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Abstract 
Physical exercise, whether aerobic, endurance or resistance types, plays a central role in estab-
lishing and maintaining the integrity of the brain and central nervous system (CNS). When exer-
cise is adhered to in conjunction with selective food/drink intake and dietary restriction, it pro-
motes neurohealth. In this article, we review the interactions of age and gender, as well as insulin 
and diabetes, with exercise, individuals’ cognitive-affective status and its interactions with exer-
cise propensity, all of which modulate the eventual outcomes of the influence of exercise upon pa-
rameters of neurohealth. The combination of exercise with dietary restriction provides numerous 
factors pertaining to psychological, neurochemical and anti-pathological manifestations of neu-
rophysiological resilience even through aging. The challenge evoked by the exercise-diet combi-
nation in the body mobilizes a multitude of adaptive cellular stress-response signaling pathways 
in neurons involving neurotrophic factors, anti-inflammatory cytokines, DNA-repair proteins, 
macroautophagy, and mitochondrial biogenesis. 
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1. Introduction 
Any bodily activity that enhances or maintains physical fitness implies the involvement of regular and frequent 
exercise. Morris and Schoo [1] have defined exercise as a planned, structured physical activity with the purpose 
of improving one or more aspects of physical fitness and functional capacity. Obesity and overeating combined 
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with a sedentary lifestyle is associated with a wide range of health problems, not least with regard to the brain 
and CNS structure and functioning, that include neuroimmune inflammatory complications, neurodegenerative 
disturbances, cognitive dysfunctioning, diabetes type II, regional brain dysconnectivity, surgency and negative 
affectivity among children and food addiction [2]-[5]. For instance, metabolic dysregulation is implicated in 
Alzheimer’s disease [6]. Both physical exercise and intermittent dietary restriction (DR) mobilize adaptive cel-
lular stress response signaling pathways in neurons involving neurotrophic factors, protein chaperones, DNA- 
repair proteins, autophagy and hormesis, and cerebral ischemia and mitochondrial biogenesis [7] [8] whereas 
overeating and a sedentary lifestyle suppress adaptive cellular stress responses thereby promoting the risk of 
neurodegenerative disorders, attention-deficit and hyperactive disorder, stroke, immunosenescence and depres-
sion [9]-[16] and dietary restriction [17] stimulated mitochondrial biogenesis. Lack of exercise, combined with 
an overweight and overeating condition, is associated with several variations of neurotoxicity and neurodege-
nerative conditions [18]-[20]. The hippocampal region of the brain seems particularly sensitive to conditions of 
illhealth, such as diabetes and overeating. Patients presenting these conditions of illhealth show smaller hippo-
campi and experience a greater degree of cognitive decline than individuals without these co-morbidities [21]. 

2. Age, Gender and Exercise 
The brain and peripheral aging processes are accelerated by high levels of energy accumulation accompanied by 
low levels of energy expenditure and energy restriction [22] [23]. Insulin resistance, a physiological condition 
through which cells fail to respond to insulin and its effective use, leads to hyperglycemia which in turn results 
increased pancreatic insulin production, hyperinsulinemia. Insulin resistance is elevated by age, obesity, adipos-
ity and a sedentary lifestyle [24]; these conditions present risk factors for cognitive dysfunction and both early- 
onset and late-onset Alzheimer’s disease [25]-[29]. De la Monte and Tong [30] have outlined the various influ-
ences of aging, lifestyle choices and predispositions, peripheral insulin resistance diseases, such as obesity, type 
II diabetes, nonalcoholic fatty liver disease and metabolic syndrome, nitrosamine exposure and familial genetic/ 
epigenetic mediators of brain loss of integrity, deficits of cognitive, motor and affective domains and neurode-
generation. Hyperphagia and obesity potentiate oxidative reactive species production chronic hyperglycemia 
accelerating the formation of advanced glucose end products in (pre)diabetes with both mechanisms driving a 
neurodegenerative outcome. Obesity, insulin resistance and sedentary habits are linked to a greater risk for Par-
kinson’s disease [31]-[33]. Furthermore, obesity appear to endower greater vulnerability to the destructive ac-
tions of neurotoxins and stress: Bousquet and colleagues [34] have shown that the exposure of adult C57BL/6 
mice to a high-fat diet exacerbated the effects of the dopamine neurotoxin, MPTP, on the decreased number of 
nigral tyrosine hydroxylase- and dopamine transporter-expressing neurons (23%) in the striatum and dopamine 
levels (32%), indicating that diet-induced obesity is associated with a reduced capacity of nigral dopaminergic 
terminals to cope with MPTP-induced neurotoxicity (see alsoMattson [35] (2014) who has outlined a compre-
hensive review of the advantages of lifestyle interventions (exercise) and energy expenditure, rather than accu-
mulation (dietary restrictions), for the prevention and treatment of Parkinsonism). 

