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Abstract 
 
The performance of any fuzzy logic controller (FLC) is greatly dependent on its inference rules. In most 
cases, the closed-loop control performance and stability are enhanced if more rules are added to the rule base 
of the FLC. However, a large set of rules requires more on-line computational time and more parameters 
need to be adjusted. In this paper, a robust PD-type FLC is driven for a class of MIMO second order nonlin- 
ear systems with application to robotic manipulators. The rule base consists of only four rules per each de- 
gree of freedom (DOF). The approach implements fuzzy partition to the state variables based on Lyapunov 
synthesis. The resulting control law is stable and able to exploit the dynamic variables of the system in a lin- 
guistic manner. The presented methodology enables the designer to systematically derive the rule base of the 
control. Furthermore, the controller is decoupled and the procedure is simplified leading to a computationally 
efficient FLC. The methodology is model free approach and does not require any information about the sys- 
tem nonlinearities, uncertainties, time varying parameters, etc. Here, we present experimental results for the 
following controllers: the conventional PD controller, computed torque controller (CTC), sliding mode con- 
troller (SMC) and the proposed FLC. The four controllers are tested and compared with respect to ease of 
design, implementation, and performance of the closed-loop system. Results show that the proposed FLC has 
outperformed the other controllers. 
 
Keywords: Fuzzy Logic Control (FLC), PD Control, Computed-Torque Control (CTC), Sliding Mode  

Control (SMC), Lyapunov Synthesis, Test Rig 

1. Introduction 
 
Robots are familiar examples of trajectory-following 
mechanical systems. Their nonlinearities and strong cou- 
pling of the robot dynamics present a challenging control 
problem, [1-3]. Conventional methods of controlling a 
nonlinear system are based on models, especially in the 
field of robot control. Many robotic control schemes can 
be considered as special cases of model-based control 
called computed torque approach, [4]. The basic concept 
of computed torque is to linearize a nonlinear system, 
and then to apply linear control theory. Practical imple- 
mentation of the computed torque and other model based 
approaches can be found in [5], where the experimental 
results revealed that the simple PD controller has out- 
performed the other model based controllers. This is 
mainly due to the fact that in many dynamic systems the 
parameters may slowly change or cannot be exactly pre- 

dicted in advance due to different operating conditions.  
Sliding mode controllers (SMCs) were first proposed 

in early 1950s. Due to their good robustness to uncer-
tainties, SMC has been accepted as an efficient method 
for robust control of uncertain systems. Being limited 
only by practical constraints on the magnitude of control 
signals, the sliding mode controller, in principle, can 
treat a variety of uncertainties as well as bounded exter-
nal disturbances, [6]. A key step in the design of control-
lers is to introduce a proper transformation of tracking 
errors to generalized errors so that an n-order tracking 
problem can be transformed into an equivalent first-order 
stabilization problem. Since the equivalent first-order 
problem is likely to be simpler to handle, a control law 
may thus be easily developed to achieve the so-called 
reaching condition. Unfortunately, an ideal sliding mode 
controller inevitably has a discontinuous switching func-
tion. Due to imperfect switching in practice it will raise 
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the issue of chattering, which is highly undesirable. To 
suppress chattering, a continuous approximation of the 
discontinuous sliding control is usually employed in the 
literature. Although chattering can be made negligible if 
the width of the boundary layer is chosen large enough, 
the guaranteed tracking precision will deteriorate if the 
available control bandwidth is limited, [7]. A number of 
works related to sliding mode control of robotic manipu- 
lators have been published in [8-12].  

Generally speaking, multiple-input multiple-output 
(MIMO) systems usually have characteristics of nonlin- 
ear dynamics coupling. Therefore, the difficulty in con- 
trolling MIMO systems is how to overcome the coupling 
effects between the degrees of freedom. The computa- 
tional burden and dynamic uncertainty associated with 
MIMO systems make model-based decoupling impracti- 
cal for real-time control. Adaptive control has been stud- 
ied for many decades to deal with constant or slowly 
changing unknown parameters. Applications include 
manipulators, ship steering, aircraft control and process 
control. Although the perfect knowledge of the inertia 
parameters can be relaxed via adaptive technique, its real 
practical usefulness is not really clear and the obtained 
controllers may be too complicated to be easily imple- 
mented, [13]. Because many design parameters (like 
learning rates and initialization of the parameters to be 
adapted) have to be considered in controller construction, 
most existing methodologies have limitations. Moreover, 
owing to the different characteristics among design pa- 
rameters, attaining a complete learning, while consider- 
ing an overall perfomance goal, is an extremely difficult 
task. Nevertheless, some experiments have been pre- 
sented in [14,15]. 

