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Abstract 
We consider the hearing loss injury among subjects in a crowd with a wide 
spectrum of individual intrinsic injury probabilities due to biovariability. For 
multiple acoustic impulses, the observed injury risk of a crowd vs the effective 
combined dose follows the logistic dose-response relation. The injury risk of a 
crowd is the average fraction of injured. The injury risk was measured in ex-
periments as follows: each subject is individually exposed to a sequence of 
acoustic impulses of a given intensity and the injury is recorded; results of 
multiple individual subjects were assembled into data sets to mimic the re-
sponse of a crowd. The effective combined dose was adjusted by varying the 
number of impulses in the sequence. The most prominent feature observed in 
experiments is that the injury risk of the crowd caused by multiple impulses is 
significantly less than the value predicted based on assumption that all im-
pulses act independently in causing injury and all subjects in the crowd are 
statistically identical. Previously, in the case where all subjects are statistically 
identical (i.e., no biovariability), we interpreted the observed injury risk 
caused by multiple impulses in terms of the immunity effects of preceding 
impulses on subsequent impulses. In this study, we focus on the case where all 
sound exposure events act independently in causing injury regardless of 
whether one is preceded by another (i.e., no immunity effect). Instead, we ex-
plore the possibility of interpreting the observed logistic dose-response rela-
tion in the framework of biovariability of the crowd. Here biovariability 
means that subjects in the crowd have their own individual injury probabili-
ties. That is, some subjects are biologically less or more susceptible to hearing 
loss injury than others. We derive analytically the distribution of individual 
injury probability that produces the observed logistic dose-response relation. 
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For several parameter values, we prove that the derived distribution is ma-
thematically a proper density function. We further study the asymptotic ap-
proximations for the density function and discuss their significance in prac-
tical numerical computation with finite precision arithmetic. Our mathemati-
cal analysis implies that the observed logistic dose-response relation can be 
theoretically explained in the framework of biovariability in the absence of 
immunity effect. 
 

Keywords 
Risk of Significant Hearing Loss Injury, Dose-Response Relation for Multiple 
Acoustic Impulses, Biovariability, A Crowd With Heterogeneous Individual 
Injury Probabilities 

 

1. Introduction 

Hearing loss impacts about 360 million people worldwide (over 5 percent of the 
global population) [1]. One cause of hearing loss is exposure to loud sounds [2]. 
For example, impulse noise from explosive blasts and weapon firings can cause 
traumatic injuries to the auditory system [3] [4] [5]. 

In [4] hearing loss injury experiments were conducted at the University of 
California, San Diego, using chinchilla as the animal subjects. Each chinchilla 
was individually exposed to impulse noises generated by a small shock tube 
placed at various distances to the animal to cover a range of intensity levels; after 
the exposure, the injury status of the animal was measured and recorded; results 
from multiple individual animals were assembled into data sets to mimic the 
collective response of a crowd in responding to impulse noises. The main reason 
to choose chinchilla as a surrogate animal model for human exposures is that 
hearing capabilities are very similar between chinchilla and humans. However, 
the threshold for susceptibility of injury for chinchilla is found to be lower than 
humans. Thus, the chinchilla data were then shifted by 28 dBA, representing 
scaling from chinchilla to humans. Based on the scaled data, an empirical injury 
model was developed for human exposed to multiple sound impulses of equal 
intensity. 

In our recent work [6] we use the framework of immunity to interpret the 
empirical dose-response relation from [3] for exposure to multiple sound im-
pulses. More specifically, from the observed dose-response relation, we derived 
the (negative) synergistic effect of a sequence of impulses in causing injury. We 
revealed that the phenomenological effect of a preceding sound exposure event 
on the subsequent sound exposure event is always immunity. The study of [6] 
was based on the assumption that all subjects in the crowd are statistically indis-
tinguishable and thereby it excluded the effect of biological variability. In this 
paper we focus on the effect of biological variability instead. This approach will 
provide an alternative view of the empirical dose-response relation from a dif-
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ferent theoretical angle. 
Biological variability (or “biovariability” in short) is defined as “the natural 

variability in a lab parameter due to physiologic differences among subjects and 
within the same subject over time” [7]. There are basically two types of biologi-
cal variability, inter-individual and intra-individual. Inter-individual biovariabil-
ity refers to “differences between subjects due to differences in diet, genetics or 
immune status” whereas intra-individual biovariability applies to “differences in 
the same subject over time due to diurnal cycles and other rhythms, biological 
repair mechanisms, dietary variables, aging, etc.” [7]. In this paper, we study the 
inter-individual biovariability. Prominent examples of inter-individual biological 
variability include diversities in biologically inherited traits such as height, 
weight and skin color. Due to biological variability there is always a range of 
responses displayed in measurements collected from a crowd of animal or hu-
man subjects. Therefore, it is reasonable to expect that some people are biologi-
cally less or more vulnerable to hearing loss injury than others. For example, one 
of the physiologic causes for variability is that body temperature is known to af-
fect sensitivity to noise [3]. 

The presence of biovariability prompts us to wonder: what kind of role does 
the biological variability play when a crowd of subjects is theoretically exposed 
to multiple acoustic impulses? To address this question, we investigate the feasi-
bility of explaining the observed logistic dose-response relation in the framework 
of biovariability. We mathematically derive the distribution density of individual 
injury probability in a crowd that will reproduce the observed dose-response re-
lation. For several parameter values relevant for applications, we show that the 
derived distribution is a proper density function. Further, we study the asymp-
totic approximations of the density function and their usage in numerical com-
putation of density function in finite precision arithmetic. Our mathematical 
results indicate that it is theoretically possible to interpret the observed logistic 
dose-response relation in terms of biovariability. This study on biovariability, 
together with the previous study on immunity effects [6], offers two comple-
mentary views of the observed dose-response relation. These two very different 
views represent the two extreme theoretical boundaries for understanding the 
observed dose-response relation. 