The introduction of exercise regimes has been found beneficial both under laboratory and clinical conditions; 
this observation is particularly evident with consideration of various health biomarkers. In aged male rats 
(20-month-old, known for their obesity under sedentary conditions), treadmill exercise attenuated age-related 
cognitive decline in the inhibitory avoidance test, reduced pro-inflammatory biomarkers, TFN-α levels, and ele-
vated histone H4 acetylation levels, associated with enhanced transcriptional activity related to improved epige-
netic outcome, in hippocampal tissue [36]. In addition, Zhang and colleagues [37] obtained a positive associa-
tion between physical exercise and global genomic DNA methylation in a cancer-free population. Exercise util-
ity has been examined in wide range of inflammatory conditions [38]. The epigenetics of health benefits arising 
from regular physical exercise is being pursued [39]. Furthermore, running exercise, through amplification of 
galanin expression in noradrenergic locus coeruleus neurons and suppression of stress-induced activity of the 
locus coeruleus and noradrenaline output in locus coeruleus-target regions, induces an adaptive response to 
stress thereby relieving anxiety-like behaviors in a manner dependent on stress [40]. The effects of physical ex-
ercise, 6 weeks of voluntary running wheel activity, in male Wistar rats prior to colitis-induction using trinitro-
benzene sulphonic acid challenge was assessed in a study by Szalai and colleagues [41]. They measured colonic 
gene (TNF-α, IL-1β, CXCL1 and IL-10) and protein (TNF-α) expressions of various inflammatory mediators 
and enzyme activities of heme oxygenase (HO), nitric oxide synthase (NOS), and myeloperoxidase (MPO) 
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enzymes. It was observed that the activities of HO, constitutive NOS (cNOS) isoform were increased. The exer-
cise regime decreased significantly TNBS-induced inflammatory markers, including extent of lesions, severity 
of mucosal damage, and gene expression of IL-1β, CXCL1, and MPO activity whereas IL-10 gene expression 
and cNOS activity were elevated; iNOS activity was reduced and the activity of HO enzyme increased in com-
parison with the sedentary TNBS-treated group. Thus, the anti-inflammatory role of exercise through 1) down- 
regulation of pro-inflammatory mediator gene expression, 2) induction of anti-inflammatory mediators, and 3) 
modulation of HO and NOS enzyme activity. 

3. Insulin, Diabetes and Exercise 
Physical exercise influences cognitive, emotional, learning and neurophysiological domains, both directly and 
indirect, thereby rendering it essential that this noninvasive, non-pharmacological intervention ought to form a 
part of children’s and adolescents’ long-term health programs [42]. Some evidence suggests that neurotoxici-
ty/neuropathy may be greater in individuals presenting diabetic conditions [43]-[45]. In juvenile and adolescent 
populations, physical exercise holds benefits in association with the health of bones, cardiovascular fitness, 
healthy blood lipid profiles, psychological well-being and is linked inversely to levels of adiposity and stress 
[46]. Nevertheless, the prevailing situation among youth populations suggested that these benefits are largely 
unrealized: the 2011 Centers for Disease Control and Prevention Youth Risk Behavior Surveillance System im-
plies that only 28.7% of healthy high school pupils showed physical activity levels that reached the Federal 
guideline of 60 min moderate-to-vigorous intensity physical exercise, much less among those presenting chronic 
disorders, such as type I diabetes [47] [48]. Fear of hypoglycemia among adolescent type I diabetics induces low 
levels of exercise although this activity is an important aspect of disease management [49] [50]. Nevertheless, 
physical exercise provides a recipe for glycemic control among these patients [51]-[53]. In a study of 19 type I 
diabetics aged 14 - 20 years, with average fitness, and adiposity, meeting the Federal guideline of 60 min daily 
moderate-to-vigorous intensity physical exercise, Metcalf and colleagues [54] observed that hypoglycemia was 
31% more likely among those adolescents who had accumulated 30 minutes/day more moderate-to-vigorous in-
tensity physical exercise in the previous afternoon than those who had accumulated less. Thus, the authors pro-
pose that in the promotion of exercise type I diabetic adolescents ought to be informed on hypoglycemia preven-
tion (cf. [55] [56]).  

