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Abstract 
 
In this paper, robust MPC (Model Predictive Control) with adaptive DA converter method for the wheelchair 
using EEG (Electroencephalogram) based BMI (Brain Machine Interface) is discussed. The method is de-
veloped to apply to the obstacle avoidance system of wheelchair. This paper is the 1st stage for the develop-
ment of the BMI based wheelchair in practical use. The robust MPC method is realized by using the mini-
max optimization with bounded constraint conditions. Some numerical examples are also included to dem-
onstrate the effectiveness of the proposed methods the former stage of the real experiments. 
 
Keywords: Wheelchair, Brain Machine Interface, Model Predictive Control, Adaptive DA Converter,  
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1. Introduction 
 
In last few decades, MPC (Model Predictive Control) has 
been widely accepted in the industry. In the standard 
MPC formulation, the current control action is obtained 
by solving a finite or infinite horizon quadratic cost prob-
lem at every sample time using the current state of the 
plant as the initial state [1]. 

One of the significant merits of MPC is easy handling 
of constraints during the design and implementation of 
the controller. Conventionally, MPC has been used for 
systems with relatively slow-moving dynamics, for ex-
ample, chemical or industrial processes and so on.  

However, recent dramatic improvement of computer 
performance has made it possible to apply MPC to the 
continuous-time objects with fast-moving dynamics. The 
digital MPC method is now effective to control for vari-
ous kinds of continuous-time objects. Such systems, the 
continuous-time objects controlled by discrete-time con-
troller, are so-called the sampled-data control systems.  

The analog-to-digital (AD) and the digital-to-analog 
(DA) conversions of signals are indispensable operations 
in the sampled-data control systems. The zero-order hold 
is usually used for the DA conversion on the assumption 
that the analog signals in each sampling interval are con-
sidered as constant values [2].  

To improve the performance of sampled-data control 
systems, it's very important to take account of the be-
havior of systems in the sampling intervals. On this issue, 
some notable methods to design the discrete-time con-

troller for continuous-time objects with AD/DA conver-
sion have been proposed [3-5]. Although the information 
about future sampling points is need for getting the cur-
rent control input by the interpolating operations of the 
sampled-data control systems, it’s impossible to obtain 
them. Therefore, we have been forced to tolerate the long 
time-delay during the DA conversion to wait for getting 
the indispensable information. In MPC algorithm, a pre-
diction of the future system status is executed, and future 
control inputs based on the prediction are also calculated 
in each step. These future control inputs based on the 
prediction, therefore, are used for interpolation by sam-
pling function. This idea is realized as an adaptive DA 
converter which can switch the sampling functions in 
each interval optimally according to the system status. It 
can realize the interpolation of samples in DA without 
long time-delay. 

One of the drawback of MPC is explicitly lack of ro-
bust property with respect to model uncertainties or dis-
turbances since the on-line minimized cost function is 
defined in terms of the nominal systems. A possible 
strategy for robust MPC is solving the so-called minimax 
problem [6,7], namely minimization problem over the 
control input of the robust performance measure maxi-
mized by plant uncertainties or disturbances. Some early 
works on robust MPC was proposed by Campo and 
Morari [8], and further developed by Zheng and Morari 
[9] for SISO FIR plants. Kothare solves minimax MPC 
problems with state-space uncertainties through LMIs 
[10]. Cuzzola improves the Kothare’s method [10] to 
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reduce conservativeness in [11]. Several methods of 
minimax MPC for systems with model uncertainties or 
disturbances can be found in [12,13].  

There has been some works of minimax MPC for sys-
tems with external disturbances in [14-16]. These meth-
ods are, however, based on infinite horizon quadratic 
cost functions, since it is rather hard to solve the mini-
max finite quadratic cost problems. The issue of mini-
max robust MPC therefore still deserves further attention 
[14,17].  

In this paper, minimax robust finite MPC method with 
the adaptive DA converter for an obstacle avoidance 
system of the robotic wheelchair using EEG (Electroen-
cephalogram) based BMI (Brain Machine Interface) [18, 
19] is discussed. This paper is the 1st stage for the de-
velopment of the BMI based wheelchair in practical use. 

The obstacle avoidance system of the wheelchair using 
EEG based BMI is one of the significant example of 
sampled-data controlled man-machine systems. One of 
the important points of the system is robustness property 
against the model uncertainties and disturbances. Since it 
is severely required that the system be always safe under 
whatever condition. 