Fuzzy controllers have demonstrated excellent ro- 
bustness in both simulations and real-life applications, 
[16]. They are able to function well even when the con- 
trolled system differs from the system model used by the 
designer. A customary for this phenomenon is that fuzzy 
sets, with their gradual membership property, are less 
sensitive to errors than crisp sets. Another explanation is 
that a design based on the “computing with words” para- 
digm is inherently robust; the designer forsakes some 
mathematical rigor but gains a very general model which 
remains valid even when the system’s parameters and 
structure vary.  

Otherwise, FLCs consist of a number of parameters 
that are needed to be selected and configured in prior, i.e. 
input membership functions, fuzzificztion method, out- 
put membership functions, rule base, premises connec- 
tive, inference method and defuzzification. Optimal tun- 
ing of FLCs using genetic algorithms has attracted many 
authors, [17-19]. In these papers, however, there are too 
many parameters involved in the development of FLCs. 

Furthermore, genetic algorithms cannot be used in real 
time control applications. In another study similar to the 
presnt work, i.e. real-time trajectory tracking control of 
two link robot using fuzzy systems [20], the controller 
needs 26 parameters to be experimentally selected. Also, 
the FLC in [21] needs 45 parameters to be tuned. This is 
beside the huge number of calculations involved in the 
online computation of the control signals.  

In this research paper, we introduce a simple and 
computationally efficient FLC for MIMO second order 
systems with application to robotic manipulators. Earlier 
theoritical investigation of this controller, by the first 
author, can be found in [22]. The controller is stable in 
the sense of Lyapunov theory of stability and few pa- 
rameters are needed to be tuned. The approach can be 
implemented to both tracking and stabilizing control 
problems. However, in this paper, the emphasis is on the 
tracking control problem of robotic systems. The per- 
formance of the proposed controller is experimentally 
verified and compared with the conventional PD con- 
troller, computed-torque controller (CTC), and sliding 
mode controller (SMC).  

The rest of this paper is organized as follows. Section 
2 presents the model based controllers (CTC and SMC) 
that are used for comparison purposes. The proposed 
control scheme is introduced in Section 3 and Section 4 
describes the experimental setup, the examined trajecto- 
ries and the performance measures used in the control 
performance evaluation. The experimental results are 
demonstrated and discussed in Section 5. Section 6 offers 
our concluding remarks. 
 
2. Model-Based Control Schemes 
 
2.1. Preliminaries 
 
The dynamic model of an n-joint manipulator can be 
written as follows: 

        , M q q C q q q g q f q u t             (1) 

where q is the  1n   joint angle vector,  u t  is the 
 1n   input torque vector,  M q  is the  n n  posi-

tive definite inertia matrix,  is the  ,C q q   n n  ma-
trix representing the centrifugal and Coriolis terms, 
 f q  is the  1n   vector of the frictional terms and 
 g q  is the  1n   vector of the gravity terms.  
Decoupled or decentralized (also independent) control 

means that the torque i  to be generated by the ith ac- 
tuator is based only on the value of the position of the ith 
joint and its time derivative 

u

 , , ,i i i i di diu u q q q q   , ,        (2) 1, 2, ,i   n

where  is the actual value of the ith joint coordinate, iq
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i

and di  is its desired value. The later ( di ) is usually 
available signal from the robot operating system and is 
planned in advance. Generally, defining the position er-
ror as , (2) can be written as 

q q

n

i die q q 

i iu u

where, again, de q q   is the difference between the 
desired joint position vector and the actual one. 

Obviously, the assumption of exact knowledge of the 
robot dynamic model cannot be satisfied in practical 
cases. Hence, the achievement of the desired tracking 
performance cannot be guaranteed. For this purpose, it 
would be desirable to add a term in the controller that 
compensates for the modeling errors. Several related 
works can be found in literature which suggests the use 
of neural networks [23] and neuro-fuzzy systems [24] 
in-order to compensate for the modeling errors. However, 
a complete review in this area is out of the scope of this 
work. In the experimental verification (Section 5), the 
CTC algorithm has been implemented as it is shown in 
Figure 1. 

 ,i ie e , 1, 2, ,i              (3) 

This approach is widely adopted in industrial settings 
because of its simplicity (no dynamic model is required, 
in general) and because of its fault-tolerant feature, since, 
in case a single joint is affected by a failure, the robot 
can be retrieved in a safe position by means of the other 
joints.  