2. Mathematical Formulation 

In experiments [3], the injury risk of a crowd caused by a sound exposure was 
measured by conducting separate tests on animal subjects individually and as-
sembling individual results to mimic the collective response of a crowd. A sound 
exposure event is a complicated process, described by the acoustic waveform, 
intensity, and duration. In [8], several candidates were compared as an effective 
single metric for characterizing the overall injury causing effect of a sound ex-
posure event. It was found that 8-hour Equivalent A-weighted Level ( Aeq8hrL ) is 
the best predictor of injury [8] [9]. In the injury model developed in [3], SELA 
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(A-weighted Sound Exposure Level) was selected as the dose, which is mathe-
matically equivalent to Aeq8hrL , up to an additive constant. The observed injury 
risk follows the logistic dose-response relation: 

( )( )50

1
1 exp SELA

p
Dα

=
+ − −

                     (1) 

For a crowd, the injury risk p is the average fraction of injured. In the logistic 
dose response relation (1), α is the shape parameter controlling the steepness of 
function, and 50D  is the median injury dose. For a crowd, the median injury 
dose is the dose level at which 50% of the crowd is expected to be injured. We 
consider the hearing loss injury risk for a crowd of subjects with a wide spec-
trum of individual injury probabilities due to biovariability. That is, some sub-
jects are biologically less or more susceptible to hearing loss injury than others. 
At the apparent median injury dose for such a crowd, a particular subject's indi-
vidual injury probability may be below or above 50% due to biovariability. For 
injury of permanent threshold shift (PTS) > 25 dB, the measured values of pa-
rameters α and 50D  are respectively, 0.1α =  and 50 161D =  dB [3]. It was 
observed that parameter 0.1α =  remains the same for PTS injuries of all 
cut-off levels while the median injury dose 50D  increases with the PTS cut-off 
level [3]. 

For a sequence of N identical impulses with SELA value = S, the effective 
combined dose is given by the dose combination rule [3]: 

comb 10log , 3.44S S Nλ λ= + =                    (2) 

The injury risk of the crowd caused by the N impulses is 

( ) ( )( )

( )( ) ( )

 impulses
comb 50

1
50 10

1
1 exp

1 1
1 exp log 1

Np
S D

S D N aNη

α

α λ −

=
+ − −

= ≡
+ − − + +

       (3) 

where parameters a and η are related to other parameters as 

( )( )50exp , 0.1494
ln10

a S D αλα η≡ − ≡ =                 (4) 

We express parameter a in terms of probability ( )1 impulsep  by solving 

( ) 11 impulse

1
1

p
a−=

+
, 

( )

( )

1 impulse

1 impulse1

p
a

p
=

−
                         (5) 

This expression states that parameter a is the odds of injury of a hypothetical 
subject in the crowd with the average injury probability, which is the ratio of av-
erage injury fraction to average non-injury fraction of the crowd. In the subse-
quent discussion, we shall refer to parameter a simply as the odds of injury of an 
average subject. We shall avoid the term “average odds” since it is not the aver-
age of odds. Rather it is the odds for a subject with the average injury probabili-

https://doi.org/10.4236/health.2018.105048


H. Wang et al. 
 

 

DOI: 10.4236/health.2018.105048 608 Health 
 

ty. 
In this study, we assume that N impulses act independently from each other in 

causing injury, regardless of whether one is preceded by another (i.e., no im-
munity effect). Under the assumption of independence, we explore the possibil-
ity of interpreting the observed logistic dose-response relation for a crowd in the 
framework of biovariability. 

For mathematical convenience, we consider non-injury probability. When all 
events are independent of each other, the overall non-injury probability is simp-
ly the product of non-injury probabilities of individual events. Let ( )q ω  de-
note the intrinsic non-injury probability of a random subject in the crowd, in 
responding to one impulse. Here ( )q ω  is a random variable and we include 
symbol ω in notation explicitly to indicate the presence of biovariability. Let 
( )qρ  be the probability density of random variable ( )q ω . For one impulse, 

the average non-injury fraction of the crowd has the expression 

( ) ( )1

0
Non-injury fraction dE q q q qω ρ= =   ∫  

For N impulses, the non-injury probability of an individual subject is ( )Nq ω  
and the average non-injury fraction of the crowd is the average of ( )Nq ω : 

( ) ( ) ( ) ( )1

 impulses 0
Non-injury fraction dN N

N
E q q q qω ρ = =  ∫         (6) 

On the other hand, the injury risk follows the observed logistic dose-response 
relation (3), which relates to the average non-injury fraction as 

( ) ( )

( ) ( )

 impulses

1 impulses

Non-injury fraction

1 11 1
11

N

Np
aNaN

ηη −= − = − =
++

             (7) 

Combining (6) and (7), we arrive at an equation for ( )qρ , the distribution 
density of non-injury probability of a random subject in the crowd. 

( )1

0

1d , 1,2,
1

Nq q q N
aNηρ = =

+∫ 
               (8) 

In the next section, we derive an analytical expression for the distribution 
density ( )qρ  based on Equation (8). 

3. Analytical Results 
We solve for density ( )qρ  in Equation (8). To proceed, we make a change of 
variables ( )lns q= − . Since the non-injury probability ( )q ω  is constrained to 
interval ( )0,1 , variable ( )lns q= −  has the domain ( )0,+∞ . In terms of the 
new variable s, Equation (8) becomes 

( )0

1e e e d
1

Ns s s s
aNηρ

+∞ − − −  =  +∫                    (9) 

3.1. Power Series Solution 

We expand the right-hand side (RHS) of Equation (9) as a power series of 1
N

. 

https://doi.org/10.4236/health.2018.105048


H. Wang et al. 
 

 

DOI: 10.4236/health.2018.105048 609 Health 
 

( )
( )
( )

( )
( )

0

1

1 1 1
0

e e e d

11 1
1 1

Ns s s

k

k k
k

s

aN

aN a NaN

η

η ηη

ρ
+∞ − − −

−
+∞

− + +
=

 
 

−
= = =

+ +

∫

∑
             (10) 

Recall the mathematical identity 

( )
1 10 0

11e d e dNs us s u u
N N

β β
β β

β+∞ +∞− −
+ +

Γ +
= =∫ ∫               (11) 

where the gamma function is defined as 

( ) 1
0

e du zz u u
+∞ − −Γ ≡ ∫  

We use identity (11) to map each power of 1
N

 on the RHS of (10) back to a 

power of s. 

( )
( )( )

( ) ( )
( )

1 1
1 1 10

1 11 1e d
1

k k
kNs

k k ks s
a ak N

η
ηη

+∞ + −−
+ + +

 − −
= 

Γ +  
∫         (12) 

Using this mapping, we express ( ) ( )e es sg s ρ − −≡  on the left-hand side (LHS) 
of (10) as a power series. 

