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ABSTRACT 

Alpha-synuclein is the major component of 
Lewy bodies, insoluble protein aggregates, 
found in patients with Parkinson’s disease, dif-
fuse Lewy body disease, and the Lewy body 
variant of Alzheimer’s disease. Alpha-synuclein 
has been found within Lewy bodies to contain 
many different modifications, including nitration, 
phosphorylation, ubiquitination, and truncation. 
C-terminally truncated forms of alpha-synuclein 
aggregate faster than the full-length protein in 
vitro, and are thus believed to play a role in 
Lewy body formation and disease progression. 
Pathological studies of post mortem brain tissue 
and the generation of transgenic mouse models 
further support a role of C-terminally truncated 
forms of alpha-synuclein in disease. Several 
enzymes, some of which function extracellularly, 
have been implicated in the production of these 
C-terminally truncated forms of alpha-synuclein. 
However, the enzymes responsible for alpha- 
synuclein truncation in vivo have not yet been 
firmly established. 
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1. INTRODUCTION 

Lewy bodies are insoluble, predominantly cytoplasmic, 
protein aggregates located in the brain that are character- 
istic of a group of neurological diseases. Lewy body dis-
eases include Parkinson’s disease (PD), diffuse Lewy 
body disease (DLBD), and the Lewy body variant of 
Alzheimer’s disease (LBV). No single event has been 
shown to cause Lewy body diseases, yet all of these dis- 
eases result in similar pathological and physiological 
characteristics. Lewy body diseases are all pathologically 
defined by the accumulation of cytoplasmic protein de- 
posits and neuronal cell death (reviewed in [1]). Physio- 
logical effects include an increase in cellular oxidative 

damage [2] and inflammation ([3], reviewed in [4]). 
These diseases are all progressive, and Lewy body for- 
mation correlates with a decline in motor and cognitive 
functions, and eventual fatality. 

2. MAIN BODY 

2.1. Lewy Body Diseases 

The major component of Lewy bodies is alpha-synu- 
clein [5] (Figure 1). Before the identification of al- 
pha-synuclein, Lewy bodies were characterized by the 
presence of ubiquitin and hyper-ubiquitinated proteins 
[6]. In addition to alpha-synuclein and ubiquitin, Lewy 
bodies have been found to contain a plethora of other 
protein components, but not all of these components are 
present in every Lewy body in every patient. Other pro-
teins that play a role in the UPS have been identified  

 

 

Figure 1. Alpha-synuclein-positive Lewy bodies. Post 
mortem tissue from the substantia nigra of Parkinson’s 
disease patients was stained for alpha-synuclein (brown). 
A single nerve cell containing two Lewy bodies is 
shown, with a scale bar of 8 µm. Reprinted by permis- 
sion from Macmillan Publishers Ltd: Nature [16]. 
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in Lewy bodies, and these include dorfin [7], Nub1 [8], 
and p62 [9,10]. Other proteins identified in Lewy bodies 
include microtubule-associated proteins [11-14] and pro- 
tein kinases [15]. The mechanism by which these pro- 
teins co-aggregate with alpha-synuclein and the signifi- 
cance of their aggregation is unknown. 

While a vast amount of information has been gener- 
ated about Lewy body diseases in the past two decades, 
many questions remain about the cause and progression 
of these diseases. One such question is whether the al- 
pha-synuclein-containing protein aggregates are harmful 
or if they are merely a mechanism by which the cell se- 
questers individual protein components that might oth- 
erwise be toxic. Recent results suggest that the alpha- 
synuclein-containing inclusions may not be toxic them- 
selves, but that the intermediate, oligomeric species 
along the aggregation pathway might be responsible for 
proteotoxicity [17,18]. The factors that initiate this ag- 
gregation pathway are unknown. Several factors, how- 
ever, have been shown to contribute to the development 
and progression of Lewy body diseases, including both 
genetic and environmental factors. In the case of Parkin- 
son’s disease (PD), three independent missense muta- 
tions in alpha-synuclein (A30P, E46K, and A53T) have 
been shown to cause early-onset forms of the disease 
[19-21]. Duplications [22] and triplications [23] of the 
alpha-synuclein gene, and, thus, overexpression of the 
protein, also cause early-onset forms of PD. Mutations in 
other genes, such as LRRK2 [24,25], PARK2 [26], 
PINK1 [27], DJ-1 [28], and ATP13A2 [29] are linked to 
familial forms of PD; however, these monogenic forms 
of PD only account for about 5% of all cases. Interest- 
ingly, the other 95% of cases have the same pathological 
hallmarks as the monogenic forms of disease. No muta- 
tions in the SCNA gene encoding for alpha-synuclein 
have been found to cause other Lewy body diseases, yet 
these diseases exhibit alpha-synuclein pathology similar 
to that found in PD patients. These observations suggest 
that a common mechanism of pathogenesis exists in all 
Lewy body diseases, but that the initiation of pathogene- 
sis may vary. 