The motion control problem of manipulators in joint 
space can be stated in the following terms. Assume that 
the joint position q and the joint velocity q are available 
for measurement. Let the desired joint position d  be a 
differential vector function. We define a motion control- 
ler as a controller which determines the actuator torques 
u in such a way that the following control aim be 
achieved:  

q  
2.3. Sliding Mode Control 
 
In this subsection, the well-developed literature is used to 
demonstrate the main features and assumptions needed to 
synthesis a SMC for robotic systems. SMC employs a 
discontinuous control effort to derive the system trajec- 
tories toward a sliding surface, and then switching on 
that surface. Accordingly, it will gradually approach the 
control objectives, i.e. keep these trajectories at the ori- 
gin of the phase plane. The following assumptions are 
needed to synthesis a SMC.  

   lim d
t

q t q t


                (4) 

 
2.2. Computed Torque Control 
 
The computed torque (also called inverse dynamics) 
technique is a special application of feedback lineariza- 
tion of nonlinear systems. The computed torque control- 
ler is utilized to linearize the nonlinear equation of robot 
motion by cancellation of some, or all, nonlinear terms. 
For this purpose, the dynamic model of the manipulator 
is exploited. Taking into account (1) and defining 

Assumption 1: The matrix  M q  is positive definite 
and is bounded by a known positive definite matrix 

 M̂ q .  
Assumption 2: There exists a known estimate  ˆ ,h q q  

for the vector function  ,h q q  in (5).  
Now, let us define the linear time-varying surface 
 s t , [9]:  h q q    , ,C q q q g q f     q          (5) 

     
        T

1 2

,

, , , n

s t e t t

s t s t s t s t

 

   




      (7) we can derive the control scheme shown in Figure 1, 

where pK  and vK  are user-chosen diagonal matrices. 
So that the system is decoupled, linearized and the error 
dynamics is governed by the following expression [23]:  where  t  is a time-varying linear function. 

From (1), (5) and (7), we can get the equivalent con- 
troller (also called ideal controller)  0v pe K e K e                  (6) 

 

Robot)(qM

),( qqh 
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q

q

dq

dq
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Figure 1. Computed torque control scheme. 



A. B. SHARKAWY  ET  AL. 

Copyright © 2011 SciRes.                                                                                  ICA 

103
  

     , )eq du t h q q M q q   
             (8) 

where  equ t  is equivalently the average value of  u t  
which maintains the system’s trajectories (i.e. tracking 
errors) on the sliding surface . To ensure that 
they attain the sliding surface in a finite time and there- 
after maintain there, the control torque 

  0s t 

 u t  consists of 
a low frequency (average) component  equ t  and a 
hitting (high frequency) component  htu t  so that: 

     eq htu t u t u t               (9) 

The role of  htu t  acts to overcome the effects of the 
uncertainties and bends the entire system trajectories 
towards the sliding surface until sliding mode occurs. 
The hitting controller  htu t  is taken as:  

     sgnhtu t M q K s           (10) 

where  1 2diag , , nK k k k 
   1 2sgn ,sgn ,s s s  

, ,  and 
.  

0ik 
 ,sgn n

1, 2 ,i n 
T

s sgn 
To verify the control stability, let us first get an ex-

pression for  s t . Using (1), (5), (9) and (10), the first 
derivative of (7) is: 

     
     
         

 
 

1

1

,

,

sgn

d

d

ht

s q t e t t

q t q t t

q t M q u t h q q t

M q u

K s









 

  

     
 

 

 
 

     (11) 

Choosing a Lyapunov function 

 2

1

1

2

n

s i
i

V s


  t               (12) 

and differentiating (12) using (11) 

        

 

1 1

1

sgn

    0.

n n

s i i i i i
i i

n

i i
i

V s t s t k s t s t

k s t

 



  

  

 



 
    (13) 

which provides an asymptotically stable system.  
Since the parameters of (1) and (5) depend on the ma- 

nipulator structure, it is difficult to obtain completely 
accurate values for  M q  and . In SMC theory, 
estimated values are usually used in the control context 
instead of the exact parameters. So that, (8)-(10) can be 
written as: 

 ,h q q 

,     
     

     

ˆ ˆ,

ˆ sgn ,

eq d

ht

eq ht

u t h q q M q q

u t M q K s

u t u t u t

    



 

 

      (14) 

where  M̂ q  and  are bounded estimates for  ˆ ,h q q

 M q  and  ,q q tively. As mentioned earlier 
mption 2, they are assumed to be known in 

advance.  
In sliding

h  
 1 and 

 mode, th

respec

e system trajectories are governed 

in assu

by: 

 is t 0  and   0is t  , 1, 2, ,i n       (15) 

at, th ynamics re determinSo th
funct

e error d  a ed by the 
ion  t . If the coefficients of  t  were cho- 

sen to corres nd to the coefficients of itz polyno- 
mial, it is thus implying that  lim 0t e t  . This sug- 
gests 

po Hurw

 t  taking the following form: 

     1 2 dc e t c e t t    with t 1 2, 0c c     (16) 

at in g mode, the error dynamics is: So th  the slidin

     1 2 0e t c e t c e t    ,           (17) 

e desi rmance is gover

iding mode controller in (14) can 

 Pr FLC Scheme 

apu ed Fuzzy Logic Controllers 

 secti pply the fuzzy synthesis [25], to the 

and th

gu

. The

.1. Ly

 this

red perfo

th

oposed 

nov Bas

on, we a

ned by the coeffi-
cients 1c  and 2c .  