( ) ( ) ( )
( )( )

( )

( )
( )( )

1 1
1

0

1

0

1 1e e
1

1
1

k
ks s

k
k

kk

k

g s s
a k

s s
a ak

η

η η

ρ
η

η

+∞
+ −− −

+
=

− +∞

=

−
≡ =

Γ +

−  
=  

Γ +  

∑

∑
        (13) 

Function ( ) ( )e es sg s ρ − −≡  is the probability density of random variable 
( ) ( )( )logs qω ω≡ − . The derivation above tells us that the theoretical prediction 

matches the observed logistic dose-response relation if and only if the density of 
( )s ω  in the theoretical model has the power series in (13). It is not obvious at 

all whether or not function ( )g s  defined by power series (13) is a proper den-
sity function. Below we first show that function ( )g s  is well defined in its do-
main ( 0s ≥ ). That is, power series (13) converges for all values of 0s ≥ . 

For large values of index k, the gamma function ( )( )1kηΓ +  is well ap-
proximated by the Stirling formula [10] [11]: 

( )1 ~ 2π
e

zzz z  Γ +  
 

                        (14) 

With the help of the Stirling formula, we calculate the radius of convergence 
using the ratio test: 

( )( )
( )( )

( ) ( )
( )

( ) 11
2

conv

2 2 1 2 1
lim lim

e 1 11

k

k k

k k k
R

kk

ηηη η η
ηη

+ −

→+∞ →+∞

Γ +  + − + − 
= = = +∞    + −Γ +    

 (15) 

It follows that function ( )g s  is well defined by power series (13) for all val-
ues of s. To be a proper density function, however, ( )g s  must satisfy two more 
properties: 
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( ) 0,g s ≥                         (16) 

and 

( )
0

d 1g s s
+∞

=∫                        (17) 

We will rigorously demonstrate properties (16) and (17) for the cases of  
1
2

η =  and 1
3

η = . In addition, we will derive asymptotic approximations of  

( )g s  for large s, which are essential for practical computation of ( )g s  in fi-
nite precision arithmetic. As we will see in the analysis, the proof approach 
differs quite significantly between these two cases. Thus, it is unlikely that the 
proof approach of either case can be directly extended to other values of η. 
Nevertheless, we conjecture that properties (16) and (17) are valid for all val-
ues of η. 

To facilitate the analysis, we consider the cumulative distribution function 
(CDF) of random variable ( )s ω : ( ) ( )

0
d

s
G s g u u≡ ∫ . Integrating both sides of 

(13), we express ( )G s  as 

( ) ( ) ( )
( )( )

( )1

0
0

1
d

1 1

kk
s

k

sG s g u u
ak

η

η

+
+∞

=

−  
= =  

Γ + +  
∑∫            (18) 

We use scaling 
1

scaleds a sη
−

=  to get rid of parameter a. For simplicity and 
conciseness of presentation, we still denote the scaled variable by s and set 1a = . 
After scaling, the cumulative distribution function ( )G s  and the density func-
tion ( )g s  have the expressions 

( ) ( )
( )( )

( )1

0

1
1 1

k
k

k
G s s

k
η

η

+∞
+

=

−
=

Γ + +∑                  (19) 

( ) ( ) ( )
( )( )

( )1 1

0

1
1

k
k

k
g s G s s

k
η

η

+∞
+ −

=

−
′= =

Γ +∑               (20) 

Our general strategy is to derive a differential equation for ( )G s  based on 
the power series around 0s = . From the differential equation, we solve for 
( )G s  and ( ) ( )g s G s′= , and then derive their asymptotic approximations at  

large s. Building on the theoretical insight gained in the cases of 1
2

η =  and 

1
3

η = , we then extend the asymptotic analysis to the case of 1
7

η =  to derive an  

essential numerical formula for practical computation of ( )g s  in finite preci-
sion arithmetic. 

3.2. The Case of 1
2

η =  

Setting 1
2

η =  and differentiating (19) with respect to s, we have  
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( ) ( )
( )( )

( )

( )

( )

( )

( )

( )

( )

1

0 1
2

1 1
2

0

1 1 1
2 2

0

d 1d
d d 1 1

1
1 1 1
2

11 1
1 1 1 1
2 2

k
k

k

k
k

k

k
k

k

G s
s

s s k

s
k

s s
k

η

η
η

+∞
+

=
=

+∞ −

=

+∞− +

=

 −
 =
 Γ + + 

−
=

 Γ − + 
 

−
= − +

   Γ Γ + +   
   

∑

∑

∑

          (21) 

which leads to a differential equation for ( )G s : 

( )( ) ( )( )
1

2d 11 1
1d
2

G s G s s
s

−

− = − +
 Γ 
 

              (22) 

Using the integrating factor method and applying the condition ( )0 0G = , 
we write the solution ( )G s  as 

( )( )
1 1

2 2
0

1 11 e e d 1 e e d
1 1
2 2

ss u s u
s

G s u u u u
− −

+∞− −

 
 
 − = − = −

    Γ Γ        

∫ ∫    (23) 

It is straightforward to verify that 
 ( )( )lim 1 0s G s→+∞ − = , 

 ( )( )1G s −  increases monotonically with s because 

( )( ) 1 1
2 2

d 1 1 e e d 0
1d
2

s u
s

G s
s u u

s

− −
+∞ −−  

= − >     Γ 
 

∫          (24) 

These two results lead directly to ( ) ( )
0

d 1g s s G
+∞

= +∞ =∫  and 

( ) ( ) 0g s G s′= ≥ . 

Remark: It is fairly unusual for a solution of differential Equation (22) to con-
verge to a constant level as s increases to +∞ . In the homogeneous version of 
differential Equation (22), solution ( )G s  exponentially diverges away from 

1G =  as s increases. It is the unique combination of the condition at 0s =  
and the RHS term in differential Equation (22) that makes ( ) 1G +∞ = . If we 
change either or both of these two, ( )G s  will diverge to infinity. 