In the man-machine systems, it’s key to unite man’s 
judgment/recognition and the automatic control of the 
machine well. In this point, one of the key method is 
EEG based BMI. Since it can support to communicate 
for physically handicapped patients. The EEG based 
BMI is now in the process of reaching practical use for 
man-machine systems. The EEG signals of brain waves 

are considered to use as the urgent evasion signals for the 
obstacle avoidance system of wheelchair in this research. 
Some numerical examples are also included. The results 
give us the effectiveness of the system designed by the 
proposed method as the former stage of the real experi-
ments. 

This paper is organized as follows. In Section 2, mini-
max MPC problem is formulated. In Section 3, solving 
method of the problem is shown. In Section 4, MPC with 
adaptive DA converter is explained. In Section 5, experi-
mental results of application of BMI based wheelchair are 
given. Finally, in Section 6, concluding remarks and future 
works are stated.  
 
2. BMI Based Wheelchair  
 
2.1. BMI Using EEG 
 
The targeted system is as shown in Figure 1. It’s one of 
the man-machine systems. In the man-machine systems, 
one of the most important point is to unite man’s judg-
ment, recognition, and the automatic control of the ma-
chine well. In this point, one of the key methods is BMI 
(Brain machine interface). Although the BMI has been 
used to support to communicate for physically handi-
capped patients, for example, ALS (Amyotrophic Lateral 
Sclerosis) or spinal cord injury, and so on. 

EEG (Electroencephalogram) based BMI is now ex-
pect to be practical use for man-machine systems [18, 
19]. One of the most significant man-machine systems  

 

 

Figure 1. Targeted system. 
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for handicapped persons is a wheelchair. Therefore, it’s 
important to develop safely obstacle avoidance system of 
wheelchair. 

In this research, the EEG signals of brain waves are 
considered to use as the urgent evasion signals for the 
obstacle avoidance system of robotic wheelchair. Gener-
ally, the EEG signals include redundant information that 
is unnecessary for decoding the commands and may also 
weaken the generalization performance of the classifier. 
To cope with this issue, Lal proposed a search method of 
better combinations of EEG channels by using a feature 
selection technique called RFE (Recursive Feature 
Elimination) [20]. Millan applied feature selection using 
decision trees to EEG data [21]. We have also developed 
the feature selection method based on the k-SVM (kernel 
Support Vector Machines) [22,23] with the backward 
stepwise selection for the BMI. This method can remove 
unnecessary or redundant features of EEG signals and 
keep only effective features for the classification task as 
a way of improving accuracy and quickness.  

The combination of features that gives the largest 
evaluation value is considered the best (sub-optimal) 
combination of features. Since the urgent evasion signals 
are relevant to areas of the central part of the cerebrum 
cortex such as pre motor cortex, motor cortex and sensori- 
motor cortex, EEG signals were recorded from13 elec-
trodes (Fz, FCz, FC1, FC2, Cz, C1, C2, C3, C4, CPz, 
CP1, CP2, Pz) as shown in Figure 2 (Fz, FCz, Cz, CPz 
and Pz are on the longitudinal fissure. Cz, C1, C2, C3, 
C4 areon the central sulcus). 

The power spectrum densities for eachelectrode was 
estimated using the Welch period gram and was divided 
into 12 components with a 2 Hz resolution. The resulting 
156 features (13 channels times 12 components) were 
used as the initial set of features for the classifier. 
 
2.2. Wheelchair Model 
 
The wheel chair has two motors which rotate independ- 

ently. Although there are many control methods using 
velocities and angular velocities as manipulated variables 
[24], the dynamic model of the robot is used in this paper. 
Therefore, motor torques are set as manipulated variables 
[25], then the robot is torque-controlled and has two in-
dependent inputs.  

We assume the center of gravity (C.G.) of the robot 
corresponds to center of the two wheels, and let the posi-
tion of C.G. sets (x,y), and θ denotes robot’s direction 
(see Figure 3). The dynamic model of robot can be de-
scribed following state space model [26] as follows. 
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Controlled variable v and ω are the velocity of C.G. 
and angular velocity respectively, ur and ul is right and 
left motors torques. The definition of parameters is 
shown in Table 1. The relation between (v,ω) and (x,y,θ) 
is described; 

cos ,  sin ,  x v y v                 (2) 

Input torques ur and ul change v, and ω according to 
Equation (1), v and ω change x, y and θ according to 
Equation (2), too. 
 
3. Minimax Robust MPC Problem 
 
The target system in this paper is the sampled-data sys-
tem. Hence, the control object is continuous-time system 
and the controller is designed in discrete-time. Then, 
let’s consider the following general discrete-time model 
with uncertainties and disturbance. 

