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Abstract 
Many methods exist for cardiac and neural signal feature extraction and identification, but a pub-
lished method for validation of therapeutic medical devices by computer analysis of their signals 
can be seldom found. This paper presents a simple, fast algorithm to extract the electrical stimula-
tion including pulse width, exponential decay, and time between pulses from neurostimulators, 
pacemakers, implantable cardioverter defibrillators (ICDs), and transcutaneous electric nerve 
stimulators (TENS). An experimental validation demonstrated the automated analysis provide 
means to expedite device validation testing. In the future studies, the algorithm should be im-
proved for its robustness and checked for analysis of signals with lower SNR. A figure of merit is 
provided to expedite electromagnetic compatibility (EMC) tests on the devices to ensure proper 
operation in the presence of electromagnetic emitters. 
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1. Introduction 
The emergence of many therapeutic medical devices such as pacemakers and neurostimulators brings with it a 
need to automate a test to monitor the output signal of the medical device for any anomalies. It is important to 
confirm that each device manufactured is working properly before packaging it and having it enter the market. 
By the automation of monitoring of the signal from the therapeutic device this validation testing can be expe-
dited. A figure of merit that includes a score that is based on deformations in the pulses―such as change in pulse 
width, inter-pulse time, and shape of the waveform―and missing pulses can ensure that each manufactured de-
vice is operating properly.  
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Much work has been done to separate cardiac signals into their respective parts from long ambulatory signals 
[1]-[3]. In cardiac signal detection there is a focus to develop algorithms that can quickly analyze the data. Jo-
hannesson and Paleonetti [1] use the U3 algorithm [2] [4] to mark QRS complexes as acceptable or unacceptable. 
An automated method using this algorithm was shown to score these complexes comparable to that of an ob-
server monitoring the QRS signal. U.S. Patent 7970472 was the most recent source that was found in detecting a 
pacing system malfunction from a pacemaker, and looked into the cause of the detected malfunction, and dis-
playing the detected malfunction along with its cause [5]. [3] [6] published by the same author of the patent uses 
a finite state machine developed to identify pulses by their unique morphology and reject noise artifacts by 
measuring and qualifying the leading edge, trailing edge, pulse amplitude, pulse width, and a count of the sig-
nificant slopes that surround the pacemaker pulse. 

In this paper, the U3 function is used to analyze outputs from selected therapeutic devices and compare them 
to a baseline measurement for detection of anomalies. The output signal from pacemakers, implantable cardi-
overter defibrillators (ICDs), and neurostimulators produce pulses that leave no net charge from the stimulation 
and can be modeled with exponential curves during the duration of a pulse. This work was specifically moti-
vated to automate electromagnetic compatibility (EMC) tests for detection of anomalies within the signal of a 
therapeutic device. For this paper, the U3 algorithm is used to determine any change in pulse widths, exponential 
decays, and inter-pulse times of pulses within a 15 second window of the signal measured while a therapeutic 
device is exposed to electromagnetic fields. Pulse width is defined as the time the pulse is above the noise level, 
while inter-pulse time is the time from the trailing edge of the current pulse to the leading edge of the next pulse. 
The exponential decay is the decay factor that is extrapolated by fitting an exponential function to a single pulse 
within the signal. The rest of this paper is organized as follows: Section 2 describes the background behind the 
U3 function and its use in the detection of specific features of pulses from a therapeutic device; Section 3 
presents an experimental setup to test these therapeutic devices and the results of using the automated test setup; 
and the conclusions are in Section 4. 

2. Mathematical Formulation 
2.1. U3 Function 
The U3 function is a non-linear operator that is a two-sided difference equation. It can be characterized by two 
parameters: 1) the lateral size window (k)―this is the spacing between the samples whose difference is found, 
and 2) the size of its central window (N)―which is the spacing between the two side differences that were found 
from the lateral size window. A diagram of the samples of interest that are retrieved from the input signal to use 
in the U3 function is shown in Figure 1, where i is the index of the input signal, N = 2m is the size of the central 
window for given m ≥ 2, and k is the size of the lateral window, where 1 2k N≤ ≤ .  

After the samples of interest are retrieved from the input signal using the block diagram in Figure 1, the U3 
functionat sample i is given in Equation (1) for an input signal x(n). 

