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ABSTRACT 

We in vitro examined the existing prognoses of 
the dissociation constant, KD, between ТАТА- 
Binding Protein (TBP) and ТАТА box with single 
nucleotide polymorphism (SNP) associated with 
human diseases. Five SNPs of the genes for 
cytochrome P450 2A6 (associated with lung 
cancer), β-globin (associated with β-thalassemia), 
mannose binding lectin (associated with vari-
able immunodeficiency), superoxide dismutase 
1 (associated with amyotrophic lateral sclerosis) 
and triosephosphate isomerase (associated with 
anemia) fell within the range of –ln(KD;M/KD;WT) 
between –1.5 and –1 (here KD;WT and KD;M denote 
the normal ТАТА box and with SNP). The meas-
urements using EMSA demonstrated that: 1) all 
the predictions stating that the affinity between 
ТВР and ТАТА boxes with SNPs would be re-
duced were correct; 2) the departures of three 
predictions from the measurements fell within 
the confidence interval; 3) all the predictions 
consistently underestimated actual mutational 
damage caused to ТАТА boxes with SNPs ( < 
0.05; binomial law) and two of these predictions 
did so significantly ( < 0.05, Student’s t-test). 
This consistent underestimation seems to be 
associated with the damage to the context that 
modulates ТВP/ТАТА affinity, for example, the 
contact between the nucleosomal histone H3-Н4 
dimer and the core promoter immediately near 
ТАТА boxes. 

Keywords: Disease; Polymorphism; ТАТА Box; 
TATA-Binding Protein; Affinity; In Vitro; In Silico 

1. INTRODUCTION 

Variome is largely composed of single nucleotide 
polymorphisms (SNPs). Consequently, no study of their 
role in ontogenesis or evolution could be efficient with-
out computer-aided support, which would facilitate 
searches for SNPs, their documentation and systematiza-
tion, and prediction of their effects on the phenotype. 
Over the past 10 years of the coordinated development 
of SNP databases and tools [1], anything outside the 
phenotype prediction problem has been successfully 
addressed [2]. In particular, SNPs responsible for the 
propensity for diseases, susceptibility to therapy, sensi-
tivity to regulatory signals, etc. have been identified.  

Phenotype prediction has only been successful for the 
SNPs that are located in coding gene regions. The com-
mon molecular mechanism that can be proposed for 
them is mutational damage made to the gene product [3]. 
It is still difficult to propose the same for SNPs in regu-
latory gene regions because of the diversity of such re-
gions and a multi-step sequence of assembly, rear-
rangement and degradation of DNA-protein complexes 
in them [4]. Examination of the computer-aided methods, 
developed on such a diverse material, requires an ex-
perimental examination in standardized conditions (the 
standardized examination throughout). Because different 
authors set different experimental conditions, the sole 
analysis of experimental results in databases will be of 
little help. For avoidance of doubt, there is a need for a 
coordination of bioinformatic and experimental studies 
of each type of site. For that purpose we conduct an in-
tegrated study of regulatory SNPs, especially those in 
ТАТА boxes.  

The binding of the ТАТА-binding protein (ТВР) to 
the ТАТА box initiates assembly of the pre-initiation 
complex on the ТАТА-containing promoters of eu-
karyotic genes, which is a critical step in transcription 
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initiation [5]. We had previously [6] proposed a method 
for in silico prediction of TBP/TATA affinity on the 
basis of the equation of equilibrium of ТВР/ТАТА 
binding over four subsequent steps: 1) non-specific ТВР/ 
DNA binding [7]; 2) TBP sliding along DNA [8]; 3) 
molecular identification of ТВР/ТАТА [9] and 4) stabi-
lization of the ТВР/ТАТА complex [10] by endothermic 
DNA rearrangement [11] with the helix axis bent at 90˚ 
[10]. This equation allows the relative affinity, Δ = 
–ln(KD;M/KD;WT), that is, the ratio of the dissociation 
constant of TBP and the normal TATA box (KD;WT) to 
that of TBP and the mutant ТАТА box (KD;M), to be 
estimated in logarithms. This equation puts together the 
commonly accepted criterion associated with TATA 
boxes for arbitrary DNA [9] (step 3), which only ac-
counts for 33% of the variance of the measured ТВР/ 
ТАТА affinity [12], original criteria associated with 
TBP affinity estimates for single-strand DNA [13] and 
double-strand DNA [14] (step 4 and step 2) and an in-
dependent measurement of the non-specific affinity of 
ТВР and DNA [7] (step 1). Stepwise binding of ТВР to 
ТАТА, predicted by this equation [6], has now been 
confirmed experimentally [15]. 