Patients presenting type I diabetes mellitus with insulin dependence are at risk for autonomic/central neuro-
pathy and/or cardiovascular dysregulation and coronary heart diseases [57]-[59], particularly in children [60]. 
Abnormal cardiac ANS functioning and cardiac autonomic neuropathy has been observed in children with type I 
diabetes [61]-[63]. Heart rate variability reduction linked to diabetes provides an early symptom of neuropathy 
[64]. Increased physical exercise in type I diabetic children was associated with lower diastolic blood pressure, 
lower lipoprotein levels and better glycemic control [65]. Leggio and colleagues [66] have shown the positive 
impact of exercise training on both left and right ventricular systo-diastolic function. It has been observed too 
that physically active type II diabetics over the life-long cycle presented superior fitness levels, lower homeos-
tatic model assessment-insulin resistance (HOMA-IR) and cardiovascular risk, and higher brachial artery flow- 
mediated dilation compared to sedentary peers, whilst no differences were found when compared to controls. In 
a study of fifteen type I diabetes boys given treadmill exercise 3 days/week over 12 weeks, Shin and colleagues 
[61] obtained total and low-frequency power of heart rate variability increases and lower total cholesterol levels. 
Total and high-frequency power of heart rate variability were correlated with higher cholesterol levels although 
diastolic blood pressure and low-frequency power of heart rate variability were correlated with lower total cho-
lesterol levels. The authors prescribed physical exercise interventions for children with type I diabetes. 

4. Cognitive-Affective Status and Overeating 
Much evidence supports the notion that disruptions in emotional regulation affect the maintenance of emotional 
overeating and eating pathology in obese adults with binge eating disorders [67], not least in context of “emo-
tional eating” [68]. Brownstone and colleagues [69] observed that subjective binge eating, as opposed to objec-
tive binge eating, accounted for the unique variance within weight/shape concern, diuretic use frequency, de-
pressive symptoms, anxiety, social avoidance, insecure attachment, and cognitive distortion. Patients with type 
II diabetes mellitus were reported to be more likely to be afflicted by severe depression than patients without the 
diabetes disorder while depression by itself was not an independent predictor of diabetes control [70]. Roberts 
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and colleagues [71] have shown that midlife onset of diabetes type II may influence late-life cognitive perfor-
mance through loss of brain volume and midlife hypertension may impair executive function through ischemic 
neuropathology. Berg and colleagues [72] have observed that negative affect seems to occur as an antecedent to 
“overeating without loss of control” and “binge eating” episodes thereby suggesting the necessity of focusing 
upon “affective-shift”. Negative affect was found to modulate impulsiveness and impulse control in choice be-
havior, with or without punishment/reward, in 59 women afflicted by bulimia nervosa or binge eating disorder 
and 30 controls [73]. Their results showed that negative affect influenced choice behavior differently in healthy 
controls and in women with bulimia nervosa and binge eating disorder following punishment (but not after re-
ward) whereby choice behavior deteriorated in the former under negative affect but not the latter (controls). 
Trait-impulsivity among food-craving women was shown to determine also the efficacy of a transcranial direct 
current stimulation intervention on impulsive choice behavior [74]. The notion of Chronic Positive Energy Bal-
ance (CPEB), derived from epidemiological, clinical and animal laboratory studies, applies to impairments in 
structure and function in brain regions regulating emotional and cognitive control. For example, higher BMI, in 
a study of 36 healthy adults, was linked to reduced cerebral blood flow in prefrontal cortical regions involved in 
executive functioning [75]. Human and animal notions of emotional or stress-induced eating appear to provide a 
convergence of genetic predispositions, such as impulsivity and reward sensitivity, and neurohumoral dysregu-
lation, dopamine-serotonin-noradrenaline, thereby affecting incentive salience. “Comfort-eaters” show vulnera-
bility to depression, emotional dysregulation and a need to escape negative affect and rumination. When over-
come by negative affect, they preferentially consume sweet, fatty, energy-dense food, which may confer protec-
tion against stress, as expressed by suppression of the hypothalamic-pituitary-adrenal axis response, although 
activation of the hypothalamic-pituitary-adrenal axis may itself drive appetite for these palatable foods, and the 
risk of weight gain is increased [76]. 