To derive the asymptotic approximations of ( )G s  for large s, we change the 
integration variable to z defined by ( )1u s z= + . We write ( )G s  as 

( )( ) ( )
1 1
2 2

0

11 e 1 d
1
2

szG s s z z
−+∞ −− = − +

 Γ 
 

∫              (25) 

For the integral in (25), at large s, the domain of dominant contribution is a 

small neighborhood near 0z = . We expand ( )
1

21 z
−

+  around 0z = : 
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( )
1

22
1 31 1
2 8

z z z
−

+ = − + +  

Each term in the power series of ( )
1

21 z
−

+  gives us 

( ) ( )1

0
e d 1 ksz kz z k s

+∞ − +− = Γ +∫  

Putting these results together, we write out the asymptotics of ( )G s  for large 
s: 

( ) ( ) ( ) ( )1
1 2 32

1 3 5
2 2 2

2 3 311 1
1 2 8
2

1 1 31
π 2 π 4 π

G s s s s s

s s s

− − −

− − −

Γ Γ 
= − Γ − + +    Γ 

 

= − + − +





     (26) 

Differentiating with respect to s yields the asymptotics of ( )g s  for large s: 

( )
3 5 7

2 2 21 3 15
2 π 4 π 8 π

g s s s s
− − −

= − + +             (27) 

Interestingly, after we concluded ( )lim 1s G s→+∞ = , the asymptotics of ( )G s  
for large s can be derived in a simple way, directly from differential Equation 
(22), by assuming that ( )G s  has an expansion of the form 

( ) 1 2 3
1

1 ,k
k

k
G s b s β β β β

+∞
−

=

= + < < <∑             (28) 

Substituting expansion (28) iteratively into differential Equation (22) gives us  

1

1
2

1
1 0
1
2

b s sβ
−

− + =
 Γ 
 

 

2 1 1
2 1 1b s b sβ ββ− − −= −  

3 2 1
3 2 2b s b sβ ββ− − −= −  

  

This set of equations yields the solution 

1 1
1 1 1,

12 π
2

bβ = = − = −
 Γ 
 

 

2 1 2 1 1
3 1 11 ,

12 2 π2
2

b bβ β β= + = = − = =
 Γ 
 

 

3 2 3 2 2
2

5 1 3 31 ,
12 4 π2
2

b bβ β β
×

= + = = − = − = −
 Γ 
 

 

  
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The result of this simple method agrees with (26), which is rigorously derived 
without any additional assumption. 

Remark: This simple method is quite powerful. By assuming the expansion 
form, we are able to derive the asymptotics of ( )G s  at large s, based upon the 
power series around 0s = . 

Next, we study the case of 1
3

η = . We will see that the differential equation 

for ( )G s  in the case of 1
3

η =  behaves very differently from that in the case of 

1
2

η =  although the main conclusions regarding ( )G s  and ( )g s  remain the 

same. 

3.3. The Case of 1
3

η =  

At 1
3

η = , differentiating (19) with respect to s leads to 

( ) ( )
( )( )

( )

( )

( )

( )

( )

( )

( )

1

0 1
3

1 2
3

0

2 1 1 1
3 3 3

0

d 1d
d d 1 1

1
1 2 1
3

11 1 1
1 2 1 1 1
3 3 3

k
k

k

k
k

k

k
k

k

G s
s

s s k

s
k

s s s
k

η

η
η

+∞
+

=
=

+∞ −

=

+∞− − +

=

 −
 =
 Γ + + 

−
=

 Γ − + 
 

−
= − + −

     Γ Γ Γ + +     
     

∑

∑

∑

      (29) 

which gives us a differential equation for ( )G s . 

( )( ) ( )( )
2 1

3 3d 1 11 1
1 2d
3 3

G s G s s s
s

− −

− = − − + −
   Γ Γ   
   

         (30) 

Using the integrating factor method and applying the condition ( )0 0G = , 
we write the solution ( )G s  as 

( )( )
2 1

3 3
0

1 11 e e d
1 2
3 3

ss u sG s u u u
− −

− −

 
 
 − = − + −

    Γ Γ        

∫        (31) 

In Appendix A, we prove that ( )G s  given in (31) satisfies 
1) ( )( )lim 1 0s G s→+∞ − = , and 
2) ( )G s  increases monotonically. 
These two results imply that ( ) ( )g s G s′=  is a mathematically proper densi-

ty function. 
To derive the asymptotics of ( )G s  for large s, we use a change of variable 
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( )1u s v= −  to rewrite solution (31) as 

( )( ) ( ) ( )
1 2

2 13 31 1
3 3

0 0
1 e e 1 d e 1 d

1 2
3 3

s sv svs sG s v v v v
− −

− − −− = − + − − −
   Γ Γ   
   

∫ ∫    (32) 

We expand ( )
2

31 v
−

−  and ( )
1

31 v
−

−  around 0v = : 

( )
2

23
2 51 1
3 9

v v v
−

− = + + +  

( )
1

23
1 21 1
3 9

v v v
−

− = + + +  

For large s, each term in the power series of ( )1 cv−  gives us 

( ) ( ) ( )1 1

0
e d 1 eksv k sv v k s O− +− −= Γ + +∫  

Substituting the power series into (32) and neglecting ( )e sO −  terms, we 
write out the asymptotics of ( )G s  for large s: 

( ) ( ) ( )

( ) ( )

1
3

1 2 3

2
3

1 2 3

1 2 4 5 7 8
3 3 3 3 3 3

2 2 5 3
1

1 3 9
3

2 2 3
2 3 9
3

2 4 101
2 1 2 1 2 13 3 9 9
3 3 3 3 3 3

sG s s s s

s s s s

s s s s s s

− − −

− − −

− − − − − −

Γ Γ 
= + + +    Γ 

 

Γ Γ 
− + +    Γ 

 

= − + − + − +
           Γ Γ Γ Γ Γ Γ           
           

     (33) 

Differentiating with respect to s yields the asymptotics of ( )g s  for large s: 

( )
4 5 7 8 10 11

3 3 3 3 3 32 4 10 28 80
2 1 2 1 2 13 3 9 9 27 27
3 3 3 3 3 3

s s s s s sg s

− − − − − −

= − + − + −
           Γ Γ Γ Γ Γ Γ           
           

   (34) 

Again, the asymptotics of ( )G s  for large s can be derived directly from dif-
ferential Equation (30) by assuming the expansion form (28). Below we use this 
approach to derive the asymptotics of ( )G s  for large s in the case of  

1
7

η = . We select the parameter value 1
7

η =  to approximate the observed value  

of 0.1494η =  in experiments. 