Although the ТАТА box is a “semi-conservative” site, 
no-neutral SNPs in it are quite a common occurrence in 
various species. Thus, in silico analysis of the current 
content of the GenBank database revealed 146 SNPs of 
the HIV-1 TATA box, of which 63 could significantly 
modify the replicative potential of the virus and were 
associated with the regional patterns of the AIDS pan-
demic in 70 countries [16]. Literature data suggest that 
53 SNPs in the ТАТА boxes of various human genes are 
associated with the propensity for diseases [17], 38 
SNPs are associated with various animal and plant traits 
valuable with respect to breeding purposes [18]. In both 
cases we predicted in silico significant departures of 
ТВР/ТАТА affinity. The aim of the present work was to 
perform a standardized experimental examination of the 
strongest reductions in ТВР/ТАТА affinity as predicated 
among 53 disease-associated SNPs in human TATA 
boxes [19]. The measurements of KD;M and KD;WT using 
EMSA demonstrated that: 1) all the predictions stating 
that the affinity between ТВР and ТАТА boxes with 
SNPs would be reduced were correct; 2) the departures 
of three predictions from the measurements fell within 
the confidence interval; 3) all the predictions consis-
tently underestimated actual mutational damage caused 
to ТАТА boxes with SNPs ( < 0.05; binomial law) and 
two of these predictions did so significantly ( < 0.05, 
Student’s t-test). 

2. EXPERIMENTAL PROCEDURES 

For the standardized experimental examination of the 

predicted ТВР/ТАТА affinity, we used recombinant 
human ТВР expressed in E. coli BL21 (DE3) cells from 
plasmid pAR3038-hTBP (courtesy of Professor B. Puhg, 
Center for Gene Regulation, Department of Biochemis-
try and Molecular Biology, The Pennsylvania State 
University, University Park, Pennsylvania, USA). E. coli 
BL21 (DE3) transformation was performed as per Pe-
terson and the co-workers [20]. The expression and puri-
fication of TBP were done as [21]. A 26-bp strand of 
oligodeoxyribonucleotides (Biosset, Novosibirsk) was 
labeled with γ32P-ATP (Biosan, Novosibirsk, Russia) 
using Т4 polynucleotide kinases (SibEnzime, Novosi-
birsk, Russia), annealed at 95˚C with the non-labeled 
strand and cooled slowly to room temperature. The equi-
librium dissociation constants, KD, of the ТВР/DNA 
complexes were measured using EMSA, titration of a 
fixed amount of ТВР with the oligonucleotide in in-
creasing concentrations and isotopic dilution [22] as 
shown in Figure 1. In doing so, we used two standard 
tools, Gel-Pro Analyzer 3.1 for the densitometry of 
autoradiographs and OriginPro 8 for obtaining KD from 
densitometry data (Figure 1). 

The confidence intervals of the 5% boundary ( < 
0.05) for each prediction were in silico estimated using 
Student’s t-test as [19]. For all the in vitro measurements, 
the confidence interval, KD, commonly acceptable for 
the above two standard tools, was set as ±0.37 in relative 
natural logarithms, which corresponds to a confidence 
interval of ±30% of the KD value in nM, commonly ac-
cepted for EMSA-measurements of the parameters of the 
protein/DNA complex. 

3. RESULTS AND DISCUSSIONS 

The predicted in silico [19] and experimentally meas-
ured in vitro relative affinity of ТВР for ТАТА boxes 
containing SNPs for the genes encoding cytochrome 
P450 2A6 (associated with lung cancer), β-globin (asso-
ciated with β-thalassemia), superoxide dismutase 1 (as-
sociated with amyotrophic lateral sclerosis), mannose 
binding lectin (associated with variable immunodefi-
ciency) and triosephosphate isomerase (associated with 
anemia) are presented in Table 1. In all cases, the ex-
periment confirmed the in silico predicted reduction in 
the affinity of ТВР to the ТАТА box containing the 
SNPs associated with the respective diseases. In three of 
the five SNPs, namely cytochrome P450 2A6 (associated 
with lung cancer), β-globin (associated with β-thalas-
semia) and superoxide dismutase 1 (associated with 
amyotrophic lateral sclerosis), the departures of the pre-
dicted values from those measured experimentally fell 
within the confidence interval.  

