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Abstract 
 
In this paper, the issue of control of impact forces generated during the interaction between the hopping ro-
bot toe and the ground while landing has been considered. The force thus generated can damage the robot 
altogether. With the objective to control these impact forces, impedance control strategy has been applied to 
the hopping robot system. The dynamics pertaining to the impact between robot toe and ground has been 
modeled as in case of a ball bouncing on the ground. Bond Graph theory has been used for the modeling of 
the hopping robot system. Simulation results show that impact forces generated during the landing has been 
controlled to a specified limiting value. This model and the corresponding analysis can be further extended 
for understanding the dynamics involved in continuous hopping of robot with constant height and velocity 
control. 
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1. Introduction 
 
In recent years, legged robots, especially biped robots, 
have been developed to the extent that human-like walk-
ing has become possible. In the next stage, robots need to 
move faster and get over larger obstacles. In this respect, 
hopping robots offers a potential solution. Due to the 
possibility of adjusting the stride length irrespective of 
the structural limits of a hopping robot, it can move 
faster and avoid larger obstacles than walking. Hopping 
robots can move with greater dexterity in an environment 
characterized by holes, steps and bumps. But an impor-
tant issue related to hopping robot locomotion is reduc-
ing the impact force from the ground at the instant of 
robot landing which may, otherwise, cause damage to 
robot.  

In order to resolve this problem, Raibert [1] used hy-
draulic cylinders and Hyon et al. [2] used mechanical 
springs in their robotic legs. However, Hydraulic cylin-
ders don’t have enough control performance, especially 
in the edge of the cylinders. Considering hopping as an 
extended function of walking, use of mechanical springs 
makes the hopping robot highly dependent on spring 
characteristics and the control to be complicated. Hence, 
suppressing impact force in the landing phase without 
cylinders or mechanical springs is a big issue to be dealt 
with. In addition to the force control during landing, it is 
also important to achieve a desired position of center of 

gravity (CG) of the hopping robot at the bottom most 
point i.e. bottom of stance phase. This ensures good tra-
jectory robustness during the next hop.  

In order to deal with these issues, Sato et al. [3] has 
used a combined method of soft landing trajectory of 
robot body and optimal approach velocity to the ground. 
Fujii and Ohnishi [4] investigated this issue further and 
proposed a smooth transition method from compliance 
control to position control. However these methods could 
not achieve the desired objective of constant force con-
trol during the landing phase and precise position control 
at the bottom. 

In this paper the issue under consideration is dealt with 
by controlling the driving point stiffness (impedance) at 
the interaction port between hopping robot toe and the 
physical ground i.e. environment. Pathak et al. [5] have 
used this control strategy employing passive degree of 
freedom (DOF) in controller domain for the control of 
interaction forces between space robot tip and environ-
ment. The proposed controller deals adequately with the 
issue of force (compliance) control i.e. reducing ground 
impact forces at touchdown and position control at bot-
tom so as to prepare hopping robot for the next hop. 
Bond Graph theory [6] has been used for the modeling of 
the hopping robot system. Simulations have been per-
formed using SYMBOLS Shakti [7], a bond graph mod-
eling software. 

The paper is organized as follows. Section 2 presents 
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the bond graph modeling technique. Section 3 presents 
the modeling of the impact of hopping robot toe with 
ground as in case of a ball bouncing on ground. Section 4 
presents the dynamic modeling of a hopping robot. Sec-
tion 5 describes the impedance control scheme being 
used to control the hopping robot and presents the corre-
sponding simulation results. Section 6 discusses the re-
sults and proposes the future work. 
 
2. Bond Graph Modeling Technique 
 
The bond graph technique offers a very powerful tool for 
modeling physical systems and formulating the system 
equations. Systems from diverse branches of engineering 
science can be modeled in a unified manner using bond 
graphs [6].  

The underlying idea in bond graph modeling is that 
physical systems in various domains interact dynami-
cally through power as the common currency of ex-
change. Hence bond graphs, essentially represents the 
power exchange portrait of the system. Power is ex-
pressed as multiplication of two factors viz. generalized 
effort and generalized flow. 