The most prevalent risk factor for Lewy body diseases 
is age. Many physiological processes are altered as an 
organism ages. Some of the age-related processes that 
have been correlated with Lewy body diseases include an 
increase in oxidative damage to cellular components (re- 
viewed in [30]), dysfunction of the mitochondria (re- 
viewed in [31]), and the long-term exposure to environ-  

mental toxins [32]. Additionally, many studies have 
aimed to understand the effects of aging on the cellular 
protein degradation machinery. Proteolysis offers an al- 
ternative mechanism for reduction in levels of the pre- 
sumptive cytotoxic protomer. Changes in both major 
pathways of protein degradation in the cell, the UPS and 
autophagy, have been observed with age. While effects 
on the trypsin- and chymotrypsin-like activities of the 
proteasome with age have been inconclusive [33-36], the 
PGPH-like activity of the proteasome has consistently 
been shown to decrease with age [37,38]. Additionally, 
gene expression studies have indicated a change in pro- 
teasomal subunit expression patterns with age in both 
murine muscle [39] and human fibroblasts [40]. A de- 
cline in autophagy function was observed in rats and 
human fibroblasts, through a decrease in both substrate 
binding and transport to lysosomes [41]. 

With these wide-ranging physiological alterations that 
occur with age, it is reasonable to hypothesize that pro- 
teins could be modified over time, leading to enhanced 
aggregation propensity, and the possible initiation of 
disease. Lewy body diseases might be the result of the 
failing protein degradation pathways being unable to 
compensate for the buildup of damaged proteins. Certain 
combinations of variables or specific genetic back- 
grounds may yield an individual more susceptible to 
these alterations and the lack of compensatory mecha- 
nisms, explaining why some individuals succumb to 
Lewy body diseases while others do not. A further study 
of each of these processes will allow for a more complete 
understanding of disease pathogenesis and the generation 
of targeted therapeutics to slow progression or prevent 
these diseases altogether. 

2.2. Alpha-Synuclein Structure 

Alpha-synuclein is a 140-amino acid protein that is 
paralogous to two other nervous system proteins, re- 
ferred to as beta- and gamma-synuclein. Alpha-, beta-, 
and gamma-synuclein are similar in sequence, with most 
of the similarity lying within the N-terminus of the pro- 
teins. The N-terminal portion of alpha-synuclein includes 
seven imperfect repeats of 11 residues containing the 
KTKEGV consensus sequence, while the C-terminus 
contains many acidic residues and is, thus, negatively- 
charged (Figure 2). Residues 61 - 95 encompass many 
hydrophobic residues, and a peptide corresponding to 
this region of the protein (referred to as the NAC region) 

 

 

Figure 2. Human alpha-synuclein sequence. The sequence of the 140-amino acid protein (accession number P37840.1) 
is shown. Underlined regions are the seven imperfect 11-residue repeats and the sequence in red is the amyloidogenic 
NAC (Non-Aβ Component) region of the protein. 
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has been found to colocalize with Aβ plaques in Alz- 
heimer’s disease [42]. 

Alpha-synuclein is among the increasing number of 
proteins recognized as an intrinsically-disordered protein 
(IDP), a class of proteins characterized by their lack of a 
defined structure in the native state (reviewed in [43]). 
Upon binding to negatively-charged vesicles, alpha- 
synuclein adopts a conformation that has a high al- 
pha-helical propensity [44,45], and a fraction of neu- 
ronal alpha-synuclein has been found to associate with 
membranes in vivo [46]. Structural studies aimed at un- 
derstanding the membrane-bound form of alpha-synu- 
clein have relied on nuclear magnetic resonance (NMR) 
spectroscopy. A structure of the full-length, membrane- 
bound form of alpha-synuclein (Figure 3) reveals a con- 
formation in which the N-terminal two-thirds of the pro-
tein forms a broken, amphipathic alpha-helix [47,48]. 
This structured portion of the protein is responsible for 
membrane binding, and residues at the very N-terminus 
are essential for this process [49]. In the NMR structure 
of alpha-synuclein, the negatively-charged C-terminal 
tail remains flexible and disordered [47,48]. 