3.4. Asymptotics at Large s in the Case of 1
7

=η  

At 1
7

η = , differentiating (19) with respect to s leads to 
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( ) ( )
( )( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1

0 1
7

1 6
7

0

16 1
7 7

1 0

d 1d
d d 1 1

1
1 6 1
7

1 1
1

1 17 1 1
7 7

k
k

k

k
k

k

k kk k

k k

G s
s

s s k

s
k

s s
k k

η

η
η

+∞
+

=
=

+∞ −

=

− +∞ +

= =

 −
 =
 Γ + + 

−
=

 Γ − + 
 

− −
= + −

   Γ − Γ + +   
   

∑

∑

∑ ∑

       (35) 

which gives us a differential equation for ( )G s : 

( )( ) ( )( ) ( )6
7

1

1d 1 1
7d

7

k k

k
G s G s s

ks

−

=

−
− = − − +

− Γ 
 

∑              (36) 

We derive the asymptotics of ( )G s  for large s by assuming 
 ( )G s  satisfies ( ) 1G +∞ = , and 
 ( )G s  has the expansion form (28) for large s. 

Substituting expansion (28) iteratively into differential Equation (36), we ob-
tain 

( ) ( ) ( ) ( )

( ) ( )

76 6
7 7

1 1

146
7

1

11 71
7 7

7 7
7 1

7 7
7

7

k
k kk

k k

k
k

k

k

G s s s
k k

k k

s
k

− +−

= =

− +

=

−−
= + +

− −   Γ Γ   
   
+  − 

 + +
− Γ 

 

∑ ∑

∑ 

          (37) 

Differentiating with respect to s yields the asymptotic of ( )g s  for large s  

( )
( ) ( ) ( ) ( )

( ) ( )

11
7 146 6

7 7

1 1

216
7

1

7 11 7 77
7 7

7 7
7 14 1

7 7 7
7

7

kk
k k

k k

k
k

k

k kk

g s s s
k k

k k k

s
k

++
− + − +

= =

− +

=

+  −−  
 = +

− −   Γ Γ   
   

+ +   −  
  + +

− Γ 
 

∑ ∑

∑ 

      (38) 

3.5. Significance of Asymptotics at Large s for Computing ( )g s  

In this subsection, we discuss the necessity of using the asymptotic approxima-
tions in calculating density ( )g s  for large s. The power series of ( )g s  around 

0s = , given in (20), has the nice property that it converges analytically for any s. 
In practical computation with finite precision arithmetic, however, the numeri-
cal convergence of (20) is limited by the finite precision and the limitation is fat-
al at large s. To see this limitation, we examine the net sum of the power series 
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and compare the net sum with individual terms in the power series. When the 
largest term is 1016 times the net sum or more, implementing power series (20) 
with double precision arithmetic will lose all numerical accuracy in computing 
the net sum. 

To simplify the discussion, we write power series (20) in a concise and ab-
stract form 

( ) ( )
( )( )

( )1 1

0

1
,

1

k
k

k k
k

g s T T s
k

η

η

+∞
+ −

=

−
= ≡

Γ +∑               (39) 

We study the case of 1
7

η =  as an example. The power series converges for  

any s and the exact net sum is ( )g s , which has the asymptotic approximation 
(38) at large s. We use the leading term in (38) to estimate the net sum for large 
s: 

( )
8

7

0

1 for large
67
7

k
k

T g s s s
−+∞

=

= ≈
 Γ 
 

∑               (40) 

This gives us the general magnitude and trend of ( )g s . In particular, ( )g s  
decreases to zero as s increases. In power series (39), we write the absolute value 
of the k-th term as 

( ) ( ) ( ) ( )1 1
,

1

z

k z k

sT z z
zη

φ φ
= + −

= ≡
Γ +

             (41) 

The largest term in power series (39) is found by maximizing function 
( )( )1 1kφ η + −  with respect to index k. For mathematical convenience, we ap-

proximate this discrete maximization as a continuous maximization process. We 
maximize ( )zφ  with respect to z as a continuous variable. Using the Stirling 
approximation (14), we write ( )( )log zφ  as  

( )( ) ( ) ( ) ( ) ( )1 1log log 1 log log log 2π
1 2 2

zsz z s z z f z
z

φ
   = ≈ + − + − ≡    Γ +   

(42) 

We maximize ( )f z  with respect to z as a continuous variable. The deriva-
tive of ( )f z  is 

( )d 1log log
d 2

f z s z
z z

= − −                     (43) 

The derivative indicates that for large s, the maximum of ( )f z  is attained 

approximately at 1
2cz s= − . Consequently, 1

2
f s − 
 

 is a fairly tight lower 

bound on ( )max z f z . That is, the true maximum may be a bit larger but not 

too much larger than 1
2

f s − 
 

: 

( ) ( )1 1max log 2π
2 2z

f z f s s s ≈ − = − 
 

            (44) 

The largest term (in absolute value) in power series (39) is approximately 
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( ) ( )( )
( )

max max exp max

1 eexp log 2π
2 2π

kk z z

s

T z f z

s s
s

φ≈ ≈

 ≈ − = 
 

               (45) 

In summary, for large s, we estimated the net sum and the largest term in 
power series (39): 

 Net sum: 
8

7

0

1
67
7

k
k

T s
−+∞

=

≈
 Γ 
 

∑ , 

 Largest term: emax
2π

s

kk
T

s
≈ . 

The ratio of largest to net sum is 

9
14

0

67max 7 e
2π

k sk

k
k

T
s

T
+∞

=

 Γ 
 ≈

∑
                      (46) 

At 40s = , for example, the largest term in (39) is approximately 161.485 10× ; 
the net sum of (39) is 31.907 10−× ; and the ratio of largest to net sum is 

187.787 10× . Recall that the machine precision of the IEEE double precision is 
about 162.22 10−× . Clearly, at 40s = , computing function ( )g s  by numeri-
cally summing terms in power series (39) will not yield any accuracy when im-
plemented in double precision arithmetic. In addition, as s increases, the ratio of 
largest to net sum, given by Equation (46), grows exponentially with s. As a re-
sult, adopting a higher precision arithmetic will only enable us to accommodate 
a slightly larger range of s. For example, at 76s = , the ratio of largest to net 
sum is 345.072 10×  which will completely wipe out the numerical accuracy of 
quadruple precision arithmetic. In conclusion, although power series (39) con-
verges theoretically for any s, it is not a practical numerical method for compu-
ting function ( )g s  at large s. For large values of s, the asymptotic approxima-
tion (38) is absolutely essential in providing a viable way for computing function 
( )g s . 
Let us calculate ck , the index value at which the largest term occurs in power 

series (39). For large s, index ck  satisfies approximately 

( )( ) 11 1
2c ck z sη  + − = = − 

 
                    (47) 

Solving for ck  from this equation, we obtain 
1
2 1c

s
k

η

+
= −  

For 40s =  and 1
7

η = , we have 282.5ck = . 