In the rightmost column of Table 1, we compared the 
affinity range from –3.72 ± 0 37 to –1.03 ± 0.14, which  . 
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Figure 1. An example of the EMSA measurement of the mutation-induced change in the affinity of ТВР to the ТАТА box in the 
gene for triosephosphate isomerase containing a SNP associated with anemia [33]. ТВР/ТАТА binding isotherms inferred from 
electrophoregrams (insets): upper, for the –24T allele, unaffected, KD;WT = 7 nM; lower, for the –24 g, allele, anemia, KD;M = 290 nM. 
The result of the measurement is presented in Table 1, –ln(KD;M/KD;WT) = –ln(290/7) = –3.72. 
 
corresponds to the highest amounts of damage to the 
TATA boxes with SNPs evaluated in silico [19] and in 
vitro, with the affinity range from –8.60 ± 2.33 to –5.52 ± 
2.31, which corresponds to the differences between the 
affinity of TBP for non-specific DNA [19] and the 
affinity of TBP for the five TATA boxes in the focus of 
this work [7]. Lack of overlap between these two ranges 
implies that not even the strongest damage to any TATA 
box with SNPs can affect affinity so much as can total 
destruction of that TATA box. 

Nevertheless, we were surprised to observe an under-
estimation of the effect that mutational damage to the 
TATA box had on the numerical value for any of the 
five SNPs (Table 1:  < 0.05; binomial law), and that in 
two of the five, namely mannose binding lectin (associ-
ated with variable immunodeficiency) and triosephos-
phate isomerase (associated with anemia), this underes-
timation reached significance ( < 0.05, t-test). Because 
the measurement was done in standard conditions, this 
underestimation cannot have been due to local natural 

factors (as tissue-specificity) or laboratory factors. There- 
fore, in all the five genes, not only did the SNPs affect 
ТВР/ТАТА affinity, but also damaged the nucleotide 
context, which modulates this affinity, but does not im-
mediately affect any of the ТВP/ТАТА steps included in 
the equilibrium equation [6]. Since it was discovered [23] 
that whether or not TBP will bind to the TATA box ab-
solutely depends upon the position of the TATA box 
relative to the histone octamer and, hence, the promoter 
nucleosome should undergo a rearrangement to enable 
transcription, the universal contexts, which, being com-
mon to all the genes, modulates their expression and 
interferes with transcription factor binding sites, is nu-
cleosomal context.  

It is commonly considered that the optimum seat site 
(145 bp) for the specific nucleosome of the core pro-
moter of eukaryotic genes is at position –43 [24]. Up-
stream and downstream of the nucleosome center (be-
tween positions ±13 and ±17 relative to it) are located 
two 5-bp (А + Т)-rich regions, which make contact with   
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Table 1. The existing prognoses in silico [19] and in vitro measurements the change, Δ ± δ5%, in the TBP affinity for the known 
natural ТАТА boxes with SNPs associated with human disease. 

Literature: five known ТАТА boxes with SNP associated with  
human diseases considered 

Reduction in ТВР/TATA affinity 
caused by SNP, ln 

Human gene SNP Disease 
26-bp sequence of the promoter 

DNA with TATA boxes  
(CAPITALIZED) 

Ref.
Existing 

prognoses 
in silico [19]

In vitro  
examining 
[this work] 

Deviation between 
unspecific affinity TBP 
to random DNA [7] and 
specific one in the case 