Structural studies aimed at understanding the unbound 
state of alpha-synuclein have relied on molecular dy- 
namics (MD) simulations and more complicated NMR 
techniques, such as residual dipolar coupling (RDC) and 
paramagnetic relaxation enhancement (PRE). These tech- 
niques have produced results suggesting that alpha- 
synuclein adopts several thousand structurally distinct 
conformations, many of which are more compact than 
expected for a random coil [50]. Many of these confor- 
mations include long-range (15 Å to 20 Å) interactions 
between the C-terminus and both the N-terminus and 
central portion of the protein [50-52]. 

Several observations suggest that disruption of these 
long-range interactions facilitates aggregation of the 
protein. In one study, spermine (a polyamine that has 
been shown to interact with the acidic C-terminus of al- 
pha-synuclein) was shown to disrupt these long-range 
interactions while simultaneously promoting in vitro ag- 
gregation [52]. A similar result was observed when tem- 
perature was increased [52]. Additionally, studies have 
shown that the PD-causing A30P and A53T alpha-synu-  

 

 
Figure 3. Structure of alpha-synuclein bound to lipid vesicles. 
The structure of the full-length human protein was determined 
by NMR (PDB ID: 1XQ8) and image was rendered in PyMol. 
The structure is colored from blue (N-terminus) to red (C-ter- 
minus). 

clein mutations both have decreased propensity for these 
long-range interactions [53]. A disruption of these in- 
tramolecular long-range interactions and increased ag- 
gregation propensity of the protein may serve as a me- 
chanism by which these two point mutations cause Lewy 
body formation and disease pathogenesis. 

2.3. Alpha-Synuclein Physiology and  
Function 

Alpha-synuclein is a protein expressed in all verte- 
brates. Homology of alpha-synuclein across species is 
greater at the N-terminus of the protein, with more vari- 
ability in sequence located toward the C-terminus. Al- 
pha-synuclein is expressed predominantly in the central 
nervous system and localizes to presynaptic terminals 
[54]. Expression of alpha-synuclein is quite high, con- 
sisting of up to 1% of the total protein in certain regions 
of the brain [54]. Within neuronal cells, alpha-synuclein 
has been detected in both the cytoplasm and nucleus [55]. 
Studies utilizing fractionated rat brains revealed that 
about 15% of alpha-synuclein is membrane-bound [56], 
and the protein was recently found associated with mi-
tochondrial membranes in normal dopaminergic neurons 
[57,58]. The relative subcellular distribution of alpha- 
synuclein varies among different neuronal cell popula-
tions [58,59].  

While the function of alpha-synuclein has not been 
clearly established, observations related to the protein’s 
cellular localization have provided clues to its function. 
Studies aimed directly at establishing a role for al- 
pha-synuclein have relied on mammalian cell culture and 
animal models. Alpha-synuclein knockout mice have 
been generated in several laboratories and these mice are 
viable, suggesting that other proteins might play a re- 
dundant role in the cell. Deletion of alpha-synuclein in 
mice causes only mild phenotypes including defects in 
presynaptic vesicles [60], synaptic transmission [61], and 
the trafficking [62] and metabolism [63,64] of fatty acids. 
Additionally, mice lacking alpha-synuclein are protected 
from the changes in cellular morphology and cell death 
caused by exposure to MPTP (an inhibitor of mitochon- 
drial complex 1) that are observed in wild-type mice [65]. 
The levels of striatal dopamine were also less affected by 
MPTP-treatment in alpha-synuclein knockout mice than 
wild-type mice [66].  

Alpha-synuclein has been shown to play a role in 
neurotransmitter release, as studied by neuronal cell lines 
expressing alpha-synuclein [67], knockout mice [68], 
and mice overexpressing alpha-synuclein [67]. Alpha- 
synuclein has also been shown to exhibit a non-classical 
chaperone activity that plays a role in SNARE complex 
assembly [69]. Both the N- and C-termini of alpha- 
synuclein play a role in this process, as the N-terminus of 
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the protein binds to phospholipids while the C-terminus 
is necessary for synaptobrevin-2 binding [69]. Alpha-, 
beta-, and gamma-synuclein triple knockout mice showed 
an age-dependent decrease in SNARE complex assembly 
[69], indicating that other members of the synuclein fam- 
ily may serve roles that are similar to, or possibly overlap 
with, those of alpha-synuclein. 