In bond graph modeling, a system is considered to be a 
dynamic unit constituted of inertances (I), compliances 
(C), and dissipators (R). The external source inputs to 
system are expressed as source of effort (SE) or source 
of flow (SF) elements. Two multi-port elements trans-
former (TF) and gyrator (GY) are also used. TF element 
performs flow to flow or effort to effort conversion 
whereas GY element converts flow to effort or effort to 
flow. System Constraints are represented using ‘1’ junc-
tion (representing constant flow) and ‘0’ junction (repre-
senting constant effort) elements. The elements are con-
nected by line segments called bonds. The bonds portray 
the path of exchange of power within the constraint 
structure and elements. Power direction assignment in a 
bond graph is arbitrary in nature and may be compared 
with the fixing of coordinate systems in the correspond-
ing physical domain. The notion of causality provides a  

tool for formulation of system equations. The notion of 
causality also enables a modeler to perform qualitative 
analysis of system behavior, viz. controllability, ob-
servability, fault diagnosis, etc. Thus Bond graph mod-
eling technique enhances a modeler’s insight into physi-
cal system behavior.  

Figure 1 shows the various elements of bond graph 
along with their respective constitutive laws. In the pre-
sent work, bond graph Modeling and its simulation are 
performed using SYMBOLS2000 [7]. It runs on win-
dows XP environment. 
 
3. Modeling of Impact between Hopping 

Robot Toe and Ground 
 
This section presents the modeling of impact dynamics 
of a hopping robot toe with ground. The modeling of the 
phenomenon is inspired from the dynamics of a ball hit-
ting the ground [8]. Figure 2 shows a schematic figure 
representing the impact of a ball with ground. The Y-axis 
of the absolute (inertial) reference frame {A} shown in 
the figure represents the direction of vertical motion of 
the ball. In the figure, yB and yG represents the displace-
ment of ball and ground with respect to the frame {A}. 
Similarly VB, VG denote the velocities of the ball and the 
ground respectively with respect to the inertial reference 
frame. 

The velocity of the ball and the ground can be derived 
by considering their kinematics relationships as: 

B BV dy dt ,                 (1) 

G GV dy dt .                 (2) 

Hence Vr, relative velocity of ball with respect to the 
ground can be written as, 

r B gV V V                   (3) 

Hence, ‘yr’ relative displacement of the ball with respect 
to ground or specifically the point of contact is repre-
sented as, 

 

 

Figure 1. Bond graph elements and their constitutive laws.    
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Figure 2. Schematic diagram representing impact between 
ball and ground. 
 

 0
0

t

r B Gy y V V d   .            (4) 

The general system equation for the contact between 
ground and ball is given by: 

BdV
m mg F

dt
   ,             (5) 

G
G

dy
b ky F

dt
   ,             (6) 

where b is the damping coefficient and k is the spring 
constant used to model impact between the ball and the 
ground through spring-damper model. F is the Ground 
Impact force generated due to ball-ground interaction 
and can be evaluated using Equation (6). Modeling im-
pact between two contact surfaces through spring- 
damper model is categorized as continuous contact dy-
namics modeling. In this modeling the normal contact 
force between the contact surfaces is an explicit function 
of local indentation δ and its rate [9]. In the case of 
ball-ground interaction the ground impact force F is a 
function of yr. If yr >0 it implies there is no indentation 
on either the ground or ball and hence F is equal to zero. 
The ball will be performing ballistic motion under such a 
situation. The existence or non-existence of the effect of 
ground-ball contact on the ground impact force can be 
expressed through Equations (7) and (8). These equa-
tions represent switching of values of parameters b and k 
between zero and certain finite values. 

 0, rb b swi y  ,              (7) 

 0, rk k swi y  ,              (8) 

where swi defines a function such as (0, ) 1rswi y  , for 0 
 yr, and (0, ) 0rswi y  , for 0 < yr. 

Hence when yr > 0 i.e. ball is not in contact with the 

ground, from Equations (7) and (8) we get 0b k  . 
Hence, ground impact force F is equal to zero. Substi-
tuting 0F   in Equations (5) and (6), we get 

2

2
Bd y

m mg
dt

  .               (9) 

When the ball hits the ground, yr = 0. From that mo-
ment, the ball and the ground move as if a single system. 
The system equation governing the ball-ground system 
during contact phase is obtained by combining Equations 
(5) and (6) and is expressed as, 

2

2
G G

G

d y dy
m b ky mg

dtdt
            (10) 

The motion of the ball and ground together as a single 
system consists of two phases. In the first phase the 
spring compresses until the ball velocity drops to zero. In 
the second phase, the spring expands during which the 
ball starts rebounding. During the entire contact phase 
the relative displacement of the body with the ground is 
equal to or less than zero and the detachment occurs 
when it is positive again. 

