow of neutrons in a nuclear reactor

D)k Y (1)-ay(1)=-y* (1)
y(1)=0 in[0,1]
0

y(0)=

which y(t)e?([0,1]),0<t<T.,k,a,b>0.
The operators A and A corresponding are

A:Hs ([0.2)NH* ([0.1]) > L*([0.2]) A2 H3([01]) > L ([0.1])
L1y a Lyl
Yok Y
The assumption is satisfied with r=2, s=1 and k(6,,6,)= b(0 +6,).

Various examples are given and discussed in ([13] [14]).

We show that exists a set of admissible initial gradient state and admissible initial gradient speed, admissible
in the sense that system (3) be weakly G -observable.

Let’s consider ¢(y7,.): L' (0,T;E“)— L' (0,T;E) given by

o(¥.9)1)=S(OVZ, % +S(t)J5 +L()NY te[0T]

where V. isthe restrictionin @ and V2 isthe residual partin Q\ of the initial gradient condition vyl.
We assume that

||§(t)§*;7; <g,(t) with g,eLl*(0,T) (14

£(v.e7)

then we have the following result.
Proposition 3.
Suppose that system (3) is weakly G -observable in @, and (12), (13) and (14) satisfied, then the following
assertion hold:
e There exist a, >0 and m>0 such that for all ¥’ eB(0,m)cV the function ¢(71°,.) has a unique
fixed point y intheball B(0,a)c L’ (O,T; E") solution of the system (4).
e Thereexist m=m(a,) and m =m(a,) such that "92”5 <m, the mapping f is lipschitzian where
f:B(0,m)—>B(0,a)
710 =Yy
Proof

1
e Since (al,aii)rﬂ(o,o)k(gl"gz)z 0, then there exists &, €]0,1] suchthat o =T° ||91||u(o,r) afaggal k(6,,6,)<1 and
we have «; €]0,1[.

Let us consider y and X in B(0,a)c L'(0,T;E*) and ¥ eV we have

1

g dt]r
E

lo(3.)-0(% %) ~[LONT =N @"L(t)(ﬁy_m)

()

L’(o,T;E”)
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where

o
o
T — J— —
S_(["S(t—r)(NV(r)—NY(T))” dr
T — p— —
Sl"S (t—r " " NV NY(T))”E dr
T —
<0l o
Using Holder’s inequality we take “L (t)( V—I\_IY) <||g1 || o) ||I\_17 Nx] Sorigy 2nd using (13), we
have
) 1
“(0(71017)_§0(71on) L'(O,T;E") S[,([”gl (t) rL’(o,T) "NV_ NY rLS(O,T;E) dtJ
1 _ _
<T "gl (t)"L’(O,T) "N y-N 7"9(0:;5)

1
<Tr ||91||L 0T) k("V" "Y”)HV—Y”L 0T;E* )

ST 1o, 00 K(TIRDIT =Rl

<o "y _X"L 0,T;E® )

On the other hand, we have

lo(3.7)], e || ()92 + LONT o
450) MOTE 1 SIOLA P (ROL T P
1 1 1
(flsw ztL a [ [lssl, o] -{flLom o]
0 0 0
but we have

SOV Y. <FOVE

ey 1%, = 22 O[],

and

[5®)92].. <IS Ol [92], <o O]52],

and using Holder’s inequality we obtain
— | P N1 —
|08, - I O R

S"glt" (01) " y" OTE)

<||gl t " (0,7) "y" 0)||y||L 0T;E¥

<15 Ol 2O MWl

.
jg(t—r r)dr
0
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then we have

SO )~ OS]

o] <[ fercol m]<kz||mn y)

and
1 1

509 r ey ~{[I5052L o] <( Jor el ] <ot 5

RCLY R OL T |

1
<T! ”gl (t)"L’(o,T) iga? k(@ O)"y"U(O’T;EQ)

or

<a, ||7||L(0,T;E")

1
where a, =T |g, (t)"Lr(O,T) supk(6,0)
Finally <3

e (32.7)

Lr(O,T;E”) < "g2 (t)"L'(o,T) "710 |L +||g1 (t)"L'(o,T) " 93 "E T ”7"L'(0,T;E“)

a(l-a,)- ")73 ||E ”91 (t)"U(o,T)
"92 (t)"Lf(o,T)

a(l-a,)

Let’s consider m=m(a, )= W
1 L"(0,T)

and m =m(a)= l1-a,>0,

then m>0.
It is sufficient to take "92”5 <m, and ||Vl°||v <m,thenforall yeB(0,a) wehave gp(Vf,y) €B(0,a).

Let y, and X, be the solution of system (4) corresponding respectively to the initial gradient in «, we
suppose that we have the same residual part (Vf = YZO) ,thenfor v}, %’ e B(O, m) we have

50) 16 g =l 5) 000 15

U (oTiE”)

L (o,T E® )

but we have

LSRR, ) ST b [N N5,

0T;E” L*(0.T;E)

svngl W K (00T e

”Lr(O,T)
<o "7 - Y"L’(O,T;E‘”)

and we deduce that

o selor o
MC LY I A (15)

()
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Finally f is lipschitzianin B(0,m).

Remark 1.

The given results show that there exists a set of admissible gradient initial state. If the gradient initial state is
taken in B(0,m), with a bounded residual part then the system (4) has only one solution in B(0,a, ).

Here we show that if measurements are in B(O, p) , with  p is suitably chosen then the gradient initial state
can be obtained as a solution of a fixed point problem.