Figure 1 plots the k-th term of power series (39) vs index k for 40s =  and 
1 7η = . The largest term occurs at indices k = 282 and k = 283, which corres-

pond very well to the predicted value of 282.5ck = . 
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Figure 1. Plot of log kT  vs k for 40s =  and 1 7η = . The inset shows 

details of the plot near the location of maximum. 

 
It is worthwhile to find fk , the cut-off index beyond which all terms in the 

power series are smaller than a threshold value specified by a relative error to-
lerance (ε). Specifically, we find index fk  such that 

( ) , for allk fT g s k kε≤ ⋅ ≥                   (48) 

where ε is the relative error tolerance. With the expression of kT  given in (41), 
we cast it approximately into a continuous problem 

( ) ( ) ( )log log log , for all 1 1
1

z

f f
s g s z z k
z

ε η
 

≤ + ≥ = + −  Γ + 
 

Applying the Stirling approximation (42) on the LHS and applying the leading 
term asymptotics of ( )g s  for large s (40) on the RHS, the constraint on fz  
becomes 

( )1 1 8 6log 1 log 2πe log log log 7
2 2 7 7

f
f

z
z s s

s
ε

      − + − − ≤ − − Γ      
     

  (49) 

For large s, the largest term of power series (39) occurs at 1
2cz s= − . We ex-

pect the cut-off threshold fz  to be a small multiple of cz , which suggests us to 

re-write the inequality for cz  approximately in terms of fz
s

: 

67
1 9 7log 1 log log log

14 2πe
f fz z

s
s s s

ε

   Γ        − ≥ − + +     
    

         (50) 

Function ( )log 1u u −  is well approximated by its quadratic expansion. 
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( )
2elog 1 1

2 e
uu u

  − ≈ −  
   

 

Using this quadratic approximation, we solve for fz  from inequality (50). 

67
2 9 7e log log log 1
e 14 2πefz s s
s

ε

   Γ      = − + + +
  

    

           (51) 

The corresponding index fk  is 

1
1f

f

z
k

η
+

= −                          (52) 

For 1
7

η = , 40s = , and 1610ε −= , we have 1008fk = . 

Note that summing the first fk  terms in the power series (39) is only a ne-
cessary condition for achieving a relative accuracy of 1610ε −=  in calculating 
( )g s . It is not a sufficient condition. In the numerical computation, the result is 

polluted by the accumulation of round-off errors caused by finite precision 
arithmetic. Thus, the numerical accuracy is limited by the machine precision of 
the number representation system multiplied by the largest term in the power 
series. As we showed above, with double precision arithmetic, even at a mod-
erate 40s = , the round-off errors completely wipe out the numerical accura-
cy. 

3.6. Density of Individual Injury Probability in the Crowd 

In this subsection, we write out ( )pρ , the distribution density of individual 
injury probability, which shows the biological variability of the crowd in its sus-
ceptibility to hearing loss injury. 

In all analysis above, function ( )g s  is the density of news  after scaling 1

new olds a sη
−

= . Density of olds  before the scaling is given by 

( )
1 1

pre-scalingg s a g a sη η
− − 

=   
 

                  (53) 

Going back to non-injury probability ( )oldexpq s= − , we write out the density 
of individual non-injury probability ( )q qρ  in terms of ( )g s . 

( )
1 1

pre-scaling
1 1 1 1ln lnq q g a g a
q q q q

η ηρ
− −  

= =        
           (54) 

The density of individual injury probability 1p q= −  is 

( ) ( )
1 11 11 ln

1 1qp p a g a
p p

η ηρ ρ
− − 

= − =   − − 
           (55) 

where ( )g s  is the density of the post-scaling random variable 
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( ) ( )

1 1lns a
q

ηω
ω

−

= − . Function ( )g s  is calculated as follows. 

 For 16s ≤ , ( )g s  is numerically computed using the partial sum of first 

( )max ,500fN k=  terms in the power series around 0s =  given in (20). 

( ) ( )
( )( )

( )1 1

0

1
, for 16

1

kN
k

k
g s s s

k
η

η
+ −

=

−
≈ ≤

Γ +∑                  (56) 

Here fk  is the number of terms to include in summation to make the trun-
cation error smaller than 10−16. fk  is estimated using (51) and (52). Since the 
estimate of fk  is not very reliable for small s, we use at least 500 terms in 
summation. 
 For 16s ≥ , ( )g s  is evaluated using the first 12gN =  groups of terms in 

asymptotic approximation (38) for large s. In (38), only the first 3 groups are 
explicitly shown. Now let us write out a general formula for the partial sum 
of the first gN  groups of terms in the asymptotic approximation. The gen-
eral formula is in the form of double summation and is suitable for numerical 
implementation. 

( ) ( ) 16
7

1 1

1
, for 16

71
7 7

g
k k N

n

k n

kg s s n s s
k k

+ −
−

= =

 −  ≈ Γ + ≥        Γ − Γ   
   

∑ ∑     (57) 

The threshold ( 16s = ) for switching from power series around 0s =  to 
asymptotic approximation at large s is discussed in next section. 

We need to point out that in asymptotic approximations (38) and (57), at a 
fixed value of s, if we include more and more groups of terms in the approxima-
tion, eventually the sum diverges. This is caused by the divergence of infinite se-
ries 

1 7
n

n

k n s
+∞

−

=

 Γ + 
 

∑  

In this infinite series, the gamma function coefficient increases much faster 
than exponential growth. At any fixed value of s, as index n increases, the n-th  

term behaves like 
e

nn
s

 
 
 

, which diverges to infinity. At a fixed and moderate 

value of gN , however, asymptotic approximation (57) provides a vital nu-
merical tool for computing function ( )g s  at large s when the power series 
around 0s =  loses numerical accuracy due to accumulation of round-off er-
rors. 

4. Numerical Results and Discussion 

In this section, we study the numerical behaviors of the power series around 
0s =  and the asymptotic approximations at large s. Based on the numerical re-

sults, we develop a numerical procedure for computing ( )g s  that is accurate 
for all values of s, small or large. The procedure is already mentioned in the pre-
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vious section and is based on switching between power series (56) and asymp-
totics (57). Using this numerical procedure, we examine the distribution density 
( )pρ  of the individual injury probability in the crowd. We also plot the cumu-

lative distribution function (CDF) of the injury probability because the CDF il-
lustrates the effect of parameter a on the distribution of individual injury proba-
bility. Here parameter a is the observed odds of injury of an average subject in 
the crowd. 