In su mary, e slm
arantee the stability in the Lyapunov sense even under 

parameter variations. As a result, the system trajectories 
are confining to the sliding surfaces (7). The control law 
(14) however, shows that the coupling effects have not 
been eliminated since the control signal for each degree 
of freedom is dependent on the dynamics of the other 
degrees of freedom. Independency is usually preferred in 
practice. Furthermore, to satisfy the existence condition 
of the sliding modes, a large uncertainty bound should be 
used. In this case, the controller results in large imple- 
mentation cost and may lead to chattering efforts which 
should be avoided in practical implementation.  
 
3
 
3
 
In
design of stable controllers. To this end, consider a class 
of MIMO nonlinear second order systems whose dy-
namic equation can be expressed as:  

   , ,x t f x x u  ,               (18) 

where  , ,f x x u  is an

 inpu

 continuous function, u  unknown

is the co t and ntrol   1 2 T
1 1 1, , , nx t x x x     is the state 

vector and 
T1 2

2 2 2, , , nx x x x
dx

dt
     , wher e 1 2

i ix x ,  

1, 2, ,i n  . apunov  We now seek a smooth Ly function
n:V R

that is po

n R
sitiv

 for the continuous feedback model (18) 
e definite, i.e.   0V x   when 0x   and 

  0V x   when x = 0, and g finity: rows to in  x
general
V   

as Tx x  . Obviously, t for a his holds ized 
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Lyapunov g quadrati
:  

 candidate function of the followin  
form

c

  T T1 1
,

2 2
V x t x x x x               (19) 

Differentiating (19) with respect to time gives  

  1 1 2 2
1 1 1 1 1 1, n nV x t x x x x x x

1 1 2 2
2 2 2 2 2 2

n nx x x x x x     

      
 



So that 

  1 1 2 2
1 2 1 2 1 2

1 1 2 2
2 2 2 2 2 2

,

 

n n

n n

V x t x x x x x x

x x x x x x

   

   

 

  
 



From which 



This is equal to 

           (20) 

where 

Then the standard results in unov stability theory 
imply that the dynamic system (18) has a stab uilib- 
riu

 ,V x t   
 

1 1 1 1 2 2 2 2
1 2 2 2 1 2 2 2

1 2 2 2
n n n n

x x x x x x x x

x x x x

   

  

  


 

  1 2, nV x t V V V        

  1 2 2 2, i i i i
iV x t x x x x   , 1, 2, ,i n   

Lyap
le eq

m ex x  if each iV  in (20) is 0  along the sys- 
tem trajectories. To achieve this, we have chosen the 
contro i x  to be p portional to 2l u ro ix .  
Next, our controller design is achieved if we determine a 
fuzzy co  u x  so that:  ntrol 

where 

   2, 0i i i
i i iV x t x u x   , 1, 2, ,i n   (21) 1 2x x   

i  

ists

is a positive constant. The results o
[26] state that, a fuzzy system that would approximate 

f Wang 

(21) ex . To this end, one would consider the state 
vector  x t  and  x t  to be the inputs to the fuzzy 
system. The output of the fuzzy system is the control u . 
A possi orm of ontrol rules is: 

IF 1
i

ble f the c

x  is (lv) and/or 2
ix  is (lv) THEN u  is (lv) i

whe sti os a- 
tive he tut - 

 are: 
 

surements.  

re the (lv) are lingui c values (e.g. p itive, neg
). T se rules consti e the rule base for a Mam

dani-type FLC. 
In the above formulation, two basic assumptions have 

been made. They
The knowledge of the state vector. It is assumed to be 
available from mea

 The control input, u is proportional to 2x . This as- 
sumption can be justified for a larg f second 

 rules. 
O

ro

zy Tracking Control 

ry-following 
echanical systems. Their nonlinearities and strong cou- 

rder to find a fuzzy controller that would 
ac

e class o
order nonlinear mechanical systems, [27,28]. For in- 
stance, here in robotics, it means that the acceleration 

of links is proportional to the input torque.  
These two assumptions represent the basic knowledge 

about the system which is needed to derive the FLC
f course, the exact mathematical model is not needed.  
In the coming sub-section, we use this approach to de- 

sign a PD-type FLC for the tracking control problem of 
botic systems.  