The affective domain presents a frequently studied issue within physical exercise interventions not least since 
the ability and capacity to interact with other individuals modulates the positive interaction with oneself thereby 
placing a premium on high levels of positive affect by presenting the conditions for developing personal charac-
teristics and delivering affective qualities [77]. Studies, undertaking to explore the cognitive-emotional profiles 
of individual expressing disorders of binge and overeating, have observed relationships between the Big Five 
dimensions of personality, dietary intake, ability to undertake dietary restrictions and compliance to dietary 
recommendations. Different ethnical and cultural cross-sectional surveys have demonstrated a positive associa-
tion between “Openness” and consumption of fruits and vegetables as well as between “Conscientiousness” and 
healthy eating habits [78]. Nevertheless, there seems little evidence that personality dimensions per se are linked 
with adherence to dietary recommendations over time, “Conscientiousness” was associated with a number of 
pro-social and health-promoting behaviors that included avoidance of alcohol-related harm, binge-drinking, and 
smoking, and adherence to medication regimens accompanied by the link between higher Conscientiousness and 
lower obesity risk. In a Korean study of BMI and personality traits [61], gender differences seem to define the 
observed relationships: in male subjects, overweight and obese men obtained higher scores on “openness to ex-
perience” and lower scores on “conscientiousness” whereas overweight and obese women had lower scores on 
“neuroticism” and “openness to experience” and higher scores on “agreeableness”. In the male participants, 
BMI was related positively extraversion with BMI and waist circumference measure more related to less dutiful 
individuals whereas, in women, “neuroticism” and “openness to experience” was negatively associated with 
BMI which was positively associated with agreeableness and waist circumference. Dispositional impulsivity, 
which is associated routinely with high-risk behavioral tendencies, including addictive consumption of, sex, al-
cohol and drugs, seems to present an important risk factor in considerations of predispostions towards the en-
gagement in addictive consumption of food [79]. They obtained positive associations between facets of impul-
siveness, food addiction symptoms, and BMI while impulsiveness was related indirectly with BMI through links 
with addictive consumption of food. There was an inclination toward behaving irrationally while experiencing 
negative mood states, “Negative Urgency”, and low levels of task persistence, “lack of Perseverance”, were 
linked with food addiction directly and relevant for the expression of BMI. Temperament and character factors 
have been shown also to be related to BMI, obesity and eating disorders [80].  

5. Exercise and Neurohealth 
Although the neuroprotective and neuroreparative effects of physical exercise have been documented consis-
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tently, particular in neurodegenerative disorder conditions [81] [82], the antineurotoxic influences of this inter-
vention are not obvious: chronic treadmill running exercise induced purkinje cell toxin resistance in the cerebel-
lum and improved the motor performance of rats [83] but six weeks of voluntary exercise did not produce any 
anti-neurotoxic effect against MPTP and MPP+ toxicity [84]; nor did 90 days of unrestricted running exercise 
prevent MPTP-induced neurotoxicity in BDNF haploinsufficient mice [85]. Nevertheless, Hosseinzadeh and 
colleagues [86] showed that lead acetate-induced increase in plasma and hippocampal malondialdehyde and re-
duction in hippocampal BDNF and total antioxidant capacity was reduced and elevated, respectively, by eight 
weeks of treadmill running (5 times/week). In an animal model of AD, two-month old male C57bl/6 mice were 
injected intracerebroventricularly with Aβ25-35, and then given access to voluntary exercise for 12 days fol-
lowed by test of cognitive performance in a Y-maze [87]. The Aβ25-35-treated mice with access to exercise dis-
played reduced neuronal degeneration and synaptic protein loss in the hippocampus compared with sedentary 
controls as well as an amelioration oxidative stress markers and increased vessel branches in the hippocampus 
region. Thus, the exercise regime here reduced oxidation stress and increased angiogenesis both expressing anti- 
neurotoxic influences. Running wheel exercise over two weeks prevented in a marked fashion the development 
of L-DOPA-induced dyskinesia in 6-hydroxydopamine hydrochloride-hemiparkinsonian mice [88]. Trimethyltin 
presents a chemical-induced model of hippocampal dentate granule cell death; two weeks of running exercise 
attenuated neuronal death and diminished elevations in TNFα, TNF receptor 1, myeloid differentiation primary 
response gene (MyD) 88, transforming growth factor β, chemokine (C-C motif) ligand 2 (CCL2), monocyte 
chemotactic protein-1, and CCL3, microphage inflammatory protein-1α, both the latter are involved in the acute 
inflammatory state following tissue damge/infection [89].  