All simulations in this section are for the case of 1
7

η = , which is meant to  

approximate the observed value of 0.1494η =  in experiments. We first study 
the errors in numerical implementation of power series (56) in IEEE double 
precision. When sufficiently large number of terms are included in the power 
series summation to keep the theoretical truncation error well below the 
round-off errors, the numerical errors are mainly caused by accumulation of 
round-off errors. To calculate the numerical errors, we need a very accurate 
solution. For that purpose, we implemented all operations and functions (in-
cluding ( )log ⋅ , ( )exp ⋅  and ( )Γ ⋅ ) in a very high numerical precision by 
representing each number using an array of 200 integers to achieve 1600 sig-
nificant decimal digits. Numerical error is calculated as the difference between 
the numerical solution in double precision and the high precision solution. 
Figure 2 plots the absolute error and relative error vs s when the power series 
around 0s =  is implemented in IEEE double precision. In the previous sec-
t ion,  we  derived  that  the  l argest  term in power ser ies  (56)  is  

emax
2π

s

k kT
s

≈ . Based on that, we expect the absolute numerical error to grow  

approximately proportional to es . In Figure 2, the gray dashed line is a fitting 
of the form esy c= ⋅  to the numerical absolute errors, confirming the theoret-
ical prediction. 

The exponential growth of the accumulated round-off errors with s implies 
that, for large s, the numerical summation of power series (56) is not a good tool 
for computing ( )g s . For large s, we turn our attention to asymptotics (57) of 
( )g s . The numerical errors in using asymptotics (57) to calculate ( )g s  are 

mainly due to the approximation errors at finite s. In the previous section, we 
showed that at any fixed value of s, if we include more and more terms in the 
asymptotics, it eventually diverges. At a finite s, the approximation error of 
asymptotics cannot be made arbitrarily small by including more terms even if we 
work in exact arithmetic (i.e., no round-off error). The approximation errors can 
only be reduced by increasing s. Thus, asymptotics (57) provides a good ap-
proximation of ( )g s  only when we use a fixed number of terms and when s is 
at least moderately large. Figure 3 displays the approximation errors in asymp-
totics (57) vs s when respectively 6 groups of terms and 12 groups of terms are 
used in approximation. For 10s > , the 12-group approximation is more accu-
rate while for 10s < , the 6-group approximation is more accurate. With a fixed 
number of groups of terms, the approximation is more accurate as s is increased. 
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Figure 2. Numerical errors vs s when power series (56) of ( )g s  is 

implemented in IEEE double precision. Here the numerical errors 
are caused by the accumulation of round-off errors. The errors grow 
exponentially with s because the largest term in summation grows 
exponentially. The gray dashed line is a fitting of the form esy c= ⋅ . 

 
These numerical findings agree with the theoretical predictions in the previous 
section. 

From the results of Figure 2 and Figure 3, we see that a good numerical 
strategy for calculating ( )g s  is to use the power series around 0s =  when s 
is not too large and switch to the asymptotics when s is large enough. Figure 4 
compares the errors of these two formulas: 1) the numerical error when im-
plementing power series summation (56) in IEEE double precision, and 2) the 
approximation error in asymptotics (57). The accumulation of round-off er-
rors in power series grows with s while the approximation error in asymptotics 
decays as s is increased. Figure 4 suggests 16s =  as an optimal threshold for 
switching from power series (56) to asymptotics (57). When this switching 
strategy is implemented in IEEE double precision, it provides a numerical 
procedure for calculating ( )g s  that is accurate to 10−8 for all values of s in 
( )0,+∞ . 

With the switching mechanism developed above for calculating ( )g s , we 
study the distribution density and cumulative distribution function of the indi-
vidual injury probability. In Figure 5, we plot density ( )pρ  of the individual 
injury probability p in the crowd. Density ( )pρ  is given in equation (55), ex-
pressed in terms of function ( )g s . Figure 5 indicates that density ( )pρ  di-
verges to infinity at 0p =  and 1p = . Approximately, distribution ( )pρ  can 
be viewed as the mix of 3 component distributions: 

1) a δ-function distribution at 0p = , 
2) a nearly uniform distribution in ( )0,1 , and 
3) a δ-function distribution at 1p = . 
Because of the divergence of density at 0p =  and at 1p = , the weights of the 

two δ-function components cannot be readily read out from the plot of density 
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Figure 3. Approximation errors in asymptotics (57) vs s when re-
spectively 6 groups of terms and 12 groups of terms are used in 
approximation. With each fixed number of groups of terms, the 
asymptotic approximation becomes more accurate at larger s. 

 

 
Figure 4. Comparison of two errors: 1) the error in numerical 
summation of power series around 0s = , and 2) the approxima-
tion error in asymptotics for large s. The intersection of the two 
suggests a threshold for switching from one to the other. 

 
( )pρ . To see the weights, we examine ( )F p , the cumulative distribution 

function (CDF) of p, which clearly illustrates the weight of a δ-function compo-
nent as a jump in function value of the same magnitude. 

The CDF, ( )F p , has the expression 

( ) ( ) ( )
( )

( ) ( )11 log 10 0 log 1
d d

p s

s a ps a p
F p p p g s s G s ηη

ρ −
− =− −=− −

= = =∫ ∫        (58) 

where ( )G s  is CDF of the post-scaling random variable ( ) ( )( )1 log 1s a pηω ω−= − − , 
expressed as a power series around 0s =  in (19). While theoretically, power 
series (19) converges for any s, the practical numerical convergence is limited 
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Figure 5. Density ( )pρ  of the individual injury probability p for 

1a =  where parameter a is the observed odds of injury of an av-
erage subject in the crowd. The logarithmic scale is used in the 
vertical direction because ( )pρ  diverges to infinity at 0p =  

and 1p = . 

 
by the precision of the number representation system. In IEEE double precision, 
we adopt a switching numerical procedure for calculating ( )G s , similar to that 
for calculating ( )g s . 
 For 16s ≤ , ( )G s  is numerically computed using the partial sum of first 

( )max ,500fN k=  terms in the power series around 0s =  given in (19). 