 
3.2. Robotic Fuz
 
Robots are familiar examples of trajecto
m
pling of the robot dynamics present a challenging control 
problem. In practice, the load may vary while performing 
different tasks, the friction coefficients may change in 
different configurations and some neglected nonlineari- 
ties as backlash may appear. Therefore, the control ob- 
jective is to design a stable fuzzy controller so that the 
link movement follows the desired trajectory in spite of 
such effects.  

We now apply the approach presented in the previous 
subsection in o

hieve tracking to the robotic system under considera- 
tion. To this end, let us choose the following Lyapunov 
function candidate 

 T T1
V e

2
e e e                 (22) 

where again,     de t q t q t   ,      de t q t q t     
 dq tand  and  dq t  are vectors 

locity respectiv
of the desired joint 

ely. Differentiating withposition and ve  
respe ime and g (20) gives 

i i i i iV e e e e      

ct to t  usin

To enforce asymptotic stability, it is required to find u 
so that 

0V e e e ei i i i i                  (23) 

in some neighborhood of the equilibr
the control u to be proportional to

ium of (22). Taking 
, (23) can be re- e

written as:  

 0i i i i i iV e e e u               (24) 

where i  is positive constant, 
(24) to hold can 

fo

1,i  
be stated as 

,n . Sufficient 
follows.  conditions for 

1) if, r each  1, ,i n  , ie  a ave opposite 
signs and iu  is zero, inequality (24) holds;  

nd h ie  

2) if ie  and ie positive, then (24) will hold 
if iu  is negative; and  

  are both 

3) if i  and ie  are both negative, then (24) will hold 
if  is positive. 

e 
iu  1 ,  ,i n denotes the joint number.  

ow in Tab
Using these observations, one can easily obtain the 

four rules listed bel le 1. 
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Table 1. Fuzzy rules for the tracking controller. 

ie  

 P N 

P uN uZ  
ie  

N uZ uP 

1, ,i n 

 
In this table, , deno espectiv  positive, nega- 

ve errors;
P, N te r ely

ti  Pu , Nu  and Zu

 a

 are respectively positive, 
ne

lassical Lyapunov synthesis from the world 
ex

 rule 
ba

gative and zero control inputs. These rules are simply 
the fuzzy par on f e, e nd u which follow directly 
from the stabilizing conditions of the Lyapunov function, 
(22).  

In concluding words, the presented approach trans- 
forms c

titi s o

of 
act mathematical quantities to the world of words [16]. 

This combination provides us with a solid analytical ba- 
sis from which the rules are obtained and justified.  

To complete the design, we must specify the mem- 
bership functions defining the linguistic terms in the

se. Here, we use the Gaussian membership functions  

     2
, exppositive z zx G x a x a        

   ,negative zx G x a    

   ,0zero x G x   

where  and z stands for control variable, the
product nd” and center of gravity inferencing.  

some p
in

eq

0za 
for “a

 

g
For ositive constants ua , epa  and eva , the 

above four rules can be represented by the follow  
uation:  

       
   

     
   

, ,
i ii epi u i epi u

i

G e a a G e a a
u

  


, ,

, ,

, ,
i i

i epi i epi

i evi u i evi u

i evi i evi

G e a G e a

G e a a G e a a

G e a G e a

 

  


 

 

 

 

in more details 

     
     
    
    




2

2

2 2

2

2

2

2

p exp

exp exp

exp exp

exp exp

i epi i epi

i ui

i epi i epi

i evi i evi

ui

i evi i evi

e a e a

e a e a

e a e a
a

e a e a

     

    
     
         

 

 

 

from which 




ex
u a

  






  
  
  
  




exp 2 exp 2

exp 2 exp 2

exp 2 exp 2

exp 2 exp 2

epi i epi i

iu  ui

epi i epi i

evi i evi i
ui

evi i evi i

a e a e
a

a e a e

a e a e
a

a e a e

  
 

   
  

  
   

 
 

 

This yields the FLC  

  tanh 2 tanh 2
i ii ui ep i ev iu a a e a e      , 1, ,i n   (25) 

In (25), the inputs are the error in position  and the 
error in velocity and the output is the contr l input of 
joint i; i.e. it is a PD-type FLC. The followin remarks 
ar
 The FLC in (25) is a special case of fuzzy sy

where Gaussian membership functions are used t
 t

, 

natives. For e am ng different 

.  

ie
o
g 

ie  

e in order:  
stems, 

o in- 
troduce the input variables ( ie  and ie ) to he fuzzy 
network. Also the fuzzification and defuzzification 
methods used in this study are not unique; see [28] 
for other alter x ple, usi
membership functions (e.g. triangular, trapezoidal 
  etc.) will result in a different FLC. However, the 
FLC in (25) is a simple one and the closed form rela- 
tion between the inputs and the output makes it com- 
putationally inexpensive.  