 

 

Figure 2. Location of the EEG electrodes in cerebrum.  
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Figure 3. Model of robotic wheelchair. 
 

Table 1. Definition of parameters. 

I  Inertia moment [Nms2/rad] 

M Weight [Kg] 

vI  Inertia moment of rotation center [Nms2/rad] 

l Distance between wheel and rotation center [m] 

c Viscosity coefficient of friction [Nms2/rad] 

r Wheel radius [m] 

 

       1 A B  x k A L R x k B L R u       k    (3) 

    ( )y k Cx k k                (4) 

where x(k), u(k), y(k) and η(k) denote the state, input, 
measure doutput and disturbance vector respectively, and 
where  is a diagonal structured uncertain parameters 
matrix satisfied 


Δ ΔT I . L, RA and RB are constant ma-

trices. All these vectors and matrices have appropriate 
dimensions. Then, we can transform this system as 

     1x k Ax k Bu   k             (5) 

     A Bz k R x k R u k               (6) 

     y k Cx k k                (7) 

where w(k)(:=Δz(k)). We assumed that the system is con-
strained with following conditions;  

    1T
ww k j P w k j    

    1T k j P k j  

    1T
uu k j P u k j    

 0, , 1j N   

where Pw, Pη, Pu are positive symmetric matrices for 
weights of constraints. For this system, the quadratic 
performance measure with finite horizon with positive 
weighting constant matrices Q and R as : 

      1 2 2

0

1
N

Q R
j

J k y k j k u k j k




         (8) 

is used. x(k + j|k), y(k + j|k) and u(k + j|k) are the pre-
dicted state of the plant, the predicted output of the plant 
and the future control input at time k + j respectively. 
Then, the design problem is formulated as the following 
minimax optimization problem. 

     
 

| | , |
min m ax

u k j k w k j k k j k
 J k

  
          (9) 

subject to 

    1T
ww k j P w k j    

    1T k j P k j     

    1T
uu k j P u k j    

 0, , 1j N   

Since the saddle point may not exist in general, it is 
difficult to solve this problem. Hence, the objective is to 
eliminate the maximization procedure and transform this 
problem to simple minimization problem which can be 
solved easily. 
 
4. Transformation of the Problem 
 
At each step k the following state feedback is employed; 

  k ju k j k F x k j k              (10) 

where Fk+j is a feedback gain matrix. Then, introducing 
the following vectors 

   1
T

X x k k x k N k    :  

   1
T

Y y k k y k N k    :  

   1
T

U u k k u k N k    :  

   1
T

W w k k w k N k    :  

   Λ 1
T

k k k N k     :  

and using state space equation, Equations (5)-(7), recur-
sively, we can derive   
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Hence, we can transform the minimax problem (9) to 

min
U

                 (13) 

subject to 

,Λ
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W
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where γ > 0 (scalar parameter) and where;  
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To eliminate the maximaization procedure, we have to 
remove W and  terms in the first constraint. For this, 
in the first place, following basis for all variables and 
transformation matrices are defined. 


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By using these, we can express the first constraint 
condition of problem (13); 

     ˆ,Λ

2 2
max

T

y uQW
H H H Hˆ 1 1R
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Please take notice that both the left side and t
side of this inequality are expressed by the quadratic 
fo

he right 

rms and they have positive scalar values. Hence, if the 
inequality is hold by maximum values of W and   in 
left side, this inequality must be hold by any other values 
of them. This fact means that we can eliminate the 
maximization procedure in the first constraint. We can 
only check the following condition instead of the first 
constraint of problem (13). 
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In the second place, $H_{w}(j)$ is defined
trix pick out the suitable block from W and satisfy the 
re

. This ma-
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For the constraints of η and u, we can deri
lowing relations in the same way. 

ve the fol-
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Then, by using (14)-(19), all constraints i
problem (13) can be transformed into:  
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We can transform the original minimax problem (9) to 
the following one by using S-procedure [27]. 
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 
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F
                  (25) 
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are positive semi-de ite scalars. 

It must be his transformation satisfies only a 

9) into the following 
pr

fin

sufficient condition of S-procedure, since S-procedure is 
not the so-called “lossless” in this case. We cannot there-
fore avoid that the design results are slightly conserva-
tive. Nevertheless, we can expect the reduction of con-
servativeness in design result by this technique in con-
trast with the results by preexisting methods. Because the 
conservativeness caused by S-procedure is too small to 
put a matter for practical purposes. 