The bond graph implementation of the impact dynam-
ics between the ball and the ground is shown in Figure 3. 
Here it is assumed that the ground has zero velocity. 
Hence the ground velocity junction does not appear in 
the bond graph. 

The parameters used for the simulation are mB = 1.0 kg, 
spring stiffness (k) = 106 N/m, damping coefficient (b) = 
60N-s/m, Initial height of the ball above the ground (h) = 
1.0m. The corresponding simulation results are presented 
in Figure 4. It can be noted from Figure 4(a) that the 
bouncing height over the consecutive hops decays con-
tinuously. Figure 4(b) shows the development of contact 
forces when ball comes in contact with ground. It should 
be noted that as since the ground impact force model is 
based on a linear spring damper system the forces are 
generated whenever there is an indentation/penetration of 
the contact surfaces. Figure 4(c) shows the bouncing ball  
 

 

Figure 3. Bond graph representing impact dynamics be-
tween ball and ground. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 4. (a) Ball bouncing height (b) Ground reaction 
force (c) Ball bouncing velocity. 
 
velocity which decays as time increases. It can be noted 
from the figure that there is a sudden change in momen-
tum after each successive impact. 

Thus the ball bouncing over ground furnishes a simple 
model of impact between two bodies. It is used in the 

next section for the modeling of impact of a hopping 
robot toe with the ground. 
 
4. Dynamic Modeling of a Hopping Robot 
 
The hopping robot is modeled as a two mass system 
based on work carried out by Sato et al. [3]. The first 
mass is body and the second mass is assumed to be con-
centrated at its leg tip (toe). The two mass points are 
connected by a linear motor. A schematic of the hopping 
robot is shown in Figure 5. The impact dynamics be-
tween the robot toe and the ground is modeled on the 
basis of work presented in the previous section on ball 
bouncing on the ground. Figure 6 shows the bond graph 
of the hopping robot including the representation of ro-
bot toe-ground interaction. 

The equations of motion of the hopping robot are 
given as: 

A
b b m b bus blsm z F m g F F             (11) 

A
t t m env t tusm z F F m g F             (12) 

Here mb is the mass of the body; mt is the mass of the 
toe, {A} represents the absolute frame which is located at 
the ground. Fm is the force generated by a linear motor. 
The interaction between the ground and toe is modeled 
by linear spring-damper system. Fenv is the reaction force 
from the environment (ground). Kg and Rg are respec-
tively spring constant and damping coefficient used for 
modeling the interaction between the toe and ground. 
Fbus and Fbls are respectively the forces exerted by the  

 

 

Figure 5. Schematic diagram of a monopod hopping robot. 
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Figure 6. Bond graph model of interaction of a monopod 
hopping robot with the ground. 
 
upper and lower limiters on the hopping robot body. 
Similarly Ftus is the force applied by the upper limiter on 
robot toe. The interaction between the respective limiters 
and robot body or toe is also modeled by a linear 
spring-damper system. Corresponding spring constant 
and damping coefficient values are same as that consid-
ered for toe-ground interaction. Considering hard ground, 
the spring constant and damping coefficient values have 
been adopted from [3]. The hopping robot system pa-
rameters are listed in Table 1. 

The phases and events of a typical hopping cycle are 
presented in the Table 2. Figure 7 shows the various 
phases of the cycle. 

In the next section, an impedance controller is de-
signed along with the hopping robot system to attain the 
desired control of impact forces. 

Table 1. Hopping robot parameters. 

Parameters 
Sym-
bol 

Value 

Body mass mb 1.3 kg 

Leg Mass mt 1.0 kg 

Spring coefficient used to model impact 
between the leg tip and the ground 

Kg 10000 N/m

Damping coefficient used to model im-
pact between the leg tip and the ground 

Rg 40 N-s/m 

Body Length Lb 0.5 m 

Upper limit of body motion Zbus 1.5 m 

Lower limit of body motion Zbls 0.2 m 

Upper limit of Toe motion Ztus 1.3 m 

 
Table 2. Hopping cycle. 