 Only three parameters per each DOF need to be tuned, 
namely, they are 

iua , 
iepa  and 

ieva . This greatly 
simplifies the tuning procedure, since the search 
space is quite small relative to other works. For in- 
stance, the FLC in [21] needs 45 parameters to be 
tuned for a one DOF system

 This controller is inherently bounded since 
 tanh 1x  .  

 Each joint has independent control input iu  
1, 2, ,i n  .  

 In the case of robotic control, this controller can be 
regarded as output feedback controller since the joint’s 

joi easured, it can be easily ob- 

 

igure,  and are the links lengths;  and 

tio

position and velocity are usually the outputs. If the 
nt velocity is not m

tained using a differentiator as shown in Figure 2. 

4. Experimental Setup: Test Rig, Reference 
Trajectory and Performance Measures 

 
In this study, we have considered a two link planar robot 
whose diagrammatic sketch is shown in Figure 3. In this 
F 1 2 1 2

are the masses of the links; 1c  and 2c  are the loca
n of the center of masses; 1

   m m  
- 

I  and 2I  are the moment 
of inerti out nter of ks. 

ments of the

 

ints; Figure 4. The robot has been built at the    

a ab  the ce  masses of the two lin
The parameter values of the links are given in Table 2. 

These inertia parameters have been calculated by simply 
measuring and weighting the mechanical ele  
arms. 
 
4.1. The Test Rig 

The test rig consists of a geared-drive horizontal robot 
arm with 2 DOF whose rigid links are joined with revo- 
lute jo

Copyright © 2011 SciRes.                                                                                  ICA 
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 Fuzzy controller 

(25) for joint 1

Fuzzy controller 
(25) for joint 2

2dq

2q

1dq

2u

Robot arms

1q1u
dtde /1

dtde /2

1e

2e

Differentiator

Differentiator

de1/dt 

de2/dt 

e1 qd1 

qd2 

q1 u1

e2 

q2 u2

 

Figure 2. Configuration of the robotic fuzzy control structure (the case of two-link robot). 
 

 

Figure 3. Schematic diagram of the two-link robot. 
 

Table 2. Parameters of the robot arm. 

Parameter Link 1 Link 2 

m  mass ( 0.096 kg) 0.471 

  length 

.g. (m) 

(m) 0.154 0.205 

c  position of c 0.154 0.1025 

2 12m   ineI rtia (kg·m2) 0  0  .00093 .00033

 

 

Figure 4. Experimental two-link planar arm. 
 
Mechatronics lab, Faculty of Engineering, Assiut Uni
versity motor 
rivers, AD/DA interface card, and a host computer. 

H-bridge drive circuit. The motors operate at rated 24 
n is obtained 

from analogue angular potentiometers for both angles. 

d 
ex

blends and the 
ubic polynomial trajectory. In this paper, we present 

lts of other two tra- 
ctories; sinusoidal trajectory and linear trajectory with 

- 

volt, 2 rpm, and 1.5 Nm. Position informatio

. It is equipped with joint position sensors, 
d
Both links, made of aluminum, are actuated by brushed 
dc motors with gear reduction controlled via simple 

The potentiometers are one turn (300 degrees) and 1 kΩ. 
Each potentiometer is coupled to the joint motor. Both 
potentiometers are supplied by ±5 V, so that each one 
has a resolution of 0.033 volt/degree. The velocity of 
each link is obtained by using the position signal and 
utilizing first order backward differencing technique.  

The feedback signals from the potentiometers and the 
control signals to the motor drives are sent to/from the 
computer via PCI-DAS6014 AD/DA interface card. The 
card has a minimum 200 kS/s conversion rate and has an 
absolute accuracy of 8.984 mV when operates at the 
range ±10 V. The control program is written in C++ an

ecuted at 1 ms sampling rate. Figure 5 shows the 
closed loop control system.  
 
4.2. The Reference Trajectory 
 
During the preliminary evaluation of the proposed FLC, 
we have examined three trajectories. They are sinusoidal 
trajectory, linear trajectory with parabolic 
c
results of the latest trajectory. Resu
je
parabolic blends, can be found in the master thesis of the 
second author, [29]. A cubic polynomial trajectory in the 
joint space is defined by:  

  2 3
0 1 2 3dq t a a t a t a t             (26) 

where 0 1 2, ,a a a  and 3a  are constants determined 
upon the trajectory constraints. The desired motion of the 
two joints is identical and starts from zero to 45˚ in 10 
seconds. The motion constraints (boundary conditions) 
are: ( 0)q t 0di   , ( 10)diq t   45˚, ( 0) 0  and diq t  

( 10) 0diq t   , w here 21,i   is the joint number. The 
desired to (26) will be:   trajectory according 

  2 31.35 0.09 , 0 10diq t t t t    ,     (27) 

where  dq t  is in degrees.  
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Figure 5. Block diagram of the test rig. 
 