( ) ( )
( )( )

( )1

0

1
, for 16

1 1

kN
k

k
G s s s

k
η

η
+

=

−
≈ ≤

Γ + +∑             (59) 

 For 16s ≥ , ( )G s  is evaluated using the first 12gN =  groups of terms in 
the asymptotics for large s given in (37). We rewrite it as a general formula 
below. 

( ) ( ) ( ) ( )
6

17

1 1

1
1 1 for 16

71
7 7

g
k k N

n

k n

kG s s n s s
k k

−
− −

= =

 −  ≈ + Γ + − ≥        Γ − Γ   
   

∑ ∑  (60) 

Figure 6 compares plots of ( )F p  respectively for 1 3a = , 1a = , and 
3a = . Parameter a is the observed odds of injury of an average subject in the 

crowd. As parameter a increases from small to one to large, the δ-function 
component at 0p =  decreases and the δ-function component at 1p =  in-
creases by the same amount while the distribution in between is approximately 
unchanged. 

5. Conclusion 

In this study, we examined the observed logistic dose-response relation for 
hearing loss injury caused by exposure to multiple acoustic impulses, in the ma-
thematical framework of biovariability. Previously, we interpreted the  

https://doi.org/10.4236/health.2018.105048


H. Wang et al. 
 

 

DOI: 10.4236/health.2018.105048 625 Health 
 

 
Figure 6. Plots of ( )F p , CDF of the individual injury probability, 

respectively for 1 3a = , 1a = , and 3a = . Parameter a is the 
observed odds of injury of an average subject in the crowd. As 
parameter a increases, its most prominent effect is to shift F(p) 
down nearly uniformly while keeping ( )0 0F =  and ( )1 1F = . 

 
observed dose-response relation based solely on the immunity effect under the 
assumption that all individual subjects are statistically identical (i.e., no biova-
riability). In the current study, we view the problem from a completely different 
angle; we explored the possibility of understanding the observed dose-response 
relation based solely on the biovariability of the crowd under the assumption 
that all sound exposure events act independently from each other in causing in-
jury regardless of whether one event is preceded by another. We found that 
theoretically the biovariability alone is indeed capable of explaining the observed 
dose-response relation. We derived an analytical expression for the distribution 
density of individual injury probability in the crowd that produces the observed 
results. We also derived asymptotic approximations to the distribution density 
and the cumulative distribution function. The asymptotic approximations make 
it possible to compute the distribution density in finite precision arithmetic, in 
parameter regions where the analytical expression suffers catastrophically from 
loss of accuracy due to the accumulation of round-off errors. A robust numerical 
procedure for calculating the distribution density was developed based on 
switching between the analytical expression and the asymptotics. The resulting 
numerical procedure is accurate in all parameter regions, providing a practical 
tool for computing the distribution density. The mathematical framework con-
structed in the current study, along with the theoretical results and the numeri-
cal tools obtained, paves a pathway for further investigating the presence and ef-
fects of biovariability. 
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Appendix A 

We prove that ( )G s  given in (31) satisfies 
1) ( )( )lim 1 0

s
G s

→+∞
− = , and 

2) ( )G s  increases monotonically. 
Item 1) is obtained directly by applying L’Hospital’s rule. 

( )( )

2 1
3 3

0

2 1
3 3

1 1e d
1 2
3 3

lim 1 lim
e

1 1e
1 2
3 3

lim 0
e

s u

ss s

s

ss

u u u

G s

s s

− −

→+∞ →+∞

− −

→+∞

 
 
 −

    Γ Γ        − =

 
 
 −

    Γ Γ        = =

∫

         (61) 

To prove 2), we introduce function 

( )
1 2

3 3
1

1 1
2 1
3 3

h s s s
− −

≡ −
   Γ Γ   
   

 

We write ( )G s′  in terms of ( )1h s  and define function ( )1w s : 

( ) ( ) ( ) ( )1 1 10
e 1 e d e e

ss u s sG s h u u h s w s− − ′ = + − ≡  ∫          (62) 

We only need to show ( )1 0w s ≥ . The derivative of ( )1w s  has the expres-
sion 

( ) ( ) ( ) ( ) ( )1 1 1 1 1e e e es s s sw s h s h s h s h s′ ′ ′= − − = −            (63) 

From the definition, ( )1h s  and ( )1h s′  satisfy 

( )
2 1

03 3
1

0

2
0, for1 3

2 1 0, for
3 3

s s
h s s s

s s

−
  Γ   < <  = − = > >     Γ Γ        

         (64) 

( )
5 1

03 3
1

0

22 0, for 81 3
2 1 0, for 83
3 3

s s
h s s s

s s

−
  Γ   > <  ′ = − = < >     Γ Γ        

        (65) 

where 
3

0

2
3 0.12915
1
3

s

  Γ    = =
  Γ    

 

The sign of ( )1h s′  tells us that 

( ) ( ) 0
1 1

0

0, for 8
e

0, for 8
s s s

w s h s
s s

< <′ ′= − = > >
               (66) 
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In other words, ( )1w s  attains its minimum at 08s s= . Thus, to show 
( )1 0w s ≥ , we only need to show ( )1 08 0w s ≥ . We use integration by parts to 

rewrite ( )1 08w s  as 

( ) ( ) ( )
( )

( ) ( )( ) ( )
( )

0

0

1 0 1 10 8

1 1 10 0 0
8

8 1 e d e

1 e d e d d e

s u s

s s

s s us u s

s s

w s h u u h s

h z z h z z u h s

=

=

 = + −  

 = + − −  

∫

∫ ∫ ∫
    (67) 

Function ( )10
d

u
h z z∫  satisfies 

( )
2 1

03 3

1 00

0

0, for 8
3 3d 0, at 8

2 12 0, for 83 3

u
u s

u uh z z u s
u s

  < <   = − = = =
     Γ Γ > >         

∫  

Using the sign of ( )10
d

u
h z z∫ , we have 

( ) ( ) ( )( )
( )

( )

0

0

1 0 1 10 0
8

5 4 1 2
3 3 3 3

8

8 1 e d d

9 91 e
2 1 2 110
3 3 3 3

0.4667 0

s us

s s

s

s s

w s h z z u h s

s s s s

=

− −

=

 ≥ − +  

  
  
  = − − + −
         Γ Γ Γ Γ                  

= >

∫ ∫

       (68) 

Combining these results, we conclude that ( ) ( ) ( )1 1 0e e 8 0s sG s w s w s− −′ = ≥ >  
and thus, function ( )G s  increases monotonically. 
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