Let us consider the mapping

0.(2.%)=(KV'Z) (z-CS ()95 -CL()NK (v7)) (16)
and assume that vy, eV, CL )Nf( ) (IZV;?;).
Then we have the foIIowmg result

Proposition 4.
Assume that

3¢, >0 suchthat [CL(.)y|, <c |V vy e L*(0,T;E) (17)

L°(0,T;E)
and 3c, >0 such that ||CS ()7"O <c,|y]. veE (18)

and if the linear system(3)is weakly G -observable in @ and (13) holds, then there exists a, >0 and
p=p(a,)>0, such that for all ZeB(0,p)c=O, the function (16) admit a unique fixed point in B(0,m)
which corresponds to the gradient initial condition 73 observed in @ . Furthermore, the function

h:B(0, ) > B(0,m)
7y,
is lipschitzian.

Proof
Let us consider y; and X’ in B(0,m)cV, using (11), (13), (15) and (17) we have

o (z.%) - (z.%0)], = H( KV'zZ,)' (CL()(NF (3°)- N (71°)))‘L

= cl”ﬁf (_10)_ N (710) L°(0,T;E)
el 5 (5
or (q,aii)rﬂ(o,mk(el'g?):o’ then there exists a, >0 such that «, =clafaL:EazK(¢91,92)"gﬂ;ﬁl'T)<1 and we

have a, €]0,1[. Then we obtain ”% (Z%)-o (% )”V <a, ||71° -x. |L :
On the other hand, using the inequality (13), (17) and (18), we have

|, =J7-CS ()95 -CL()NE (7).
<|zl, +[CS () 93], + L ()NF (72

“401 (7’ 710)

<|z ||O+c2||y2| +cl”Nf V)

L°(0,T;E)

o)l (3)

< "7"6 +C, ”)A/z "E +Ca, zgﬁp K (6’, 0)

<|| ||0+C2||y2|| +ck (“ Y1

Lr(O,T;E"’)
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Let’s consider p=p(a,)=m-c, "92”5 —c,a,supk(6,0)
0<ay

In order to have ¢, (7, 710) e B(0,m), it suffices to consider |Z], <p.
For 7,7, € B(0,p), we have
h(z)-h(Z) =V -V, = 491(2 yll) ( 2 ylZ) ¢1(71,h(71))—¢71(72,h(f2))
which gives
In(z)-h(z)], <||¢’1 z7.h(z))-0(z.(2) ”v +||¢’1 Z.h(Z))-o (TZIh(Tz)NL
<ay|h(z)-h(z, |L/ +|z. -7,

then

Ih(z)-h(z, <,

which shows that h is Lipschitzian.

25

4. Numerical Approach
4.1. Numerical Approach

We show the existence of a sequence of the initial gradient state and initial gradient speed which converges re-
spectively to the regional initial gradient states and initial gradient speed to be observed in .

Proposition 5.

We suppose that the hypothesis of Proposition 4 are verified, then for 7 B(O,p) , the sequence of the initial
gradient condition defined in B(0,m)cV by

Y/1O,o =0

. -\ (= =e/\~0 ~ S o

yfn+1 = (H ) (Z _CS () yg _CL() Nf (yfn ))
converges to 710 the regional initial gradient condition (the regional initial gradient state ylO and the regional
initial gradient speed ;) to be observed in @, where 92 is the residual part of the initial gradient condition
in Q\w.

Proof
We have,

<0 <0
Yine1 — Yin

v H?’l (71 ylo,ml) A (7’ ylo,n—l)‘L/
L/ = a§| ylo,n—l - ylo,n—z
~¥io], = ez,
or Iirpwa3 =0, then thereexists n,eIN VvnelN, Vpxn,
[N A A Y P i |
+|vfn+p 2= Vonepall, o H | Fope = 00,

S AR P A L R it

~at s, St et st (2 < etfinl (2
1= 3

Then (yfn )nzo is a Cauchy sequence on V and its convergence.

~0 0
yl,n - yl,n—l

S-“Sa; 0

Sa3|

!

We consider ¥, = f(y7,) and Z,=CY, with
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=*—* 0

Y, =S()V'Z, %0 +S () Vs +L(.)Nf (yfn)
Z, = A'y2, +CS () 93+ CL()NF (%5, )
We have (H_*)T (Z-7,) = Yna — Yon» then
7-7,=7-CS ()92 ~CL()NF (38,)—H"32, =H" (5, - 1)

7= =580 =20}, <[5k,

which shows that the sequence Z, convergesto 7 in 0.
On the other hand, we have

v :”h(f)_h(zn)

Then yfn converges to the regional initial gradient 710 to be observed in @ .

1 - _
L/ < 1— ”Z _Zn"6

-0 ~0
|| Y — yl,n
a3

4.2. Algorithm
Now let’s consider the sequence r,,, =7 —CS(.)¥; —CL(.)Nf (yfn) , then we have
Vo :(H_*)T . and z,=H'y +Z-r,
Thus we obtain the following algorithm;

Algorithm:

1. Given the initial condition sz(yo,yl),the region @, Thedomain D and the function of distribution f
and the accuracy threshold &, 1, =7 -CS|(.) 95 —CL()Nf (¥5,).

2. Repeat

a) v, =(I—_|*)T r

) ) _ 55,0+ 45,0

S*—* -0

Vn (O) =V Zwyl,n
¢) z,=Cy,
Until [2-7,[, <e
3. yfn which corresponds to the initial gradient condition to observed V. in .
Else r,,=r,+Z-r,, andgo to step 2.

5. Conclusion

The question of the regional gradient observability for semilinear hyperbolic systems was discussed and solved
using sectorial approach, which uses sectorial properties of dynamical operators, the fixed point techniques and
the properties of the linear part of the considered system. The obtained results are related to the considered sub-
region and the sensor location. Many questions remain open, such as the case of the regional boundary gradient
observability of semilinear systems using Hilbert Uniqueness Method (HUM) and using the sectorial approach.
These questions are still under consideration and the results will appear in a separate paper.
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