( )( )
2 2

3
2 2 2 2
N N N NU x i x i k x i x i k x i          = + − − + − − − − −                    

              (1) 

Geometrically, the U3 function finds the length of the secant line that connects the samples retrieved from 
lateral window. Using the U3 function, the output signal y(n) evaluated at the ith sample is given by the recursive 
function shown in Equation (2), where y(0) = 0. 

 

 
Figure 1. A block diagram of the U3 function with central size window N and lateral 
size window k. This block is placed at the ith sample of an input signal x(n), and the 
blocks highlight the samples from the input signal that will be used in Equation (1).     



M. A. Eslami, J. W. Guag 
 

 
74 

( ) ( ) ( )( )1 3y i y i U x i= − +                              (2) 

It can be seen from Equation (1) that so long as the central window size is smaller than the width of a pulse, 
the rightmost lateral window will not reach the next discontinuity until the left most lateral window has com-
pleted its operation on the current discontinuity. In addition, in areas where there is not much transition between 
the samples, such as the continuous parts of the signal, the U3 function has very little effect on the output signal 
y(i). The noise of the input signal has also been minimized because of its small transitions.  

For a given input signal from one of the aforementioned therapeutic devices, the output signalis a train of 
pulses of width N whose rising edge occurs when the right lateral window coincides with the discontinuity, and 
falling edge occurs when the left lateral window coincides with the discontinuity. The number of pulses in the  
output signal is equal to the number of discontinuities of the input signal. It should be further noted that if the 
lateral window size is set so that k = 1, then the U3 function is a backward implementation of squared deriva-
tives, and thus can be thought of as very high-pass filters. These high-pass filters then filter out everything but 
the discontinuities within the signal, and thus identify the beginning and trailing edges of each pulse. 

The U3 algorithm requires less computational recourses than other signal analysis methods such as Fourier 
transform and wavelet analysis, and reduces the time required for the data analysis and the testing. The algo-
rithm is simple and can be implemented with information of the medical device output signal characteristics in-
cluding pulse rate, number of outputs, and rise and fall time of the signal and varying k and N parameters of the 
algorithm. The algorithm runs in linear time, O(N), where N is the number of samples in the signal, rather than 
the those required by finding the Fourier Transform, ( )( )logO N N . This makes it a great candidate for testing 
of continuous operation of medical devices under a large number of conditions. 

2.2. Test Implementation 
Signals from various therapeutic devices are first analyzed to identify features that could be used to identify a 
pulse within the input signal. Comparing 30 pulses that will be used as the input to the U3 function from differ-
ent pacemakers, neurostimulators, ICDs, and TENS devices, it was determined that there are two types: 1) Pulse 
with two discontinuities and 2) Pulse with three discontinuities, as shown in Figure 2. The discontinuities that 
are identified within the signal and the known pulse period are used to extract the pulse width, exponential decay, 
and inter-pulse time. 

A complete flowchart of the testing procedure is shown in Figure 3 and was implemented using MATLAB. 
The sampled signal from the medical device, s(n), is first passed to the recursive function Equation (2) that was 
described in the previous section.  

An adaptive threshold is applied to the output of the recursive function in Equation (2), to find the peaks (left 
column of Figure 4). The adaptive threshold to identify a peak is to be two standard deviations above the noise 
floor measured within the signal. This identifies the locations of all of the discontinuities within the signal. In 
other words, if this was a baseline signal, where there are no expected anomalies and everything is working 
properly, the locations extracted are the locations of the leading and trailing edges of each pulse. The algorithm 
assumes the information of the basic characteristics of the output signal such as pulse width, pulse period, and 
number of the pulses for each delivery of therapy (e.g., device with single vs. three outputs) of the medical de-
vices is available for the baseline analysis. If sampling of the therapeutic device output signal has begun too 
early or too late, then the beginning and/or the end of the signal, s(n), will contain information from only a por-
tion of a pulse. These portions must be filtered out from the data before checking for anomalies. This is accom-
plished by checking to see if the spacing between discontinuities is on the order of the pulse period within the 
first and last sampling periods of the signal. That is, the first and last periods of the output signal from Equation 
(2) are extracted. Next, the spacing between the discontinuities is identified within the first and last period. If the 
spacing is on the order of a programmed pulse period, then the pulse is marked as one with missing information 
and is removed. 