The health benefits accruing from regular exercise are manifest: it reduced inflammatory cytokines (CPR and 
Il-6) in patients with type II diabetes [90]. In healthy individuals, physical exercise programs incorporating 
30-min sessions 3 times/per week were linked with consistent improvements in health status variables [91]. 
Regular physical exercise/exertion promotes neuroimmune functioning and facilitates prevention of heart condi-
tions, cardiovascular diseases, type II diabetes and obesity, and mental health improvements, e.g., depressive-
ness, all of which may exacerbate the Parkinson’s disease condition [92] [93]. The types of exercise relevant 
here have been characterized on the basis of type, intensity, frequency, and duration, with either endurance or 
resistance capacity as the training endpoint [94]. Endurance exercise develops one’s ability to exert oneself over 
long periods of physical activity whereas resistance exercise implies exerting resistance to the force of muscular 
contraction and elastic or hydraulic resistance, a specific type of strength training that utilizes elastic or hydrau-
lic tension to provide this resistance [95]. Physical exercise has been manifested in marked improvements both 
in function and biomarker integrity [96]-[101]. Ang and colleagues [102] have indicated that neuroprotection 
following physical exercise may be the consequence of elevated levels of an endogenous neurotrophic fac-
tor/nerve growth factor and the proliferation of its receptive cholinergic neurons thereby endowering long-term 
health advantages [103]. Thus, the benefits of regular physical exercise as a health-ensuring necessity over age, 
gender, occupation and affective status cannot be overestimated [104] [105]. 

Excess body weight and adiposity induces insulin resistance, inflammation and neuroimmune functional defi-
cits, and various other alterations in metabolic and neurohormonal factors that promote atherosclerosis, tumori-
genesis, neurodegeneration, and accelerated aging [106]. Contrastingly exercise (treadmill running, 20 metres/ 
min, 90 min) increased insulin sensitive in C57BL6J mouse skeletal tissue through a mechanism involving ac-
cumulation of M2-polarized macrophages [107]. In the current reality of aging and/or obese populations, eco-
nomic and resource-availability reductions and deterioration in personal health through overweight and obesity, 
even the health status of caregivers ought to be assessed in the interests of future health prognoses. In children 
and adolescents, a small to moderate effect was obtained with regard physical exercise training on fasting insulin 
and improving insulin resistance in juveniles [108]. Loi and colleagues [109] have identified and examined stu-
dies carried out between 1975 and 2012, involving female Caucasian caregivers older than 60 years. Despite 
small sample sizes, preponderance of short-term rather than long-term follow-ups, and varying results that li-
mited generalizability, they concluded that physical exercise interventions improved stress experience, depres-
sion and caregiver burden. Napoli and colleagues [110] studied 107 frail, obese older adults were randomly as-
signed to a control, weight-management (diet), exercise group or to a weight-management-plus-exercise (diet- 
exercise) group for a period of 12 months, with outcome measures: Modified Mini-Mental State Examination, 
total Impact of Weight on Quality of Life-Lite scores, the Word Fluency Test, Trail Making Test Parts A and B, 
and the Geriatric Depression Scale, a combination of affective status, cognitive functioning and quality-of-life 
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assessments. They found that exercise and weight loss alone provided improved improvements in affect, cogni-
tion and life quality although combination, exercise + diet, may have induced benefits comparable to exercise 
alone. It has been shown that, using an oral glucose tolerance text as index of insulin sensitivity, assessing insu-
lin resistance, in obese adults [111], regular exercise was accompanied by persistent improvements in insulin 
sensitivity that lasted at least 3 days after exercise whereas just one session of exercise elevated insulin sensitiv-
ity among the individuals to levels equivalent to the regular exercisers. Insulin resistance, implicated in the pa-
thophysiology of diabetes is associated with obesity, cardiovascular risk factors and derangement of brain and 
CNS integrity. Systemic low grade inflammation linked to obesity accelerates immunosenescence and skeletal 
muscle decline [112]-[114]. Twelve months of progressive resistance training in older adults with type II di-
abetes induced increments in skeletal muscle mass, reduced C-reactive protein and adiposity [115]. 