While neuronally-expressed alpha-synuclein has been 
the focus of most studies, many other tissues have been 
found to express the protein. These tissues include mus- 
cle [70], cerebral blood vessels [71], red blood cells [72], 
plasma [73], and blood cells of the immune system [74]. 
The function of alpha-synuclein in these tissues has not 
been elucidated. An investigation of alpha-synuclein ex- 
pression in human fetuses revealed that alpha-synuclein 
is expressed throughout fetal tissue; however, expression 
in most of these tissues is reduced in adulthood [75], 
suggesting that alpha-synuclein might also play a role in 
development. 

3. DISCUSSION 

3.1. Alpha-Synuclein Truncation and  
Disease 

Wild-type and the three PD-causing missense muta- 
tions of alpha-synuclein were the primary focus of early 
studies related to alpha-synuclein aggregation and dis- 
ease; however, recent studies have acknowledged post- 
translational modifications of alpha-synuclein and the 
role that these forms of the protein might play in disease. 
Within Lewy bodies, alpha-synuclein has been found to 
exist with several modifications (Table 1). These modi- 
fications include phosphorylation [76-78], nitration [79], 
and ubiquitination [80,81]. In addition to full-length al- 
pha-synuclein, truncated forms of alpha-synuclein have 

 
Table 1. Modifications of alpha-synuclein identified in Lewy 
bodies and their effects on in vitro aggregation. The identifica- 
tion of alpha-synuclein modifications that are present in Lewy 
bodies might provide insight into disease progression. 

Protein  
Modification 

Source of  
Identification

Effect on In 
Vitro  

Aggregation 

Source of 
In Vitro 
Studies 

nitration of Tyr 
residues 

[79] 
decreased 

aggregation 
[91,92] 

S87  
phosphorylation 

[78] 
decreased 

aggregation 
[78] 

S129  
phosphorylation 

[76,77] inconclusive [76,93] 

truncation 
(C-terminal) 

[84-86] 
increased 

aggregation 
[84,87,88]

truncation 
(N-terminal) 

[84] 
increased 

aggregation 
[94] 

mono-, di-, 
tri-ubiquitination 

[80,81] unknown - 

been identified in pathological aggregates [82,83]. These 
truncations have been found to occur from either the 
C-terminus or both the N-terminus and C-terminus in 
patient samples [84,85] and transgenic mouse models of 
PD [84,86]. The C-terminus of alpha-synuclein is nega- 
tively-charged, and truncating the protein to remove this 
terminus produces species that are more prone to aggre- 
gation in vitro [84,87,88]. Notably, truncated alpha- 
synuclein can facilitate aggregation of the full-length 
protein in vitro [84] and in vivo [89]. A truncated form of 
alpha-synuclein, the NAC region, accumulates in Alz- 
heimer’s disease patients [90], suggesting a role for al- 
pha-synuclein truncation in the pathogenesis of multiple 
diseases. 

Transgenic mice have recently been generated that 
overexpress truncated forms of alpha-synuclein. These 
mice exhibit physiological and pathological similarities 
to patients with Lewy body diseases [95-97]. The three 
different models generated expressed the human alpha- 
synuclein (residues 1 - 120) on a mouse alpha-synuclein 
null background [95], human A53T alpha-synuclein 
(residues 1 - 130) on an endogenous mouse alpha-synu- 
clein background [96], and human alpha-synuclein (resi- 
dues 1 - 119) on an endogenous mouse alpha-synuclein 
background [97]. The mice expressing human A53T al- 
pha-synuclein (residues 1 - 130) exhibited loss of dopa- 
minergic neurons in the substantia nigra, lower levels of 
striatal dopamine, and an alteration in spontaneous lo- 
comotor activities [96]. Mice expressing human alpha- 
synuclein (residues 1 - 119) showed a similar loss of stri- 
atal dopamine [97]. The expression of truncated alpha- 
synuclein also led to a greater susceptibility to stress 
[95]. 