The next step is to determine whether the pulse has two or three discontinuities. This can be expressed in 
terms of f, the operating frequency or number of pulses per second, T, the total time the signal was sampled, and 
Npeaks, the number of peaks detected and is given in Equation (3). 

peaks
Discontinuity

N
N

fT
=                                    (3) 
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(a) 

 
(b) 

Figure 2. Different pulse categories for medical devices having (a) two and (b) three 
discontinuities. The discontinuity locations and exponential decays are the features that 
will be extracted.                                                           

 
NDiscontinuity is checked to ensure that it is either two or three. If the device is effected by the exposure and part 

of a pulse is inhibited―for instance, if the third discontinuity of a pulse with three discontinuities is inhibited― 
then this number will not be recognized as a valid value since it will not be two or three. It is clear that during 
baseline measurements, this number will always be valid, i.e. either two or three, and that was indeed observed 
during the experiments. It should be noted that a device can either output a two-discontinuity pulse or a three- 
discontinuity pulse. The two will never mix together and still be a valid signal. In other words, if a two discon-
tinuity pulse is detected within a three-discontinuity pulse signal, the signal will be marked as effected by the 
exposure. 

If the measurement is a baseline measurement, the output signal from Equation (2) is used to determine the 
mean of the pulse width and inter-pulse time of a 15 second measurement. The exponential decay is found by 
corresponding the output signal from Equation (2) to the original signal (right column of Figure 4). The samples 
from the original signal are then used to find the best fit exponential function using least squares method for  
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Figure 3. Test analysis flowchart.                                             

 

 
(a)                                                         (b) 

 
(c)                                                       (d) 
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(e)                                                     (f) 

 
(g)                                                     (h) 

Figure 4. Extracted pulses from (a)-(b): Neurostimulators over 15 seconds with 30 Hz pulse rate (c)-(d): Single Chamber 
Pacemaker (e)-(f) first pulse of a three chamber ICD and (g)-(h): second and third pulse of a three chamber ICD. Left 
column shows the U3N algorithm and the right column shows the features extracted from the original signal.             

 
each pulse in the 15 second signal. The mean value of the exponential decay of all the pulses within the 15 
second interval is found and stored with the pulse width and inter-pulse time. These values are stored for a 15 
second sample of the signal.  

If it is not a baseline measurement and NDiscontinuity is valid, then after the properties of each pulse are extracted 
from the signal, they are compared to the stored baseline measurement. In other words, the pulse width, expo-
nential decay, and inter-pulse time that was extracted from the signal, are compared to the baseline measure-
ments. If these parameters are larger than one standard deviation, which was chosen based on empirical mea-
surements, from the stored baseline measurements, then the signal is marked as an affected signal. 

3. Measurements and Results 
3.1. Baseline Measurements 
The success of this method depends on extracting the baseline measurements without any field exposure accu-
rately. In addition, the parameters must converge within a 15 second window so as to be able to make the appro-
priate comparisons.  

The output of the recursive function Equation (2), and the corresponding features extracted from the original 
pulses are shown in Figure 4. Figure 5 shows the convergence of the parameters well under 15 pulses for a de-
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vice operating at 1 Hz. The other devices tested showed similar results and are listed in Table 1. 
It can be seen that there is a rather large difference in scale on the y-axis between Figures 5(a)-(c). This is due 

to the fact that the sampling time is on the order of 6 μs which is on the order of the pulse width―450 μs. The 
pulse rate was three orders of magnitude larger at 1 s and microsecond deviations do not show as large an effect. 

3.2. Devices Tested 
Data from a security system simulator designed at the FDA [7] [8] for EMC tests on therapeutic devices were 
used to test the algorithm. Table 2 lists a summary of devices that were tested in the presence of electromagnetic 
radiation at various modulations and carrier frequencies. The output signal from total 14 sample medical devices 
was tested using the U3 algorithm. The medical device output signals used in the study were recorded for 15 
seconds period with 150 kHz sampling rate. The table lists the type of device, namely a pacemaker, neurostimu-
lator, ICD, or TENS, the rate the device would send output pulses, and the number of those devices tested at that 
rate. An operator observed the output signal of the medical device, which is shown in the “Observed Effects” 
column of Table 2 and compared that to automated labeling presented by the algorithm, shown in the “Detected 
Effects” column of Table 2. Data from the previous studies [7] showed EMI effects could either inhibit pulses or 
add extraneous noise pulses to the signal. Therefore, these were the two primary effects that were used as test 
data for various medical devices. Some of the effects were simulated by manipulating baseline data to see if the 
algorithm could detect the effect accordingly.  
 