Many of the health benefits associated with physical exercise overlap with the neuroprotective functions of 
the cellular pathway of macroautophagy [116] [117], a multistep vacuolar degradation process signaling events 
that occur upstream of the molecular machinery of autophagy and molecular machinery involved in the forma-
tion of the autophagosome, the initial multimembrane-bound compartment formed in the autophagic pathway 
[118]. Autophagy is the process of self-digestion by cells through the actions of enzymes originating within the 
same cell thereby presenting an essential homeostatic mechanism by which cells break down their own compo-
nents. This process is receiving emerging attention in several disorder conditions, including chronic inflamma-
tory diseases, ageing and neurodegenerative diseases and adaptive immunity [119]. One relationship between 
autophagy and process of related hormesis has been illustrated with regard to ionizing radiation [120]; but there 
are several others. He and colleagues [121] have shown that some of the health benefits of exercise may be due 
to autophagy activation in multiple organs participating in metabolic regulation, e.g. muscle and adipose tissue, 
but also brain regions. They observed that mice with a knock-in nonphosphorylatable mutation in BCL2 (BCL2 
AAA mice) were defective in exercise- and starvation-induced autophagy but not basal autophagy. In wild-type, 
but not BCL2 AAA, mice treadmill exercise induced autophagy in the cerebral cortex by reversing high-fat diet- 
induced glucose intolerance after 8 weeks of treadmill running and increases in skeletal muscle glucose uptake 
(see also [122]-[124]). Following 36 weeks of moderate, long-term treadmill exercise, the cortices of exercised 
rats displayed an inactivation of mTOR, greater autophagy flux of the autophagic proteins Beclin 1, p62, LC3B 
(increased LC3-II/LC3-I ratio and reduced p62) as well as increased lysosomal protein, LAMP1, but not in the 
hippocampus [125]. Physical exercise promotes both the longevity and efficacy of the mitochondrial life cycle 
processes, biogenesis, maintenance and clearance [126]. It has been observed that premature age-related axonal 
and myelin degenerations, increased autophagy and mitophagy and mitochondrial supercomplex instability pre-
ceding degeneration and cell death [127]. It has been shown too that life-long strenuous exercise was linked to 
increased levels of the aging neuroimmune system biomarkers reduced partially with physiological aging 
through these interventions [128]. 

6. Exercise and Dietary Restriction 
A large variety of neural circuits throughout the brain show higher levels of electrochemical activity during 
physical exercise and dietary restriction than during the satiated and resting state [129]. In chronic mild stress- 
treated rats, not only behavioral improvements but also serum corticosterone, serotonin, dopamine and noradre-
naline levels in the hippocampus were elevated following exercise [130]. Aged individuals that had undergone 
an exercise program over four months evidenced elevated hippocampal blood flow and displayed greater hippo-
campal and anterior cingulate cortex functional connectivity in comparison with age-matched sedentary controls 
[131]. Neurotrophic factors, including brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 
(IGF-1), vascular endothelial cell growth factor (VEGF), glial cell line-derived neurotrophic factor (GDNF), and 
fibroblast growth factor 2 (FGF2), are implicated in the adaptive, neuroprotective, neuroreparative and plasticity 
responses of brain cells to exercise and dietary restriction [132]-[134]. An exercise + dietary (calorie) restriction 
regime caused synergistic protection against cognitive decline via up-regulation of BDNF in the hippocampus of 
stroke-prone hypertensive rats [135]. However, alternate-days feeding did not enhance the effects of forced 
swimming exercise and voluntary exercise upon hippocampal BDNF levels and spatial memory performance in 
rats [136] [137]. Body-weight-supported treadmill training regime offers a physical exercise intervention in 
which individuals presenting spinal cord injury (SCI) step on a motorized treadmill while some of the body 
weight is removed through an upper body harness. This intervention promotes temporal gait parameters, muscle 
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activation patterns, and clinical outcome measures, through reorganization that occurs simultaneously in supras-
pinal and spinal cord neural circuits in spinal cord injury individuals [138]. The influence of personal attributes, 
such as motivation, character and affective status ought not to be neglected since in a sample of obese adoles-
cents, it was shown that “motivational interviewing” enhanced adherence to this obesity intervention consisting 
of biweekly dietitian and behavioral support visits and supervised physical activity [139]. 