Finally, using “Schur-complement” [28], we can trans-
formed the minimization problem (

oblem which can be solved easily by using some opti-
mization tool. 
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ly fast-moving dynamics, such as robots or vehi-
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5. MPC w
 
5.1. Interpolation of Control Inputs 
 
Although the information about future sam
n
lating operations of the sampled-data control systems, 
it’s impossible to obtain them. Therefore, we have been 
forced to tolerate the long time-delay during the DA 
conversion to wait for getting the indispensable informa-

tion.  
However, in the case of controlling the systems with 

relative
es, the method with long time-delay is unable to be 

applied. Furthermore, it takes much computation time to 
calculate the interpolation by using the high-order sam-
pling functions to DA conversion in sampled-data con-
trol system.Therefore a new idea to use the predictive 
control inputs obtained by MPC for interpolation is pro-
posed. 

In MPC algorithm, the optimal control inputs  
   ˆ, , 1u k k Nû k k    are calculated in each step, 

and only the first control input  û k k  is used a
e consider to use the other 

optimal control inputs 

s a real 
control input.Therefore, w

  1 ,

hich are neede

û k k   as virtual future 
sampling points.Actually, it is only necessary to use the 
optimal control inputs w d for interpolation 
according to the sampling function. 

Figure 4 shows this way using the 2nd order spline 
function for interpolations. Only  û 1k k   is used as a 
vi

oints and real 
sa

rtual future sampling point in this case. By using the 
predictive control inputs for interpolation, it becomes 
possible to reduce the time-delay in the DA conversion, 
and the total time-delay to be needed is just only compu-
tation time of optimization in current step. 

Of course, it needs to take account that there is a dif-
ference between virtual future sampling p

mpling points like    ˆ ˆ1 1u k k u k    in future step.
However, we consider that this point is not a critical 
problem because the ated waveform 
due to prediction error is not so big compared to the scale 
of prediction error. Although the differentiability of each 
sampling function is lost at sampling points, this also 
does not become a critical problem compared to the 
 

 

influence on interpol

 

 

Figure 4. Interpolation based on a 2nd order spline sam-
pling function using predictive future control inputs. 
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A Converter  

us samplingfunctions 

zero-order hold, and it is possible to keep a certain level 
of smoothness.  
 
5.2. Adaptive D
 
The spline functions provide vario
with all kinds of orders. Therefore, we consider switch-
ing the spline functions optimally according to the sys-
tem status in the adaptive DA converter. In this paper, 
we use the spline functions with the order 0,1, 2m   as 
sampling functions. Namely, in the case of 0m  , the 
sampling function is equivalent to the staircase fu on. 
In the case of 1m  , it’s the 1st order piecewise poly-
nomial function, and in 2m  , 2nd order one as shown 
in Figure 5. 

Appropriate selecting alues of m  according to 
the object, en

ncti

the v

    (27) 

 

ables to deal with DA conversion flexibly 
and precisely in the interpolation operation. Although the 
interpolation is more precisely in the case of using the 
spline function with 3m   or more, it’s difficult to 
apply to fast-moving dynamic systems due to the bigger 
amount of calculation. Therefore we use only the spline 
functions with the order 0,1, 2m  .  

The interpolated signals in the closed-open interval [kτ, 
(k + 1)τ), using these sampling functions are obtained as 
follows,  

 u t      
1

1,2  0,1
k

l k

u l t l m 




     

 

Figure 5. Sampling functions and their interpolations 
with m = 0,1,2 (τ is sampling interval). 

2       
2

3  
k

l k

u t u l t l m 




          (28) 

where  u t  and  u l
and 

 are analog signal and digital 
signal respectively,   is sampling interval. 

e int
oi , d – 1) 

on

The interval to b erpolated is also divided to dsec-
tions, and the dividing p nts um(j;k), (j = 1, 2, ···

 interpolated waveforms are used for the selection of 
parameter m, that indicates the degree of spline sampling 
functions. Figure 6 shows the difference of the interpo-
lation and dividing points according to the sampling 
function with 0,1, 2m   and 5d  .  

The calculation of the dividing points  ;mu j k  as 
follows,  

     

 

1

;
k

mu j k
 

1

                                              1, 2, ; 1

m

l k

u l k j l
d

j d


  

 

   
      

  
  

 




 (29) 

where α is the number of samples which the sampling 
function needs for interpolation, and it is adjusted ac-

ivided number of in-
te

cording to the sampling function.  
From several test simulation results, we have obtained 

that it most appropriate to set the d
rval, 5d   due to the trade-off of computation time 

and precision. If 5d  , the calculation amount in the 
adaptive  converter is also vanishingly small com-
pared to the calculation in MPC controller keeping a 
certain level of accuracy. Then, we summarize the algo-
rithm to switch the spline sampling functions for the 
adaptive DA converter as follows,  

(step 1) Set step 0k

 DA

 .  
(step 2) The dividing points  mu j;k

values 
 are calculated.  

dicted state (step 3) The pre  1;mx j k

 . 

 in 
this interval are calculated using intern
co

al model of DA 
nverter and the dividing points  ;mu j k

 

 

Figure 6. Interpolation ways (d = 5). 