of TBP/TATA, ln  
in silico and in vitro 

norm tttcaggcagТАТАААggcaaaccaccytochrome  
P450 2A6 

T–48g 
lung cancer tttcaggcagТАgАААggcaaaccac 

[42] –1.49 ± 0.15 –1.60 ± 0.37 
–8.36 ± 2.31 
–6.38 ± 2.33 

norm cagggctgggCATAAAAgtcagggca
β-globin T–30a 

β-thalassemia cagggctgggCAaAAAAgtcagggca
[43] –1.46 ± 0.11 –1.91 ± 0.37 

–6.96 ± 2.31 
–6.17 ± 2.33 

norm aggtctggccТАТАААgtagtcgcgg
superoxide  
dismutase 1 

A–27g amyotrophic  
lateral sclerosis 

aggtctggccТgТАААgtagtcgcgg 
[44] –1.17 ± 0.13 –1.45 ± 0.37 

–7.70 ± 2.31 
–5.52 ± 2.33 

norm catctatttcТАТАТАgcctgcaccc 
mannose  

binding lectin 
T–35c variable  

immunodeficiency 
catctatttcТАcАТАgcctgcaccc 

[41] –1.11 ± 0.14 –1.74 ± 0.37* 
–8.17 ± 2.31 
–5.88 ± 2.33 

norm cgcggcgctcТАТАTААgtgggcagttriosephosphate 
isomerase 

T–24g 
anemia cgcggcgctcТАТАgААgtgggcagt

[33] –1.03 ± 0.14 –3.72 ± 0.37* 
–8.60 ± 2.31 
–7.27 ± 2.33 

*Asterisks are the significant differences between the prognoses in silico [19] and the measurements in vitro [this work],  < 0.05 (Student’s t-test). 

two nucleosomal histone H3-Н4 dimers [25]. Whichever 
of the two DNA/(Н3-Н4) contacts is closer to the tran-
scription start site overlaps the commonly accepted op-
timum location of the TATA box, namely: T–30A–29T–28 

A–27A–26A–25A–24 [9]. Consequently, it is likely that 
SNPs in TATA boxes (Table 1: (A or T) → (G or C) 
substitutions) can damage not only the TATA box itself 
but also the (A + T)-rich context, which forms the con-
tact between the promoter and the nucleosomal histone 
H3-Н4 dimer [26]. The observed significant consistent 
underestimation of the affinity of TBP and mutant 
TATA boxes by in silico prediction revealed in our 
standardized experimental measurements is indicative of 
a likely cooperative influence of the contextual damages 
to the DNA/(Н3-Н4) contact on the ТВР/ТАТА com-
plex which overlaps this contact (similarly to that de-
scribed previously for the composite element NFATp/ 
AP-1 [27]). This suggests that eukaryotic promoters 
might possess the composite element ТАТА/(Н3-Н4) 
(Н2А-Н2В)2(Н3-Н4), which has been indicated experi-
mentally [26] and which is still not yet considered in the 
tools intended for in silico analysis. 

So, after we performed the standardized experimental 
examination of the in silico predictions for the ТВР/ 
ТАТА affinity, we found in all the five cases that 
non-mutant ТАТА boxes in these genes had a high 
ТВР/ТАТА affinity (which suggests a high was consis-
tently potential for expression); however, the relative 

affinity, Δ underestimated. Except rarely, it is not the 
absolute value of the gene expression level that is an 
evolutionarily important parameter, rather it is the scope 
of the norm of reaction—or the ability to modify this 
value. Dynamical systems theory considers two modes 
of modification, external and parametric [28]. In the 
former case, any change represents an unambiguous re-
flection of the impact made. This is consistent with the 
formation of a mosaic of transcriptional factors on the 
promoter, which allows expression to be finely regulated. 
However, this is a relatively slow process, which re-
quires, if nothing else, the presence of the pre-initiation 
complex. Typically, the phenotypic effects of the poly-
morphisms damaging the mechanisms of fine transcrip-
tional regulation are specific. 

In the latter case, a change in the values of the pa-
rameters destabilizes the system, leading to a change in 
the probability of what its function will be afterwards. 
This is consistent with disruption of the multistep regu-
latory process as a whole rather than disturbances in 
some single steps [29-31]. The phenotypic effect of the 
polymorphisms that influence this variability is non- 
specific and general. This change in the norm of reaction 
may be adaptive for a large population when in stressful 
conditions: if environmental changes occur very rapidly 
or are multiple (in which case some often are mutually 
exclusive), the level of expression in part of the popula-
tion may—just for random reasons—turn out to be adap-
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tive.  
In particular, a change in nucleosome packaging is 

capable of non-specifically changing the probability of 
the gene expressing in many tissues at a time. A poly-
morphism that changes nucleosome packaging affects at 
least two parameters: the “layout” of the transcription-
ally active genomic regions [23] and the order of bind-
ing/affinity of transcriptional factors for DNA due to 
chemical modification of histones [32]. It is commonly 
accepted that the housekeeping gene promoters have a 
special nucleosomal context, which ensures a looser nu-
cleosome packaging and thus makes the promoter acces-
sible by various regulatory proteins in a large variety of 
tissues. Destruction of one of the few nucleosomes 
should considerably affect regulation. True is, it was a 
housekeeping gene, the only one in our check, for which 
we observed the largest departure of Δ from the in silico 
prediction (Table 1: triosephosphate isomerase associ-
ated with anemia [33]). 