The identification of truncated forms of alpha-synu- 
clein that are both prone to aggregation and capable of 
cross-seeding aggregation of the full-length protein, sug- 
gests that alpha-synuclein truncation is a mechanism that 
contributes to the progression of Lewy body diseases. 
Some reports have indicated that truncation of alpha- 
synuclein is a natural process, and that truncated forms 
of alpha-synuclein are detectable in the brain of healthy 
individuals [98]. However, expression of the disease- 
causing A30P and A53T alpha-synuclein leads to en- 
hanced production of these C-terminally truncated spe- 
cies and faster aggregation [86]. These results, in addi- 
tion to the transgenic mice studies described previously 
[95-97], suggest that truncated alpha-synuclein species 
might lead to the development of clinical and pathologi- 
cal features if expression exceeds a certain level. In indi- 
viduals with disease, the amount of truncated alpha- 
synuclein species generated might have reached a thresh- 
old that can no longer be tolerated by the cell. The mecha- 
nism by which these truncated forms of alpha-synuclein 
are produced and accumulated in the cell is unknown. 

Copyright © 2012 SciRes.                                                                    OPEN ACCESS 



C. M. Ritchie, P. J. Thomas / Health 4 (2012) 1167-1177 

Copyright © 2012 SciRes.                                                                    

1171

3.2. Degradation of Alpha-Synuclein by the  
20S Proteasome 

Several in vitro studies have shown that alpha-synu- 
clein can be degraded by the 20S proteasome in a ubiq- 
uitin-independent manner [84,99,100]. While degrada- 
tion of alpha-synuclein by the 20S proteasome has not 
been established in an animal model, several in vivo ob- 
servations support a role for the 20S proteasome in al- 
pha-synuclein truncation and disease. C-terminally trun- 
cated forms of alpha-synuclein isolated from A53T al- 
pha-synuclein transgenic mice were identified by mass 
spectrometry, and some species were identical to those 
produced by the 20S proteasome in vitro [84,86]. Fol- 
low-up studies, in which antibodies were generated to 
specifically recognize the C-terminus of truncated forms 
of alpha-synuclein, revealed that two C-terminally-trun- 
cated alpha-synuclein species, residues 1 - 110 (syn110) 
and residues 1 - 119 (syn119) are present at much higher 
levels in patients with Lewy body diseases than in age- 
similar controls (Figure 4) [85]. Additionally, it was 
shown that these truncated species are not always colo- 
calized within the same cell [85], hinting at a mechanism 
by which their production may be regulated. 

OPEN ACCESS 

3.3. Roles of Other Enzymes in  
Alpha-Synuclein Degradation 

While many independent laboratories have shown that 

alpha-synuclein can be degraded by the 20S proteasome 
in vitro [99-101], other studies have implicated different 
enzymes in the cleavage and degradation of alpha-synu- 
clein [102-115]. These enzymes are different in their 
activities, their cellular localization, and their regulation. 
It is possible that more than one of these enzymes works 
in concert to produce truncated forms of alpha-synuclein 
that promote Lewy body formation and disease progres- 
sion. Understanding these processes and their coopera- 
tivity in normal physiological processes and in disease 
progression is essential to the understanding and treat- 
ment of Lewy body diseases. 

Calpain 1 is a calcium-dependent cysteine protease 
[116,117]. In in vitro assays, the monomeric form of al- 
pha-synuclein is predominantly cleaved by calpain 1 
after residue 57, while fibrillar forms of alpha-synuclein 
are degraded at the C-terminus, specifically after resi- 
dues 114 and 122 [102]. Another study by the same 
group revealed that the cleavage products produced by 
calpain 1-mediated degradation of soluble alpha-synu- 
clein inhibited aggregation of the full-length protein, 
while cleavage products produced by calpain 1-mediated 
degradation of fibrillar forms of alpha-synuclein were 
aggregation-prone and capable of cross-seeding aggrega- 
tion of full-length, monomeric alpha-synuclein [103]. It 
has also been reported that the activities of calpain I and 
the 20S proteasome may act in a concerted manner in 
producing aggregation-prone C-terminally truncated forms  

 

 
(a)                                                         (b) 

Figure 4. C-terminally truncated forms of alpha-synuclein are present in post mortem brain tissue. Antibodies specific 
for alpha-synuclein truncated after residue 110, syn110, (panel A) and after residue 119, syn119, (panel B) recognize 
high molecular weight aggregated species (arrows) in patients with the Lewy body variant of Alzheimer’s disease (LBV) 
at higher levels than in age-similar controls. Reprinted from American Journal of Pathology, Volume 177, Karen A. 
Lewis, et al., Abnormal Neurites Containing C-Terminally Truncated α-Synuclein Are Presented in Alzheimer’s Disease 
without Conventional Lewy Body Pathology, pp. 3037-3050, 2010 (reference [85]), with permission from Elsevier. 
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of alpha-synuclein [104]. In this study, a product of cal- 
pain 1-mediated degradation that was resistant to further 
degradation by the enzyme, was able to enhance the 
degradation of full-length alpha-synuclein by the 20S 
proteasome and this enhancement was specific for al- 
pha-synuclein, as no enhancement was observed for the 
degradation of azocasein or peptide substrates [104]. 