 
(a)                                               (b) 

 
(c) 

Figure 5. Convergence of the algorithm versus number of pulses for pulse (a) width (b) exponential decay and (c) inter- 
pulse time.                                                                                           
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Table 1. Summary of parameters extracted from various devices tested.                                              

Device Parameter Mean Deviation from Mean 

Single chamber* Pacemaker/TENS 

Width 399 µs 1.4% 

Decay −1050.9 s−1 1.7% 

Inter-pulse Time 1.001 s 1 × 10−3% 

Three chamber** ICD 

Width 401 µs 2.3% 

Decay −1050.9 s−1 1.8% 

Inter-pulse Time 0.98 s 2.1 × 10−3% 

Neurostimulator 

Width 457.9 µs 0.52% 

Decay −810.5 s−1 3.76% 

Inter-pulse Time 31.5 ms 8.2 × 10−3% 

*Device with single output (single pulse) per delivery of therapy; **device with three output (three pulses) per delivery of therapy. 
 
Table 2. Summary of results tested for medical devices in the presence of an interferer.                                  

Device Number of Pulses per Therapy QTY Observed Effects Detected Effects 

Pacemaker 

1 2 
No effect No effect 

Pulse Inhibition* Pulse Inhibition 

2 3 

No effect No effect 

Pulse Inhibition* Pulse Inhibition 

Varying inter-pulse time Varying inter-pulse time 

Neurostimulator 
1 2 

No effect No effect 

Pulse Inhibition* Pulse Inhibition 

2 2 No effect** Pulse Inhibition** 

ICDs 3 3 
No effect** Pulse Inhibition** 

Pulse Inhibition* Pulse Inhibition 

TENS 1 2 

No effect No effect 

Pulse Inhibition* Pulse Inhibition 

Extra noise pulses* Extra noise pulses 

*Indicates simulated data was used; **indicates false positives detected by algorithm. 
 

The results show that the algorithm performs as well as an observer in identifying effected signals. However, 
at times, the output of the U3 produced a “long peak,” which is a wide valley rather than a sharp peak at one of 
the discontinuities, and thus the peak detector could not correctly identify those peaks. These were false posi-
tives that were reported where the algorithm detected an effect when there was no effect. In these cases, the peak 
detector used could not identify some of the peaks from the U3 algorithm appropriately and thus NDiscontinuity was 
not a valid number and the signal was reported to be effected. The algorithm never failed to detect an effect, 
though it did report a few false positives. However, for the purpose of the device validation testing, this is con-
sidered acceptable due to the fact that if an effect within the signal is detected, the test needs to be checked for 
its repeatability. 

4. Conclusions 
This paper presented a fast, simple method for signal validation from electrically stimulating therapeutic devices 
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using the U3 algorithm. The algorithm successfully detected discontinuities of a baseline measurement to extract 
the pulse width, exponential decay, and inter-pulse time of a signal. An interferer was then activated that could 
potentially cause an effect on the signal. The extracted features of the signal are compared to the known baseline 
measurements for detection of anomalies. This automated analysis enhances abilities to quickly record and ana-
lyze variations from the signal and reduces analysis time.  

Currently, the algorithm is not robust in localizing the problem. Once the problem is detected, it ripples its ef-
fects through the rest of the signal. For instance, if a problem occurs in pulse 3, the analysis has this ripple effect 
through all pulses after pulse 3. This needs to be made more robust to properly localize anomalies. In addition, 
the technique needs to be checked against signals with lower SNRs to find the limit of their ability in detection 
of these anomalies. In addition, the various amplitudes of the pulses within the U3 algorithm could potentially 
be used to extract the exponential decay of each pulse. This would avoid saving the original signal in memory 
and all processing would take place straight on the fast, simple U3 output. 
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