4.3. The Performance Measures 
 
While comparing the efficiencies of the

ere experimentally tested on the robot arm, we will use 
king error to quan- 

tatively compare the performance results. One measure 

 controllers that 
w
some meaningful measures of the trac
ti
that will be used is the scalar valued Root Mean Square 
(RMS) error defined as  

   
1/2T

2

0

1 d
f

fRMS T e t t
 
 
 
 

         (28) 

where is the tracking error. Since data are only 
discrete time intervals, 

 e t  
sent back at 1 Nt t  with con- 
stant sam ling period p 1j jT t t    for all j; we discre- 
tize (28) as 

   

   

2

1

2

1

1 N

d
j

T

q j q j
N







   

where 

1 N

d
jf

RMS q j q j
T

   
      (29) 

 q j  denotes    jq t q j T   and f N TT   .  
To get m nsight o form  
use the maximum absolute value of the tracking error 
after two second from the starting time. We name it as 

as 

ore i n the tracking per ance, we also

maxe  which is defined 

   max
1
max d

j N
e q j q j

 
           (30) 

The above two measures have been also adopted in 
[15].  
 
5. Results a

n, the experiments conducted using four 
are the con- 

osed FLC, the CTC and 
e SMC. For the sake of comparison, we ran each 

strength and weakness of each design. To show robustness, 
the four controllers have been initiated with initial 

ual to 10˚, i.e. T(0) [10 10 ]q     and 
the robot is at rest, i.e. . This condition 

nd Discussion 
 
n this sectioI

controllers are presented. These controller 
ventional PD controller, the prop
th
controller with the same initial conditions to analyze the 

yields an initial position error [ 0.175  0.175]Te    
radian.  

The control torque for the proportional-plus-derivative 
(PD) controller is defined by:  

position error eq
T(0) [00]q 

     P Du t K e t K e t              (31) 

where KP and KD are 2  2  po gonal 
matrices called the propor e derivative gain 
matrices, respectively. A traditional  
with PD c

sitive definite dia
tional and th

 problem associated
ontrol is that we cannot increase the controller 

ga
of the gains exceed their 

critical values, the system becomes u
performance of the PD controller is restri

ins, as much as we want, to improve the controller’s 
performance. When the values 

nstable. Thus the 
cted with the 

values of these gains.  
In the experiments, the proportional feedback gains of 

the PD controller were set to 1 40PK  , 2 30PK   and 
the derivative gains were chosen to be 1 0.01DK  , 

2 0.005DK   for the base and elbow links, respectively. 
They have been selected as high as possible without 
violating the stability of the overall system.  

With respect to the proposed FLC, the control gains 
were set to 1 2u ua a 5   thus ensuring that the control 
sig

ardware uirement
 

nals which are computed according to (25) remain in 
the range of ±10 V which is a h req . The 
other control parameters were picked as 1 10epa  , 

2 9epa   and 1 0.05eva  , 2 0.045eva  . We chose these 
parameters experimentally after few trials. The criteria 
upon which these values have been chosen is simply the 
fa

C, the cont
stest possible convergence of the initial errors.  
For the CT rol gains according to (6) were 

selected after trials as 6
1 8  10PK   , 6

2 7  10PK    
and the derivative gains were chosen to be 1 3DK  , 

2 2.5DK   for the base and elbow links, respectively. 
ontrol ve e best possible 

tracking performance. The matrix  
These c  gains ha achieved th

M q  and the vector 
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otion 

stimated values for 

 ,h q q  were computed on-line using the parameter 
values presented in Table 2 and the equation of m
of two link planar robot which can be found in [4].  

For the SMC, the e  M̂ q
ere se

, 
 ˆ ,h q q  and the hitting control gain K in (14) w t 

0.5 0ˆ
0 0.3

M
 

  
 

, 
0.01ˆ
0.003

h
 

  
 

 a
40 0

0 30

 
  
 

. 