Event 

Top Body CG is highest 

Touchdown Leg Tip touches ground 

Bottom Body CG is lowest 

Liftoff Leg Tip leaves ground 

Phase 

Stance From touchdown to liftoff 

Landing From touchdown to bottom 

Thrusting From bottom to liftoff 

Aerial From liftoff to touchdown 

 
5. Impedance Control of the Hopping Robot 
 
The impedance of a system at an interaction port is de-
fined as the ratio between the output effort and the input 
flow. For applications, demanding a robotic controller to 
achieve balance between the two characteristics viz. ro-
bust trajectory tracking and accommodation of environ-
mental disturbances, the impedance control strategy [6] 
is best suited. 

The impedance control strategy, with regard to the 
problem under consideration, is based on the body mo-
tion compensation. The body motion compensation is so 
designed that the hopping robot impedance can be modu-
lated to limit the forces of interaction between hopping 
robot toe and ground. The control paradigm establishes a  
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Figure 7. Phases of a hopping cycle. 
 
proper relation between the trajectory controller and the 
force controller through the manipulation of the imped-
ance. The robot stiffness is made very high during tra-
jectory control, and appropriately modulated during force 
control. Figure 8 shows the bond graph model of hop-
ping robot with impedance controller. 

In this figure fref is the reference velocity command for 
the toe of hopping robot. To incorporate the hopping 
robot body disturbances in the inertial coordinates, the 

body velocity is sensed and feedback to the controller. A 
gain of α shows the feedback compensation. The transfer 
function between the output flow Ft(s) (i.e., the toe ve-
locity) and the input effort Eenv(s) (force input from the 
ground to the toe) represents the admittance Yrob(s) of the 
robotic system at the interaction port. The impedance 
Zrob(s) is the inverse of the admittance. Admittance at the 
interaction port can be determined from the bond graph 
shown in Figure 8. 

 

 

Figure 8. Bond graph of hopping robot with impedance controller.     
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The body and toe weights are not considered in this 
analysis as they can be treated separately as the distur-
bance force.  

Now, applying the constitutive law at junction ‘1’ cor-
responding to robot toe, we obtain 

     12 14 15e t e t e t  , 

Taking Laplace transform on both sides of above ex-
pression, we obtain 

     12 14 15E s E s E s  ,         (13) 

Transfer function of hopping robot toe can be ex-
pressed as 

       14 14 14t tE s M sF s F s P s  .     (14) 

Constitutive law at junction ‘1’, corresponding to the 
controller is given by: 

       1 19 20 21e t e t e t e t   . 

Taking Laplace transform on both sides, we get 

        2
1 1 1 c c cE s F s C s F s M s R s K s    , (15) 

where, Mc, Rc and Kc are respectively the inertia (differ-
ential gain), resistance (proportional gain) and stiffness 
(integral gain) of the controller. From the bond graph, 
using constituent laws of junctions it can be obtained 

   15 1HE s E s ,            (16) 

where H  is the high feed-forward gain. Next 1( )F s  
can be determined by writing the constituent law at junc-
tion ‘0’ (one which is supplying flow input to controller): 

       1 2 3 22 0f t f t f t f t    , 

Since reference trajectory is not considered for evalua-
tion of admittance at the interaction port,  

     1 3 22f t f t f t     .         (17) 

Substituting corresponding values and taking Laplace 
transform 

       1 17 141F s F s F s     .      (18) 

Substituting 1( )F s  from Equation (18) into Equation 
(16) 

         15 17 141HE s C s F s F s      .   (19) 

Also        17 17 17b bF s E s M s P s E s  ,      (20) 

where Pb(s) is the transfer function of hopping robot 
body. 

Applying constitutive law at Junction ‘0’ (corre-
sponding to motor torque Fm) and at Junction ‘1’ (corre-
sponding to robot toe), we obtain  

       17 15 12 14E s E s E s E s    .      (21) 

Substituting E17(s) from Equation (21) in Equation 
(20), we get 

       17 12 14bF s P s E s E s    .       (22) 

Combining Equation (13), Equation (14), Equation (19) 
and Equation (22), we obtain 

       
          

12 14

12 14 141 /

t H

b t

E s F s P s C s

P s E s F s P s F s





   
      

.  (23) 

Simplifying the above equation we get, 

      

          
 

12

14

1 1

1
1

H b

b
H H

t t

E s C s P s

P s
F s C s C s

P s P s

 

  

   
  

     
    

. 