In a systematic review of the dietary restriction—physical exercise combination, Kuovelioti and colleagues. 
[140] identified 14 studies randomized clinical trials that fulfilled all criteria. The overall estimations showed an 
effective weight loss of 11.1 kg (about 13%) from a mean of about 4 months from baseline, a weight loss main-
tainance of 5.8 kg (about 52%) over one year; a weight regain was registered in all 14 studies with an mean of 
5.1 kg. Effective weight loss was successful but almost half of it (about 48%) was regained. The Jadad score, a 
procedure to assess independently the methodological quality of a clinical trial, showed very good to excellent 
quality for all 14 studies. Several studies have supported the use of whey protein, either as a supplement com-
bined with resistance exercise, or as part of a weight loss or weight maintenance diet, to improve body composi-
tion parameters [141]. The interactive influence of diet and exercise has led to considerations regarding aspects 
of neuroimmune functioning: 1) exercise and immunosenescence, 2) acute exercise influences on cellular shifts 
and gene expression, 3) exercise effects upon neuroimmune regulation under conditions of stress and disease, 
and 4) the impact of dietary counter measures on immunity during extreme performance [142]. Sylvia and col-
leagues. [143] investigated the proof of concept of a consolidated program of Nutrition, Exercise, and Wellness 
Treatment (“NEW Tx”) for overweight individuals presenting bipolar disorder. They found that the participants 
attended most sessions and reported high satisfaction with the treatment. Their weight, cholesterol and trigycle-
rides decreased over the study duration as well as number of daily calories and sugar intake and weekly exercise 
duration more than tripled during the duration of the study and depressive symptoms and functioning were im-
proved. EVASYON presents a multidisciplinary treatment program intervention for adolescents with overweight 
and obesity that is aimed comprising all possibly involved areas of the individual, including dietary habits, 
physical activity and cognitive and psychological profiles. Garcia-Calzon and colleagues [144] obtained signifi-
cant increases in telomere length, associated with higher structure and function, in overweight/obese adolescents. 
Furthermore, the authors imply that initial longer telomere length may offer a potential predictor for a more ef-
fective weight loss response. 

Aerobic exercise training programs consistent with public health recommendations may promote up to modest 
weight loss that may improve at-risk individuals’ prognosis for diabetes prevention, nevertheless weight loss on 
an individual basis is highly heterogeneous [145], despite concerns regarding physical exercise guidelines [146]. 
Systemic and vascular inflammation markers deteriorate with obesity and insulin resistance whereas reductions 
in plasma sICAM-1, soluble intercellular adhesion molecule-1, improve insulin sensitivity [147]. Higher levels 
of ICAM-1 are implicated in subarachnoidal hemorrhage [148]. Ryan and colleagues [149] have observed that 
exercise and weight loss reduced CRP, SAA, and tissue ICAM which indicated that exercise training offered a 
necessary component of lifestyle modification in obese postmenopausal women. Aguiar and colleagues [150] 
have indicated that diet and both aerobic and resistance exercise training prevents multi-component lifestyle 
type II diabetes by inducing weight loss and improving impaired fasting glucose, glucose tolerance, dietary and 
exercise outcomes in at risk and pre-diabetic adult populations which supports the current exercise guidelines for 
the inclusion of resistance training in type II diabetes prevention. In a home-based exercise program, mean com-
pliance to the supervised exercise training was 96% and no adverse effects were reported, while capillary glu-
cose concentration was acutely reduced in response to each cycling session. Overall, the exercise group had 
lower mean daily postprandial glucose concentrations throughout the intervention compared with the control 
group despite consuming a greater proportion of dietary carbohydrate [151]. An eight-week aerobic exercise 
training induced significant effects on mental health, subscales of physical symptoms, and anxiety and insomnia 
in 53 type II diabetic patients, but produced no significant effects on subscales related to disorder of social func-
tioning and depression [152]. Aerobic exercise training offers as an appropriate program for improving the 
health of the patients with type II diabetes mellitus, as well as inducing positive effects upon mental health. Thus, 
musculoskeletal symptoms and functional status of limbs and spine in patients with type II diabetes mellitus 
were improved in exercise subjects compared with non-exercised control subjects and correlated with PA/exer- 
cise volume and improvements in fitness parameters [153]. In a short-term exercise program study involving 
glycemic levels assessed by fructosamine concentrations in type II diabetes patients, Moura and colleagues [154] 
obtained reductions in fructosamine and improved glycemic status. Finally, dietary behavior modification, but 
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not the exercise intervention, in 68 Swedish women, 14 - 16 weeks postpartum, that produced sustained weight 
loss among overweight and obese lactating women improved also risk factors for cardiovascular disease and 
type II diabetes. 