The MBL2 gene, too, is characterized by a large de-
parture of Δ from the in silico prediction. Mannose 
binding lectin (MBL) is a key protein in the develop-
ment of the innate immune response. The polymor-
phisms that reduce MBL expression are associated with 
variable immunodeficiency, which is a risk factor (espe-
cially in the tender age [34,35]) for a variety of infec-
tious diseases [34-36]. In lower primates, both copies of 
the MBL gene are under stabilizing selection [37]. In the 
anthropoid lineage, one of the copies has underwent 
pseudogenization [38], and man has additionally ac-
quired a high frequency of polymorphisms that reduce 
the MBL level in the tissues, disrupt folding (codon 52 
Arg → Cys, codon 54 Gly → Asp, codon 57 Gly → Glu) 
or transcription (–2550 - H/L polymorphism, –2221 - 
X/Y polymorphism, –2427, –2349, –2336, –270, +4 - 
P/Q polymorphism; –2324 - –2329 deletion) [34,36,38]. 
A low level of MBL eases the after-effects of the stroke 
[39] and pre-eclampsia [40]. Thus, it is adaptive for the 
humanoids, with their actively working brain and diffi-
cult child-birth, to have strong variation of the 
within-tissue level of MBL across populations by com-
bination of these polymorphisms in the heterozygotes. 

In addition to the common polymorphisms mentioned 
above, local human populations may have other, inde-
pendently fixed polymorphisms [41], the effect of one of 
which, located in the area of the ТАТА box (T-35c, Ta-
ble 1), has been reported here. This polymorphism is 
likely to serve the same purpose as the common SNPs; 
specifically, it expands the norm of reaction, but does it 
somewhat differently, namely, by modulation of a trig-
ger-like regulator based on the composite ТАТА/(Н3-Н4) 
(Н2А-Н2В)2(Н3-Н4) unit. 

Importantly, this modulation of the norm of reaction is 

mild. The polymorphisms that disrupt folding or tran-
scription [34,36,38] inhibit MBL gene expression. Con-
sequently, the norm of reaction widens only at a popula-
tion-wide level. Individuals homozygous for such poly-
morphisms are vulnerable to infection at all times, that is, 
the individual norm of reaction is narrow and these indi-
viduals will not survive any attack by viruses or mi-
crobes. The lack of overlap between the affinity of ТВР 
for the TATA box in the MBL gene with the T-35c 
polymorphism and the affinity of TBP for non-specific 
DNA indicates that the expression of this gene is not 
totally suppressed even in the individuals that were ho-
mozygous for this polymorphism. Decrease in ТВР af-
finity means decrease in the probability that the expres-
sion of the MBL gene will be initiated; however, if ini-
tiation does take place, the gene will be expressed to the 
extent that it will be in any wild-type individual. In other 
words, if some individuals in a population carry the 
T–35c polymorphism, the norm of reaction will be wid-
ening not only at a population-wide level, but also at an 
individual level―specifically, in those carriers. Thus, 
even when under a viral or microbial attack, such indi-
viduals are given a chance. 

Identification of the previously unidentified source of 
the consistent in silico underestimation of the amount of 
damage caused to the regulatory regions of genes with 
SNPs makes us expect that a standardized examination 
of all the 237 TATA box SNPs, associated with human 
diseases [17], regional patterns of the AIDS pandemic 
[16], animal and plant traits, which are valuable with 
respect to breeding purposes [18], and newly discovered 
mutations in TATA boxes will allow us to look into the 
mechanisms of ТВР/ТАТА binding and improve the 
research quality of the computer-aided tools used for 
analysis and prediction of SNPs in the regulatory regions 
of human genes.  
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