Another protein that has been suggested to play a role 
in the accumulation of truncated forms of alpha-synu- 
clein is cathepsin D. Cathepsin D is a lysosomal protease 
that has been shown to cleave alpha-synuclein both in 
vitro and in the lysosomal fraction of cells expressing 
alpha-synuclein [105]. In one study, reduced proteasomal 
activity was observed in cathepsin D-deficient mice [106], 
implicating a connection between these two mechanisms 
of proteolysis. Additionally, RNAi knockdown of ca- 
thepsin D in a mammalian cell culture model [105] and 
cathepsin D knockout mice [106] exhibit alpha-synuclein 
accumulations. Another study, utilizing Drosophila [107], 
suggests that this enzyme might play a role in the normal 
clearance of alpha-synuclein. 

In light of recent reports suggesting that alpha-synu- 
clein is found extracellularly [108,118-120], proteases 
that might act on these extracellular forms of alpha-synu- 
clein might also play a role in this process. One such 
enzyme is neurosin, a serine protease that is highly ex- 
pressed in the nervous system [121]. Neurosin has been 
shown to co-aggregate with alpha-synuclein in Lewy 
bodies [109] and, in in vitro assays, specific cleavage 
products of alpha-synuclein were produced in which the 
protein was cleaved in the NAC region and at several 
sites within the C-terminus [110]. A recent study has re- 
vealed that neurosin-mediated cleavage of alpha-synu- 
clein can only occur extracellularly, once neurosin is ac- 
tivated upon secretion [111]. 

Matrix metalloproteases (MMPs) are a class of en- 
zymes that are secreted, and they are known to play a 
role in the degradation of extracellular and membrane- 
bound proteins (reviewed in [122]). Several studies have 
implicated MMPs in the cleavage and aggregation of 
alpha-synuclein. In one study, a dopaminergic neuronal 
cell line was transfected with alpha-synuclein, and the 
overexpression of alpha-synuclein led to its secretion 
[112]. Additionally, when these transfected cells were 
subjected to oxidative stress, the expression of matrix 
metalloprotease-3 (MMP-3) was increased and alpha- 
synuclein fragments were observed in the media. Gen- 
eration of alpha-synuclein fragments was blocked by 
pre-incubation with a matrix metalloprotease inhibitor. In 
addition, results from this study showed that alpha- 
synuclein can be cleaved at several positions, and that 
the products generated facilitate aggregation and cell 
toxicity. Other studies have also shown that matrix met- 
alloproteases can cleave alpha-synuclein, and cleavage 

by both MMP-1 and MMP-3 was shown to increase ag-
gregation propensity [113]. Another study showed C- 
terminal cleavage by MMP-3, and found that MMP-3 
cleavage of the disease-causing A53T mutation of al- 
pha-synuclein resulted in an increased number of degra- 
dation products [114]. By analyzing post mortem brain 
tissue from PD patients, the authors reported that over 
50% of Lewy bodies contain MMP-3 [121]. Recently, 
plasmin, a serine protease in the blood, was also impli- 
cated in alpha-synuclein degradation and disease patho- 
genesis [115]. 

4. CONCLUSION 

These in vitro and in vivo results reveal that the forma- 
tion of truncated alpha-synuclein species is a complex 
process that likely plays a role in disease. The major goal 
of studying these diseases is to develop therapeutics to 
halt or slow down the progression of the disease. Where- 
as truncation of alpha-synuclein is correlated with accel- 
erated disease progression, interference in this process 
may have therapeutic benefit. Elucidating the mechanism 
by which these enzymes produce partially-truncated and 
aggregation-prone alpha-synuclein cleavage products is 
an initial step in identifying relevant therapeutic targets. 
Considering the large number of enzymes that have been 
shown to produce truncated alpha-synuclein species in 
vivo, it is likely that alpha-synuclein degradation is the 
result of a combination of enzymes that either work in- 
dependently or together to produce specific aggrega- 
tion-prone species. 
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