A high fat diet is associated with adiposity, glucose intolerance and insulin resistance [155]. Metabolic ab-
normalities arising from a high fat diet cause platelet hyperaggregability that involves enhanced intraplatelet 
reactive oxygen species production and decreased (NO)-soluble guanylyl cyclase (sGC) signaling pathway in 
the platelet bioavailability [156]. A lifestyle combining dietary restriction and regular physical exercise appears 
to be essential for the integrity of cardiovascular systems [157]. Protein kinase C-beta (PKCβ) is an isozyme in-
volved in signal transduction cascades and its expression is decreased in both skeletal muscle and liver tissue 
following physical exercise. Both exercise and PKCβ deficiency may alleviate high fat diet-induced insulin re-
sistance, as shown through improved insulin tolerance [158]. Furthermore, fat accumulation and mitochondrial 
dysfunction induced by high fat diet were ameliorated also by both exercise and PKCβ deficiency. Nevertheless, 
exercise produced marginal effects on PKCβ(-/-) mice [158]. There was an improved activation of AKT, the 
“downstream signal” molecule of insulin, in skeletal muscle and liver of exercised mice, whereas PKCβ defi-
ciency blunted the difference between sedentary and exercised mice. These findings imply that down-regulation 
of PKCβ contributes to exercise-induced improvement of insulin resistance in high fat diet-fed mice. Mizutani 
and colleagues [159] have observed that six days after cerebral infarction in rats the mean latency registered be-
fore falling from a rotating rod in the voluntary exercise group was longer than that in the unexercised group. 
PKC, growth-associated protein 43 (GAP43) and phosphorylated at serine 41 GAP43 (p-GAP43) were increased 
after voluntary exercise compared with unexercised rats. The expression of PKC immunoreactivity was ob-
served in layer III of the perilesional cortex in exercised rats, and the intracellular localization in the pyramidal 
neurons was mainly translocated to the plasma membrane. These findings imply that exercise-induced paralysis 
recovery linked to neuronal plasticity and remodeling of cortical connections through the phosphorylation of 
GAP43 by interaction with PKC was due to the expression and localization of these proteins. Further, protein 
expression changes were associated with the underlying mechanisms of exercise-induced paralysis recovery in-
volving neurite formation, and remodeling of synaptic connections may be through the interaction of NGF, cal-
modulin, PKC and GAP43 [160]. 

7. Conclusion 
The present account outlines the undeniable advantages of long-term physical exercise regimes combined with a 
careful selection of one’s dietary schedules over a sedentary life-style accompanied by unrestrictive food con-
sumption. Age, gender and exercise affect neurohealth status by modulating the dynamics of insulin production 
and mobilization and the pro- and anti-inflammatory cytokines. Several of the brain and CNS problems arising 
from diabetic conditions may be alleviated by regular physical exercise. Problems arising with inadequate cog-
nitive-affective balance are associated often with nonselective and unrestrictive overeating resulting in poor 
school, academic and work performance; in children, adolescents and adults, regular physical exercise improved 
all these aspects of performance, personal attributes pertaining to affect and related biomarkers. Physical activity 
appears to endower health benefits beyond neuroprotection and neurorestoration of damaged systems; through 
processes such as macroautophagy and development of neurotrophic factors, it reinforces brain and CNS integr-
ity through preempting diabetes and obesity, cardiovascular risk factors, immunosenescence and skeletal muscle 
decline thereby delaying or halting the progression of age-related disorders [161] (For further reading see [162]- 
[166]).  
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