The coefficients of the function 

as: 

nd K

t  in (16) were 
selected as 1 (0.3,0.2)c diag  and 2 (50,4c diag 0)

 picked
. 

otion and achieve the best possible tracking 
nce, i.e. the fastest possible rate of converg
rors. In th coming exp ts, the sign fu

(10) has been replaced by saturation function t

mance criteria  defined in (29) 

Ag
after a t

robot m
performa
of the er
tion in 
av

ain, these control parameter values have been  
rial and error procedure so as to keep stability of 

the 
ence 

- 
o 

 When applying initial position and velocity errors, it 
can be noticed that the FLC performs better than the 
PD controller in terms of the two performance criteria; 
i.e. RMS of errors and the maximum error.  

e erimen nc

oid chattering. 
The perfor MS  as

and the maximum error (30) for all experiments are 
visualized in order. These two criteria are accounted for 
after 2 seconds in order to avoid the transient period and 
to give more insight on the performance at the steady 
state.  

The tracking performance of the four controllers is 
 

R

 


demonstrated in Figures 6-10. They show that, after 
suitable selection of the tuning parameters, the tracking 
errors of the four controllers have converged to a close 
zone around zero in the steady state phase. Figure 6 
shows that the transient period of the PD controller is 
slightly higher than that of the FLC, Figure 7. The 
transient phase of the CTC was the longest one as it can 
be noticed from Figure 8. Figure 10 shows that the 
SMC was successful in bending the system trajectories 
toward sliding surfaces and consequently the errors have 
converged as depicted in Figure 9.  

The performance measures are given in Figure 11 and 
Figure 12. Referring to these two Figures the following 
remarks are in order.  

 The CTC requires the accurate knowledge of the 
system dynamic model and the complete equations of 
motion are computed in real time. These conditions 
are difficult to verify in practice. As a result the CTC 
has the worst tracking performance.  

 There are too many parameters which are needed to 
be tuned (experimentally selected) in the case of the  
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(a)                                      (b)                                      (c) 

Figure 6. The desired and actual trajectories of (a) joint one, (b) joint two (b) and (c) the tracking errors of the PD controller. 
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(a)                                      (b)                                      (c) 

Figure 7. The desired and actual trajectories of (a) joint one, (b) joint two (b) and (c) the tracking errors of the proposed 
FLC. 

Copyright © 2011 SciRes.                                                                                  ICA 



A. B. SHARKAWY  ET  AL. 109 
 

  

 Joint 2 desired and actual trajectories 

Time (sec)
0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

 

Jo
in

t 2
 (

ra
di

an
)

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

CTC

- 

   

Errors of joint 1 & 2

Time (sec)

E
rr

or
 (

ra
di

an
)

0 2 4 6 8 10
-0.2

-0.1

0

0.1

0.2

Joint 1

Joint 2

CTC

-

-

 
(a) c) 

 Joint 1 desired and actual trajectorie

                                        (b)                                          (

Figure 8. The desired and actual trajectories of (a) joint one, (b) joint two (b) and (c) the tracking errors of the CTC. 
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Figure 9. The desired and actual trajectories of (a) joint one, (b) joint two (b) and (c) the tracking errors of the SMC. 
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SM
gence of the initial errors. This fact has affected the 
tracking performance of the controller.  

 Finally, it can be concluded that the proposed FLC 
has achieved the ease of implementation and the best 
tracking performance. 

 
6. Conclusions 
 
Since extracting knowledge from experts in many ca
is a tedious task, one would assume
formation about the system. We have im

apunov second method to get such b
nd designed a fuzzy control law so that the system is 

simplifies the extraction of the fuzzy rules.  
An important feature of this study is that it has trans- 

ferred the proposed fuzzy PD controller to a closed-form 
relation between the inputs and the output, leading to a 
computationally efficient FLC. Relative to other works 
in this area, the number of parameters needs to be tuned 
is quite small which has greatly facilitated the imple- 
mentation. Unlike the PD controller, CTC and SMC, the 

posed FLC is inherently bound he upper and 
trary selected by suitably adjust 

approach provides a systematic step by 
step procedure for the design of fuzzy-based decoupled   

Figure 10. The sliding surfaces (SMC). 

C in order to achieve the fastest possible conver- stable in the sense of Lyapunov. This procedure greatly 

ses pro ed; t
 basic physical in- lower bounds can be arbi

plemented the 
asic information 

its parameters.  
The presented Ly

a
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t 2 for the four controllers in ian. Figure 11. The RMS error of joint 1 and
 

 join rad

 

Figure 12. The maximum error of the four controllers in radian. 
 

edback controllers
rder nonlinear systems. This control scheme has been 

applied to the control of a two-link robot. It can also be 
extended to n number of link robots. Experimental re- 
sults show that the design procedure has been successful 
in representing the nonlinear dynamics in the control 
context and resulted in a stable closed-loop control. Ro- 
bustness of the FLC has been examined via initial posi- 
tion errors. Relative to the conventional PD controller, 
CTC and SMC, the proposed FLC exhibits the best per- 
formance. 
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