Copyright © 2011 SciRes.                                                                                  ICA 



T. KAWABE 
 

Copyright © 2011 SciRes.                                                                                  ICA 

347

(step 4) If the interpolation waves exceeds the c
strained conditions of control input due to the oversho
or undershoot, this  is excluded.  

(step 5) The evaluation values of evaluation function

on-
ot 

 

 If the signal 1 or −1 is detected, the wheelchair does 
the evasion run in a specified direction according to 
half oval orbit. The radius of half oval changes ac-
cording to value of the signal.  

Now we assume the following perturbations of l and c 
in the wheelchair model. 

m

 J k
(step 

od Equation (8) are calculated in each .  
6) The parameter whose evaluatio  value is 

the smallest is selected as an interpolation way in this 
interval, and then nd go back to (step1). 
 
6. Numerical Experiments  
 
The experimental conditions are summarized as follows. 
 The robotic wheelchair goes straight according to the 

reference path usually. 
 The signal from the BMI was read at constant inter-

vals (100 ms).  
 The si he signal 

h  and −1 has 0 - 1. 

m
nm  

1  ak k   0.08 0.12l l l   , 

 0.03 0.07c c c    

The weights of the cost function in Equation (8) are 

125 0 0.55 0
,  

0 15 0 0.15
Q R

  
 


   
   

 

 

Figures 7-10 show simulation results with various 
conditions. The parameter r = 0.2 [m]. The size of obsta-
cle is different between Figures 7 and 8, but initial posi-
tion of obstacle is same. Figs. 9and 10 show the two ob-
stacle case. In Figures 7-9, red line indicates the nearest 
trajectory of the center of gravity (C.G.) of robotic wheel  

gnal classified the three types: 0 (t
none), 1 or −1 (left or right evasion). 1 and −1 are the 
emergent evasion signals against the obstacle appear- 
ed suddenly. Eac value of signals 1

 

Figure 7. The C.G. trajectories (a). 
 

 

Figure 8. The C.G. trajectories (b). 
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Figure 9. The C.G. trajectories (c). 
 

 

Figure 10. The C.G. trajectories (d). 

 
chair to the obstacle against the perturbation of model 
uncertainties. Blue line indicates the furthest one. All 
results show that thewheelchair can avoid the obstacle 
safely even if parameter uncertainties are existing. For 
the comparison, in the case of using the standard MPC 
instead of the proposed minimax MPC, the wheelchair 
had collided with the obstacle whenever the parameters 
(l and c) were perturbed even if no collision occurred 
with the nominal values of l and c. Since the standard 
MPC is a nominal control method and it cannot guaran-
tee the robustness property against the parameter pertur-
bations.Hence, we can easily see that the proposed 
method have good robust performance against the model 
uncertainties and we can recognize the effectiveness of 
the proposed method.  
 
. Conclusions 

As the first stage of the development of the BMI based 

wheelchair system, new minimax robust MPC method 
with the adaptive DA converter applied to the obstacle 
avoidance system in the BMI based wheelchair has been 
proposed. Simulation results have been illustrated to in-
dicate the good robust performance as the development 
of the former stage of real experimental system. From 
these results, the proving test by the real experiments of 
the BMI based wheelchair by the real experiments will 
be done in next stage.  

In addition to, the proposed minimax MPC method is 
easily extended the systems with other constraints which 
are specified by ellipsoidal bounds, for example, state 
estimation errors and so on as follows. In the case that 
x(k) is not full measured and we need to estimate x(k), 
where the bound of estimation error 

7
 

     ˆe k x k   k x
is guaranteed an ellipsoidal set as: 

   e eT
ek P k   1

ewhere, P  is a positive symmetric matrix for weight. This 
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specification of estimation error is standard one. Now we 
introduce He as: 

 ˆ10 0eH x k   :  

then the relation of e(k) = He  is hold. And the condi-
tion below is also hold. 

    
1 1 0

T
j jT T

e e eH H H P H    
 

 

Since this condition has same form as other constraints 
in Equation (24), we can include this condition into the 
condition of problem (25) by using a new variable e

j . 
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