As since Admittance at the interaction port between 
hopping robot toe and ground is defined as, 

   
 
 

 
 

14

12

1 t
rob

rob env

F s F s
Y s

Z s E s E s
    

Admittance or impedance at the interaction port is rep-
resented as 

 
      
        

1 1

1 1
t H b

rob
H t H b

P s C s P s
Y s

C s P s C s P s

 

  

   
    

. 

(24) 

Equation (24) indicates two distinct behavior of the sys-
tem. 

1) When α = 1, and μH >> 1, Yrob(s) = 1/Zrob(s) = 1/(μH 
C(s)), i.e., toe trajectory is not disturbed by either toe or 
body inertia so toe can follow the commanded trajectory. 

2) When α < 1, modulation of the impedance to ac-
commodate the interaction forces is possible. 
 

Table 3. Controller parameters. 

Parameters Symbol Value 

Effort amplifier gain μH 4 

Controller Proportional gain rc 100 

Controller Derivative gain mc 0.001 

Controller Integral gain Kc 2000 

Limiting Force Flim 60 N 

Gain (Initial Biasing) Kini 0.00 

Proportional Gain KGP 0.0004 

Integral Gain KGI 0.0002 
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(a)                                                      (b) 

Figure 9. (a) Ground impact force (b) Toe displacement. 
 

    
(a)                                                      (b) 

Figure 10. (a) Body displacement (b) Body compensation gain (α). 
 

The heuristic expression for modulation of α is given 
by, 

  
     

lim

lim lim

1 ,

ini GP GI

swi F t F

K K F t F K F t F dt

  

     
  (25) 

where F(t) is the actual contact force obtained from force 
sensor; Flim is the limiting value of the force specified, 
Kini is a constant (a bias), KGP is a proportional gain term, 
and KGI is an integral gain term. Equation (25) represents 
a proportional-integral control. The swi defines a func-
tion such as ( , ) 1swi a b  , for a  b, and ( , ) 0swi a b  , 
for a  b, where a, b are variables. 

The bond graph implementation of the impedance con-
troller with the hopping robot system is shown in Figure 
8. Simulation is carried out using SYMBOLS Shakti 
software. The reference trajectory to be followed by ro-
bot toe is taken as a half rectified sine trajectory of am-

plitude 2A, and is given by Eq. (26) as 

   2 *sin 2 * sin 2 ,0y A t swi t        .   (26) 

Then the reference velocity command for the toe, is 
given by, 

   4 cos 2 * sin 2 ,0y A t swi t         ,   (27) 

At the start of simulation the tip trajectory is initialized 
to reference trajectory to reduce the initial errors. The 
parameters values used in simulation are given in Tables 
1 and 3.  

The simulation results thus obtained are shown in Fig-
ures 9 and 10. Figure 9(a) shows that the force is con-
trolled in the encircled region. At the instant of first im-
pact a very large value of the interaction force i.e. ground 
impact force (GIF) is generated because toe velocity at 
the moment of impact is very high. However it is con-
trolled to the specified value of limiting force (FLim)  
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equal to 60N subsequently. It can be noted that negative 
peaks of GIF is produced at the beginning of first and 
second hops. It is due to the change in momentum at the 
instance of thrusting for next hop by the hopping robot. 
In subsequent hops the momentum change is of very 
small value. It is obvious in Figure 9(b) that the robot 
toe follows reference trajectory very closely. It is inter-
esting to note that the hopping robot is hopping to a con-
stant height continuously for several cycles. 

Figure 10(a) shows that the body displacement in the 
vertical direction is constrained by the upper and lower 
limiters incorporated into the hopping robot model. Fig-
ure 10(b) presents the variation of body compensation 
gain (α) with respect to time. It varies in order to ac-
commodate the interaction forces generated between the 
robot toe and ground as shown in Figure 9(a). 
 
6. Conclusions 
 
In this paper, impedance control strategy has been used 
for controlling the impact forces generated during land-
ing phase of the hopping cycle for a monopod robot. Us-
ing this strategy the forces generated during landing has 
been limited to a constant value specified to the imped-
ance controller. Also along with force control very close 
tracking of leg toe reference trajectory has been attained. 
This work thus demonstrates the successful realization of 
impedance control strategy for force control in vertical 
direction at toe ground interaction point of monopod 
hopping robot. This model and corresponding analysis 
can be further extended for developing hopping robot 
response for multi legged hopping robot, forward run-
ning at different velocities. 
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